
EMC® Documentum®

Foundation Classes
Version 6.5

Development Guide
P/N 300007210–A01

EMC Corporation
Corporate Headquarters:

Hopkinton, MA 01748‑9103
1‑508‑435‑1000
www.EMC.com



Copyright ©2000 ‑ 2008 EMC Corporation. All rights reserved.

Published July 2008

EMC believes the information in this publication is accurate as of its publication date. The information is subject to change
without notice.

THE INFORMATION IN THIS PUBLICATION IS PROVIDED AS IS. EMC CORPORATION MAKES NO REPRESENTATIONS
OR WARRANTIES OF ANY KINDWITH RESPECT TO THE INFORMATION IN THIS PUBLICATION, AND SPECIFICALLY
DISCLAIMS IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Use, copying, and distribution of any EMC software described in this publication requires an applicable software license.

For the most up‑to‑date listing of EMC product names, see EMC Corporation Trademarks on EMC.com.

All other trademarks used herein are the property of their respective owners.



Table of Contents

Preface ................................................................................................................................ 11

Chapter 1 Getting Started with DFC ............................................................................. 13
What Is DFC? ................................................................................................... 13
Where Is DFC? ................................................................................................. 14
DFC programming resources ............................................................................ 15
DFC documentation set................................................................................. 15
DFC developer support................................................................................. 16
DFC online reference documentation ............................................................. 16

Using dfc.properties to configure DFC ............................................................... 16
BOF and global registry settings .................................................................... 17
Connecting to the global registry ............................................................... 17
Performance tradeoffs ............................................................................... 18

Diagnostic settings........................................................................................ 18
Diagnostic mode ...................................................................................... 18
Configuring docbrokers ............................................................................ 18
dfc.data.dir .............................................................................................. 19
Tracing options......................................................................................... 19

XML processing options................................................................................ 19
Search options .............................................................................................. 19
Storage policy options................................................................................... 20
Performance tradeoffs ................................................................................... 20
Registry emulation ....................................................................................... 20
Microsoft Object Linking and Embedding (OLE) ........................................ 20

Client file system locations ............................................................................ 21
Using DFC logging ........................................................................................... 21
Using DFC from application programs............................................................... 21
Java ............................................................................................................. 21

Chapter 2 DFC Programming Basics ........................................................................... 23
Client/Server model .......................................................................................... 23
Packages .......................................................................................................... 23
Interfaces ......................................................................................................... 24
IDfPersistentObject ....................................................................................... 25

Processing a repository object............................................................................ 25

Chapter 3 Sessions and Session Managers ................................................................ 29
Sessions ........................................................................................................... 29
Sharable and Private Sessions ........................................................................ 30

Session Managers ............................................................................................. 30
Getting session managers and sessions............................................................... 30
Instantiating a Session Manager .................................................................... 30
Setting Session Manager Identities................................................................. 31
Getting and releasing sessions ....................................................................... 32

EMC Documentum Foundation Classes Version 6 Development Guide 3



Table of Contents

When you can and cannot release a managed session.................................. 33
Sessions can be released only once ............................................................. 34
Sessions cannot be used once released........................................................ 34

Objects disconnected from sessions.................................................................... 34
Related sessions (subconnections)...................................................................... 35
Original vs. object sessions................................................................................ 35
Transactions ..................................................................................................... 36
Configuring sessions using IDfSessionManagerConfig........................................ 36
Getting sessions using login tickets .................................................................... 37
Methods for getting login tickets ................................................................... 38
Generating a login ticket using a superuser account ........................................ 38

Principal authentication support........................................................................ 39
Implementing principal support in your custom application ........................... 40
Default classes for demonstrating principal support implementation ............... 41

Maintaining state in a session manager .............................................................. 41

Chapter 4 Creating a Test Application ......................................................................... 43
The DfcBaseTutorialFrame class ........................................................................ 43
The DfcBaseTutorialApplication class ................................................................ 50
Running the tutorial application ........................................................................ 51

Chapter 5 Working with Objects .................................................................................. 53
Understanding repository objects ...................................................................... 53
The DFC Object Tutorial Frame ......................................................................... 54
Creating a cabinet............................................................................................. 54
Creating a folder............................................................................................... 56
Creating a document object ............................................................................... 58
Accessing attributes .......................................................................................... 60
Dumping Attributes ..................................................................................... 60
Getting a single attribute by name ................................................................. 62
Getting a single attribute by number .............................................................. 64

Setting attributes .............................................................................................. 66
Setting a single attribute................................................................................ 66
Setting an attribute by number ...................................................................... 69
Appending a repeating attribute.................................................................... 72

Removing an attribute value ............................................................................. 75
Getting object content ....................................................................................... 77
Destroying an object ......................................................................................... 79

Chapter 6 Working with Document Operations ............................................................ 83
Understanding documents ................................................................................ 83
Virtual documents ........................................................................................ 84
XML Documents .......................................................................................... 85

Understanding operations................................................................................. 85
Types of operation ............................................................................................ 86
Basic steps for manipulating documents ............................................................ 87
Steps for manipulating documents................................................................. 87
Details of manipulating documents ............................................................... 88
Obtaining the operation ............................................................................ 88

4 EMC Documentum Foundation Classes Version 6 Development Guide



Table of Contents

Setting parameters for the operation .......................................................... 89
Adding documents to the operation........................................................... 89
Executing the Operation ........................................................................... 89
Processing the results................................................................................ 90
Working with nodes ................................................................................. 90

Operations for manipulating documents ............................................................ 91
Checking out................................................................................................ 93
Special considerations for checkout operations ........................................... 95
Checking out a virtual document............................................................... 95

Checking in.................................................................................................. 97
Special considerations for checkin operations ............................................. 99
Setting up the operation ........................................................................ 99
Processing the checked in documents..................................................... 99

Cancelling checkout.................................................................................... 100
Special considerations for cancel checkout operations ............................... 102
Cancel checkout for virtual document ...................................................... 102

Importing .................................................................................................. 104
Special Considerations for Import Operations .......................................... 106
Setting up the operation ...................................................................... 106
XML processing ................................................................................. 106
Processing the imported documents .................................................... 106

Exporting................................................................................................... 108
Special considerations for export operations ............................................. 110

Copying..................................................................................................... 111
Special considerations for copy operations ............................................... 113

Moving ...................................................................................................... 114
Special considerations for move operations .............................................. 115

Deleting ..................................................................................................... 116
Special considerations for delete operations ............................................. 118

Predictive caching ...................................................................................... 119
Special considerations for predictive caching operations ........................... 119

Validating an XML document against a DTD or schema ................................ 120
Special considerations for validation operations ....................................... 120

Performing an XSL transformation of an XML document .............................. 121
Special considerations for XML transform operations................................ 123

Handling document manipulation errors ......................................................... 124
The add Method Cannot Create a Node ....................................................... 124
The execute Method Encounters Errors ........................................................ 124
Examining Errors After Execution ........................................................... 124
Using an Operation Monitor to Examine Errors ........................................ 126

Operations and transactions ............................................................................ 126

Chapter 7 Using the Business Object Framework (BOF) ........................................... 129
Overview of BOF............................................................................................ 129
BOF infrastructure .......................................................................................... 130
Modules and registries................................................................................ 130
Packaging support ...................................................................................... 131
Application Builder (DAB) ...................................................................... 131
JAR files................................................................................................. 132
Libraries and sandboxing ........................................................................ 132
Deploying module interfaces................................................................... 133

Dynamic delivery mechanism ..................................................................... 133
Global registry ........................................................................................... 134
Global registry user ................................................................................ 134
Accessing the global registry ................................................................... 134

Service‑based Business Objects (SBOs) ............................................................. 134

EMC Documentum Foundation Classes Version 6 Development Guide 5



Table of Contents

SBO introduction........................................................................................ 135
SBO architecture......................................................................................... 135
Implementing SBOs .................................................................................... 136
Stateful and stateless SBOs ...................................................................... 136
Managing Sessions for SBOs.................................................................... 137
Overview ........................................................................................... 137
Structuring Methods to Use Sessions ................................................... 137
Managing repository names ................................................................ 137
Maintaining State Beyond the Life of the SBO....................................... 138
Obtaining Session Manager State Information ...................................... 138

Using Transactions With SBOs................................................................. 138
SBO Error Handling ................................................................................... 141
SBO Best Practices ...................................................................................... 141
Follow the Naming Convention............................................................... 141
Don’t Reuse SBOs ................................................................................... 141
Make SBOs Stateless ............................................................................... 142
Rely on DFC to Cache Repository Data .................................................... 142

Type‑based Business Objects (TBOs) ................................................................ 142
Use of Type‑based Business Objects ............................................................. 142
Creating a TBO........................................................................................... 142
Create a custom repository type .............................................................. 143
Create the TBO interface ......................................................................... 143
Define the TBO implementation class....................................................... 144
Implement methods of IDfBusinessObject ................................................ 146
getVersion method ............................................................................. 146
getVendorString method ..................................................................... 146
isCompatible method.......................................................................... 146
supportsFeature method ..................................................................... 147

Code the TBO business logic ................................................................... 147
Using a TBO from a client application .......................................................... 148
Using TBOs from SBOs ............................................................................... 149
Getting sessions inside TBOs ....................................................................... 150
Inheritance of TBO methods by repository subtypes without TBOs................ 150
Dynamic inheritance................................................................................... 151
Exploiting dynamic inheritance with TBO reuse ....................................... 153

Signatures of Methods to Override .............................................................. 154
Calling TBOs and SBOs................................................................................... 158
Calling SBOs .............................................................................................. 158
Returning a TBO from an SBO ..................................................................... 159
Calling TBOs .............................................................................................. 160

Sample SBO and TBO implementation ............................................................. 160
ITutorialSBO .............................................................................................. 160
TutorialSBO ............................................................................................... 161
ITutorialTBO .............................................................................................. 161
TutorialTBO ............................................................................................... 162
Deploying the SBO and TBO ....................................................................... 164

Aspects .......................................................................................................... 166
Examples of usage ...................................................................................... 166
General characteristics of aspects ................................................................. 167
Creating an aspect ...................................................................................... 167
Creating the aspect interface.................................................................... 167
Creating the aspect class ......................................................................... 168
Deploy the customer service aspect.......................................................... 169
TestCustomerServiceAspect .................................................................... 169

Using aspects in a TBO ............................................................................... 173
Using DQL with aspects.............................................................................. 174
Enabling aspects on object types .............................................................. 174

6 EMC Documentum Foundation Classes Version 6 Development Guide



Table of Contents

Default aspects ....................................................................................... 175
Referencing aspect attributes from DQL................................................... 175

Full‑text index ............................................................................................ 175
Object replication ....................................................................................... 176

Chapter 8 Working with Virtual Documents ............................................................... 177
Understanding virtual documents ................................................................... 177
Setting version labels ...................................................................................... 178
Getting version labels ..................................................................................... 182
Creating a virtual document............................................................................ 183
Traversing the virtual document structure........................................................ 188
Binding to a version label ................................................................................ 190
Clearing a version label binding ...................................................................... 193
Removing a virtual document child ................................................................. 194

Chapter 9 Support for Other Documentum Functionality .......................................... 199
Security Services............................................................................................. 199
XML .............................................................................................................. 200
Virtual Documents ......................................................................................... 200
Workflows ..................................................................................................... 200
Document Lifecycles....................................................................................... 201
Validation Expressions in Java ......................................................................... 201
Search Service ................................................................................................ 202

EMC Documentum Foundation Classes Version 6 Development Guide 7



Table of Contents

List of Figures

Figure 1. Instantiating a session manager without identities .................................................. 30
Figure 2. Code listing — DfcTestFrame.java ......................................................................... 43
Figure 3. The DFC Base Tutorial Frame ................................................................................ 52
Figure 4. Basic TBO design................................................................................................ 145
Figure 5. TBO design with extended intervening class ........................................................ 145
Figure 6. Inheritance by object subtype without associated TBO .......................................... 151
Figure 7. Design‑time dynamic inheritance hierarchies ....................................................... 152
Figure 8. Runtime dynamic inheritance hierarchies............................................................. 152
Figure 9. Design‑time dynamic inheritance with TBO reuse ................................................ 153
Figure 10. Runtime dynamic inheritance with TBO reuse...................................................... 153

8 EMC Documentum Foundation Classes Version 6 Development Guide



Table of Contents

List of Tables

Table 1. DFC operation types and nodes............................................................................. 86
Table 2. Methods to override when implementing TBOs.................................................... 154

EMC Documentum Foundation Classes Version 6 Development Guide 9



Table of Contents

10 EMC Documentum Foundation Classes Version 6 Development Guide



Preface

This manual describes EMC Documentum Foundation Classes (DFC). It provides overview and
summary information.

For an introduction to other developer resources, refer to DFC developer support, page 16.

Intended audience
This manual is for programmers who understand how to use Java and are generally familiar with the
principles of object oriented design.

Revision History
The following changes have been made to this document.

Revision History

Revision Date Description

July 2008 Initial publication

EMC Documentum Foundation Classes Version 6 Development Guide 11



Preface

12 EMC Documentum Foundation Classes Version 6 Development Guide



Chapter 1
Getting Started with DFC

This chapter introduces DFC. It contains the following major sections:
• What Is DFC?, page 13
• Where Is DFC?, page 14
• DFC programming resources, page 15
• Using dfc.properties to configure DFC, page 16
• Using DFC logging, page 21
• Using DFC from application programs, page 21

What Is DFC?
DFC is a key part of the Documentum software platform. While the main user of DFC is other
Documentum software, you can use DFC in any of the following ways:
• Access Documentum functionality from within one of your company’s enterprise applications.

For example, your corporate purchasing application can retrieve a contract from your
Documentum system.

• Customize or extend products such as Webtop.

For example, you can modify Webtop functionality to implement one of your company’s business
rules.

• Write a method or procedure for Content Server to execute as part of a workflow or document
lifecycle.

For example, the procedure that runs when you promote an XML document might apply a
transformation to it and start a workflow to subject the transformed document to a predefined
business process.

You can view Documentum functionality as having the following elements:

EMC Documentum Foundation Classes Version 6 Development Guide 13



Getting Started with DFC

Repositories One or more places where you keep the content and associated metadata of your
organization’s information. The metadata resides in a relational database, and the
content resides in various storage elements.

Content
Server

Software that manages, protects, and imposes an object oriented structure on the
information in repositories. It provides tools for managing the lifecycles of that
information and automating processes for manipulating it.

Client
programs

Software that provides interfaces between Content Server and end users. The most
common clients run on application servers (for example, Webtop).

End Users People who control, contribute, or use your organization’s information. They use a
browser to access client programs running on application servers.

In this view of Documentum functionality, Documentum Foundation Classes (DFC) lies between
Content Server and clients. Documentum Foundation Services are the primary client interface to the
Documentum platform. Documentum Foundation Classes are used for server‑side business logic and
customization.

DFC is Java based. As a result, client programs that are Java based can interface directly with DFC.

When application developers use DFC, it is usually within the customization model of a Documentum
client, though you can also use DFC to develop the methods associated with Content Server
functionality, such as document lifecycles.

In the Java application server environment, Documentum client software rests on the foundation
provided by the Web Development Kit (WDK). This client has a customization model that allows you
to modify the user interface and also implement some business logic. However, the principal tool for
adding custom business logic to a Documentum system is to use the Business Object Framework (BOF).

BOF enables you to implement business rules and patterns as reusable elements, called modules. The
most important modules for application developers are type based objects (TBOs), service based
objects (SBOs), and Aspects. Aspect modules are similar to TBOs, but enable you to attach properties
and behavior on an instance‑by‑instance basis, independent of the target object’s type.

BOF makes it possible to extend some of DFC’s implementation classes. As a result, you can introduce
new functionality in such a way that existing programs begin immediately to reflect changes you
make to the underlying business logic.

The Documentum Content Server Fundamentals manual provides a conceptual explanation of the
capabilities of Content Server. DFC provides a framework for accessing those capabilities. Using
DFC and BOF makes your code much more likely to survive future architectural changes to the
Documentum system.

Where Is DFC?
DFC runs on a Java virtual machine (JVM), which can be on:

14 EMC Documentum Foundation Classes Version 6 Development Guide



Getting Started with DFC

• The machine that runs Content Server.

For example, to be called from a method as part of a workflow or document lifecycle.
• A middle‑tier system.

For example, on an application server to support WDK or to execute server methods.
For client machines, Documentum 6 now provides Documentum Foundation Services (DFS) as the
primary support for applications communicating with the Documentum platform.

Note: Refer to the DFC release notes for the supported versions of the JVM. These can change from
one minor release to the next.

The DFC Installation Guide describes the locations of files that DFC installs. The config directory
contains several files that are important to DFC’s operation.

DFC programming resources
This section provides an overview of the resources available to application developers to help them
use DFC.

DFC documentation set

The following documents pertain to DFC or to closely related subjects
• Documentum System Migration Guide

Refer to the migration guide if you are upgrading from an earlier version of DFC.
• DFC Installation Guide

This guide explains how to install DFC. It includes information about preparing the environment
for DFC.

• DFC Development Guide

A programmers guide to using DFC to access Documentum functionality. This guide focuses on
concepts and overviews. Refer to the Javadocs for details.

• DFC Online Reference (Javadocs)

The Javadocs provide detailed reference information about the classes and interfaces that make up
DFC. They contain automatically generated information about method signatures and interclass
relationships, explanatory comments provided by developers, and a large number of code samples.

• Documentum Content Server Fundamentals

A conceptual description of the capabilities of Documentum Content Server and how to use them.
The material in this manual is a key to understanding most DFC interfaces.

EMC Documentum Foundation Classes Version 6 Development Guide 15



Getting Started with DFC

• XML Application Development Guide

A description of the XML‑related capabilities of the Documentum server, and an explanation of
how to design applications that exploit those capabilities.

DFC developer support

Application developers using DFC can find additional help in the following places:
• CustomerNet

The CustomerNet website (http://softwaresupport.emc.com/support) is an extensive resource that
every developer should take some time to explore and become familiar with.

The Developer section contains tips, sample code, downloads, a component exchange, and other
resources for application developers using DFC, WDK, and other tools.

The Support section provides a knowledge base, support notes, technical alerts and papers,
support forums, and access to individual cases. The DFC support forum is a good place to go
when you need answers.

• Yahoo! groups

There are several Yahoo! groups dedicated to aspects of Documentum software. The ones focused
on DFC, WDK, and XML might be especially interesting to application developers who use DFC.

DFC online reference documentation

The public API for DFC is documented in the Javadocs that ship with the product. You have the
option of deploying the Javadocs during DFC installation, or you can download the Javadocs from
the EMC Developer Connection web site (http://developer.emc.com — search for “DFC Javadocs”).
Direct access to undocumented classes or interfaces is not supported.

Using dfc.properties to configure DFC
You can adjust some DFC behaviors. This section describes the dfc.properties file, which contains
properties compatible with the java.util.Properties class.

The dfc.properties file enables you to set preferences for how DFC handles certain choices in the course
of its execution. The accompanying dfcfull.properties file contains documentation of all recognized
properties and their default settings. Leave dfcfull.properties intact, and copy parts that you want to
use into the dfc.properties file. The following sections describe the most commonly used groups of
properties. Refer to the dfcfull.properties file for a complete list.

16 EMC Documentum Foundation Classes Version 6 Development Guide

http://softwaresupport.emc.com/support


Getting Started with DFC

The DFC installer creates a simple dfc.properties file and places it in the classpath. Other EMC
installers for products that bundle DFC also create dfc.properties file in the appropriate classpath. At a
minimum, the dfc.properties file must include the following entries:

dfc.docbroker.host[0]

dfc.globalregistry.repository

dfc.globalregistry.username

dfc.globalregistry.password

BOF and global registry settings

All Documentum installations must designate a global registry to centralize information and
functionality. Refer to Global registry, page 134 for information about global registries.

Connecting to the global registry

The dfc.properties file contains the following properties that are mandatory for using a global registry.
• dfc.bof.registry.repository

The name of the repository. The repository must project to a connection broker that DFC has
access to.

• dfc.bof.registry.username

The user name part of the credentials that DFC uses to access the global registry. Refer to Global
registry user, page 134 for information about how to create this user.

• dfc.bof.registry.password

The password part of the credentials that DFC uses to access the global registry. The DFC installer
encrypts the password if you supply it. If you want to encrypt the password yourself, use the
following instruction at a command prompt:
java com.documentum.fc.tools.RegistryPasswordUtils password

The dfc.properties file also provides an optional property to resist attempts to obtain unauthorized
access to the global registry. For example, the entry
dfc.bof.registry.connect.attempt.interval=60

sets the minimum interval between connection attempts to the default value of 60 seconds.

EMC Documentum Foundation Classes Version 6 Development Guide 17



Getting Started with DFC

Performance tradeoffs

Based on the needs of your organization, you can use property settings to make choices that affect
performance and reliability. For example, preloading provides protection against a situation in which
the global registry becomes unavailable. On the other hand, preloading increases startup time. If you
want to turn off preloading, you can do so with the following setting in dfc.properties:
dfc.bof.registry.preload.enabled=false

You can also adjust the amount of time DFC relies on cached information before checking for
consistency between the local cache and the global registry. For example, the entry
dfc.bof.cacheconsistency.interval=60

sets that interval to the default value of 60 seconds. Because global registry information tends to be
relatively static, you might be able to check lees frequently in a production environment. On the
other hand, you might want to check more frequently in a development environment. The check is
inexpensive. If nothing has changed, the check consists of looking at one vstamp object. Refer to the
Content Server Object Reference for information about vstamp objects.

Diagnostic settings

DFC provides a number of properties that facilitate diagnosing and solving problems.

Diagnostic mode

DFC can run in diagnostic mode. You can cause this to happen by including the following setting
in dfc.properties:
dfc.resources.diagnostics.enabled=T

The set of problems that diagnostic mode can help you correct can change without notice. Here are
some examples of issues detected by diagnostic mode.:
• Session leaks
• Collection leaks
DFC catches the leaks at garbage collection time. If it finds an unreleased session or an unclosed
collection, it places an appropriate message in the log.

Configuring docbrokers

You must set the repeating property dfc.docbroker.host, one entry per docbroker. For example,
dfc.docbroker.host[0]=docbroker1.yourcompany.com

18 EMC Documentum Foundation Classes Version 6 Development Guide



Getting Started with DFC

dfc.docbroker.host[1]=docbroker2.yourcompany.com

These settings are described in the dfcfull.properties file.

dfc.data.dir

The dfc.data.dir setting identifies the directory used by DFC to store files. By default, it is a folder
relative to the current working directory of the process running DFC. You can set this to another value.

Tracing options

DFC has extensive tracing support. Trace files can be found in a directory called logsunder dfc.data.dir.
For simple tracing, add the following line to dfc.properties:
dfc.tracing.enable=true

That will trace DFC entry calls, return values and parameters.

For more extensive tracing information, add the following lines to dfc.properties.
dfc.tracing.enable=true
dfc.tracing.verbose=true
dfc.tracing.include_rpcs=true

Thsi will include more details and RPCs sent to the server. It is a good idea to start with the simple
trace, because the verbose trace produces much more output to scan and sort through.

XML processing options

DFC’s XML processing is largely controlled by configuration files that define XML applications. Two
properties provide additional options. Refer to the XML Application Development Guide for information
about working with content in XML format.

Search options

DFC supports the search capabilities of Enterprise Content Integration Services (ECIS) with a set of
properties. The ECIS installer sets some of these. Most of the others specify diagnostic options or
performance tradeoffs.

EMC Documentum Foundation Classes Version 6 Development Guide 19



Getting Started with DFC

Storage policy options

Some properties control the way DFC applies storage policy rules. These properties do not change
storage policies. They provide diagnostic support and performance tradeoffs.

Performance tradeoffs

Several properties enable you to make tradeoffs between performance and the frequency with which
DFC executes certain maintenance tasks.

DFC caches the contents of properties files such as dfc.properties or dbor.properties. If you change
the contents of a properties file, the new value does not take effect until DFC rereads that file. The
dfc.config.timeout property specifies the interval between checks. The default value is 1 second.

DFC periodically reclaims unused resources. The dfc.housekeeping.cleanup.interval property
specifies the interval between cleanups. The default value is 7 days.

Some properties described in the BOF and global registry settings, page 17 and Search options, page
19 sections also provide performance tradeoffs.

Registry emulation

DFC uses the dfc.registry.mode property to keep track of whether to use a file, rather than the
Windows registry, to store certain settings. The DFC installer sets this property to file by default.

Microsoft Object Linking and Embedding (OLE)

When importing or exporting Microsoft OLE documents, DFC can automatically search for linked
items and import them as individual system objects linked as nodes in a virtual document. On export,
the document can be reassembled into a single document with OLE links. In order to enable this
behavior, you must configure the registry emulation mode in dfc.properties.

By default, the setting is:
dfc.registry.mode = file

To enable OLE file handling, set the value to:
dfc.registry.mode = windows

20 EMC Documentum Foundation Classes Version 6 Development Guide



Getting Started with DFC

Client file system locations

Several properties record the file system locations of files and directories that DFC uses. The DFC
installer sets the values of these properties based upon information that you provide. There is
normally no need to modify them after installation.

Using DFC logging
DFC provides diagnostic logging. The logging is controlled by a log4j configuration file, which is
customarily named log4j.properties. The dmcl installer as well as other EMC installers place a
default version of this file in the same directory where the dfc.properties file is created. Though you
generally will not need to change this file, you can customize your logging by consulting the log4j
documentation.

In past releases, DFC used the DMCL library to communicate with the server and provided support
for integrating DMCL logging and DFC logging. Since DMCL is no longer used, the features to
integrate its tracing into the DFC log are no longer needed.

Using DFC from application programs
You can use Java to interface directly to DFC. On a Windows system you can also use the Microsoft
component object model (COM). From the .NET environment, you can use the primary interop
assembly (PIA) supplied with DFC. The Developer section of the CustomerNet website contains an
extensive ASP.NET example.

Using DFC from ASP or ASP.NET requires you to set appropriately high permission levels on some
folders for the anonymous user account. Support notes 23274 and 24234 in the Support section of the
CustomerNet website and the ASP.NET sample in the Developer section provide more information
about this.

The DFC installer installs dfc.dll and, for backward compatibility, dfc.tlb. Always import dfc.dll
rather than dfc.tlb into your COM programs.

The most convenient way to access DFC on aWindows system depends on the programming language.

Java

From Java, add dctm.jar to your classpath. This file contains a manifest, listing all files that your
Java execution environment needs access to. The javac compiler does not recognize the contents of
the manifest, so for compilation you must ensure that the compiler has access to dfc.jar. This file

EMC Documentum Foundation Classes Version 6 Development Guide 21



Getting Started with DFC

contains most Java classes and interfaces that you need to access directly. In some cases you may
have to give the compiler access to other files described in the manifest. In your Java source code,
import the classes and interfaces you want to use.

Ensure that the classpath points to the config directory.

22 EMC Documentum Foundation Classes Version 6 Development Guide



Chapter 2
DFC Programming Basics

This chapter describes some common patterns of DFC application code. It contains the following
sections.
• Client/Server model, page 23
• Packages, page 23
• Interfaces, page 24
• Processing a repository object, page 25

Client/Server model
The Documentum architecture generally follows the client/server model. DFC‑based programs are
client programs, even if they run on the same machine as a Documentum server. DFC encapsulates its
client functionality in the IDfClient interface, which serves as the entry point for DFC code. IDfClient
handles basic details of connecting to Documentum servers.

You obtain an IDfClient object by calling the static method DfClientX.getLocalClient().

An IDfSession object represents a connection with the Documentum server and provides services
related to that session. DFC programmers create new Documentum objects or obtain references to
existing Documentum objects through the methods of IDfSession.

To get a session, first create an IDfSessionManager by calling IDfClient.newSessionManager(). Next,
get the session from the session manager using the procedure described in the sections and session
managers below. For more information about sessions, refer to Chapter Chapter 3, Sessions and
Session Managers.

Packages
DFC comprises a number of packages, that is, sets of related classes and interfaces.

EMC Documentum Foundation Classes Version 6 Development Guide 23



DFC Programming Basics

• The names of DFC Java classes begin with Df (for example, DfCollectionX).
• Names of interfaces begin with IDf (for example, IDfSessionManager).
Interfaces expose DFC’s public methods. Each interface contains a set of related methods. The
Javadocs describe each package and its purpose.

Note:
• The com.documentum.operations package and the IDfSysObject interface in the

com.documentum.fc.client package have some methods for the same basic tasks (for example,
checkin, checkout). In these cases, the IDfSysObject methods are mostly for internal use
and for supporting legacy applications. The methods in the operations package perform the
corresponding tasks at a higher level. For example, they keep track of client‑side files and
implement Content Server XML functionality.

• The IDfClientX is the correct interface for accessing factory methods (all of its getXxx methods,
except for those dealing with the DFC version or trace levels).

The DFC interfaces form a hierarchy; some derive methods and constants from others. Use the Tree
link from the home page of the DFC online reference (see DFC online reference documentation, page
16 ) to examine the interface hierarchy. Click any interface to go to its definition.

Each interface inherits the methods and constants of the interfaces above it in the hierarchy. For
example, IDfPersistentObject has a save method. IDfSysObject is below IDfPersistentObject in the
hierarchy, so it inherits the save method. You can call the save method of an object of type IDfSysObject.

Interfaces
Because DFC is large and complex, and because its underlying implementation is subject to change,
you should use DFC’s public interfaces.

Tip: DFC provides factory methods to instantiate objects that implement specified DFC interfaces. If
you bypass these methods to instantiate implementation classes directly, your programs may fail to
work properly, because the factory methods sometimes do more than simply instantiate the default
implementation class. For most DFC programming, the only implementation classes you should
instantiate directly are DfClientX and the exception classes (DfException and its subclasses).

DFC does not generally support direct access to, replacement of, or extension of its implementation
classes. The principal exception to these rules is the Business Object Framework (BOF). For more
information about BOF, refer to .

24 EMC Documentum Foundation Classes Version 6 Development Guide



DFC Programming Basics

IDfPersistentObject

An IDfPersistentObject corresponds to a persistent object in a repository. With DFC you usually
don’t create objects directly. Instead, you obtain objects by calling factory methods that have
IDfPersistentObject as their return type.

Caution: If the return value of a factory method has type IDfPersistentObject, you can cast it
to an appropriate interface (for example, IDfDocument if the returned object implements that
interface). Do not cast it to an implementation class (for example, DfDocument). Doing so
produces a ClassCastException.

Processing a repository object
The following general procedure may help to clarify the DFC approach. This example is not meant to
give complete details, but to provide an overview of a typical transaction. More detail on the process
is provided in subsequent chapters.

To process a repository object:

1. Obtain an IDfClientX object. For example, execute the following Java code:
IDfClientX cx = new DfClientX();

2. Obtain an IDfClient object by calling the getLocalClient method of the IDfClientX object. For
example, execute the following Java code:
IDfClient c = cx.getLocalClient();

The IDfClient object must reside in the same process as the Documentum client library, DMCL.

3. Obtain a session manager by calling the newSessionManager method of the IDfClient object.
For example, execute the following Java code:
IDfSessionManager sm = c.newSessionManager();

4. Use the session manager to obtain a session with the repository, that is, a reference to an object that
implements the IDfSession interface. For example, execute the following Java code:
IDfSession s = sm.getSession();

Refer to for information about the difference between the getSession and newSession methods of
IDfSessionManager.

5. If you do not have a reference to the Documentum object, call an IDfSession method (for example,
newObject or getObjectByQualification) to create an object or to obtain a reference to an existing
object.

EMC Documentum Foundation Classes Version 6 Development Guide 25



DFC Programming Basics

6. Use routines of the operations package to manipulate the object, that is, to check it out, check it in,
and so forth. For simplicity, the example below does not use the operations package. (Refer to
Chapter 6, Working with Document Operations for examples that use operations).

7. Release the session.

Example 21. Processing a repository object
The following fragment from a Java program that uses DFC illustrates this procedure.
IDfClientX cx = new DfClientX(); //Step 1

IDfClient client = cx.getLocalClient(); //Step 2

IDfSessionManager sMgr = client.newSessionManager(); //Step 3
IDfLoginInfo loginInfo = clientX.getLoginInfo();
loginInfo.setUser( "Mary" );
loginInfo.setPassword( "ganDalF" );
loginInfo.setDomain( "" );
sMgr.setIdentity( strRepositoryName, loginInfo );

IDfSession session = sMgr.getSession( strRepoName ); //Step 4

try {
IDfDocument document =
(IDfDocument) session.newObject( "dm_document" ); //Step 5

document.setObjectName( "Report on Wizards" ); //Step 6
document.save();

}
finally {
sMgr.release( session ); //Step 7

}

Steps 1 through 4 obtain an IDfSession object, which encapsulates a session for this application
program with the specified repository.

The following example shows how to obtain an IDfClient object in Visual Basic:

Dim myclient As IDfClient 'Steps 12
Dim myclientx As new DfClientX
Set myclient = myclientX.getLocalClient

Step 5 creates an IDfDocument object. The return type of the newObject method is IDfPersistentObject.
You must cast the returned object to IDfDocument in order to use methods that are specific to
documents.

Step 6 of the example code sets the document object name and saves it.

Note that the return type of the newObject method is IDfPersistentObject. The program explicitly casts
the return value to IDfDocument, then uses the object’s save method, which IDfDocument inherits from
IDfPersistentObject. This is an example of interface inheritance, which is an important part of DFC
programming. The interfaces that correspond to repository types mimic the repository type hierarchy.

26 EMC Documentum Foundation Classes Version 6 Development Guide



DFC Programming Basics

Step 7 releases the session, that is, places it back under the control of the session manager, sMgr.
The session manager will most likely return the same session the next time the application calls
sMgr.getSession.

Most DFC methods report errors by throwing a DfException object. Java code like that in the above
example normally appears within a try/catch/finally block, with an error handler in the catch block.

Tip: When writing code that calls DFC, it is a best practice to include a finally block to ensure that you
release storage and sessions.

EMC Documentum Foundation Classes Version 6 Development Guide 27



DFC Programming Basics

28 EMC Documentum Foundation Classes Version 6 Development Guide



Chapter 3
Sessions and Session Managers

This chapter describes how to get, use, and release sessions, which enable your application to connect
to a repository and access repository objects.

Note: If you are programming in the WDK environment, be sure to refer to Managing Sessions
inWeb Development Kit Development Guide for information on session management techniques and
methods specific to WDK.

This chapter contains the following major sections:

• Sessions, page 29
• Session Managers, page 30
• Getting session managers and sessions, page 30
• Objects disconnected from sessions, page 34
• Related sessions (subconnections), page 35
• Original vs. object sessions, page 35
• Transactions, page 36
• Configuring sessions using IDfSessionManagerConfig, page 36
• Getting sessions using login tickets, page 37
• Principal authentication support, page 39

Sessions
To do any work in a repository, you must first get a session on the repository. A session (IDfSession)
maintains a connection to a repository, and gives access to objects in the repository for a specific
logical user whose credentials are authenticated before establishing the connection. The IDfSession
interface provides a large number of methods for examining and modifying the session itself, the
repository, and its objects, as well as for using transactions (refer to IDfSession in the Javadocs for a
complete reference).

EMC Documentum Foundation Classes Version 6 Development Guide 29



Sessions and Session Managers

Sharable and Private Sessions

A sharable session can be shared by multiple users, threads, or applications. A private session is a
session that is not shared. To get a shared session, use IDfSessionManager.getSession. To get a private
session, use IDfSessionManager.newSession.

Session Managers
A session manager (IDfSessionManager) manages sessions for a single user on one or more
repositories. You create a session manager using the DfClient.newSessionManager factory method.

The session manager serves as a factory for generating new IDfSession objects using the
IDfSessionManager.newSession method. Immediately after using the session to do work in the
repository, the application should release the session using the IDfSessionManager.release() method in
a finally clause. The session initially remains available to be reclaimed by session manager instance
that released it, and subsequently will be placed in a connection pool where it can be shared.

The IDfSessionManager.getSession method checks for an available shared session, and, if one is
available, uses it instead of creating a new session. This makes for efficient use of content server
connections, which are an extremely expensive resource, in a web programming environment where a
large number of sessions are required.

Getting session managers and sessions
The following sections describe how to instantiate a session manager, set its identities, and use it
to get and release sessions.

Instantiating a Session Manager

The following sample method instantiates and returns a session manager object without setting any
identities.

Figure 1. Instantiating a session manager without identities

import com.documentum.com.DfClientX;
import com.documentum.fc.client.IDfClient;
import com.documentum.fc.client.IDfSessionManager;
import com.documentum.fc.common.DfException;
. . .
/**

30 EMC Documentum Foundation Classes Version 6 Development Guide



Sessions and Session Managers

* Creates a IDfSessionManager with no prepopulated identities
*/
public static IDfSessionManager getSessionManager() throws Exception
{
// Create a client object using a factory method in DfClientX.

DfClientX clientx = new DfClientX();
IDfClient client = clientx.getLocalClient();

// Call a factory method to create the session manager.

IDfSessionManager sessionMgr = client.newSessionManager();
return sessionMgr;

}

In this example, you directly instantiate a DfClientX object. Based on that object, you are able to use
factory methods to create the other objects required to interact with the repository.

Setting Session Manager Identities

To set a session manager identity, encapsulate a set of user credentials in an IDfLoginInfo object
and pass this with the repository name to the IDfSessionManager.setIdentity method. In simple
cases, where the session manager will be limited to providing sessions for a single repository, or
where the login credentials for the user is the same in all repositories, you can set a single identity to
IDfLoginInfo.ALL_DOCBASES (= *). This causes the session manager to map any repository name for
which there is no specific identity defined to a default set of login credentials.
/**
* Creates a simplestcase IDfSessionManager
* The user in this case is assumed to have the same login
* credentials in any available repository
*/
public static IDfSessionManager getSessionManager
(String userName, String password) throws Exception

{
// create a client object using a factory method in DfClientX

DfClientX clientx = new DfClientX();
IDfClient client = clientx.getLocalClient();

// call a factory method to create the session manager

IDfSessionManager sessionMgr = client.newSessionManager();

// create an IDfLoginInfo object and set its fields
IDfLoginInfo loginInfo = clientx.getLoginInfo();
loginInfo.setUser(userName);
loginInfo.setPassword(password);

// set single identity for all docbases
sessionMgr.setIdentity(IDfSessionManager.ALL_DOCBASES, loginInfo);
return sessionMgr;

}

EMC Documentum Foundation Classes Version 6 Development Guide 31



Sessions and Session Managers

If the session manager has multiple identities, you can add these lazily, as sessions are requested. The
following method adds an identity to a session manager, stored in the session manager referred to
by the Java instance variable sessionMgr. If there is already an identity set for the repository name,
setIdentity will throw a DfServiceException. To allow your method to overwrite existing identities, you
can check for the identity (using hasIdentity) and clear it (using clearIdentity) before calling setIdentity.
public void addIdentity
(String repository, String userName, String password) throws DfServiceException

{
// create an IDfLoginInfo object and set its fields

IDfLoginInfo loginInfo = this.clientx.getLoginInfo();
loginInfo.setUser(userName);
loginInfo.setPassword(password);

if (sessionMgr.hasIdentity(repository))
{
sessionMgr.clearIdentity(repository);

}
sessionMgr.setIdentity(repository, loginInfo);

}

Note that setIdentity does not validate the repository name nor authenticate the user credentials. This
normally is not done until the application requests a session using the getSession or newSession
method; however, you can authenticate the credentials stored in the identity without requesting a
session using the IDfSessionManager.authenticate method. The authenticate method, like getSession
and newSession, uses an identity stored in the session manager object, and throws an exception if the
user does not have access to the requested repository.

Getting and releasing sessions

To get and assume ownership of a managed session, call IDfSessionManager.getSession (to get a
sharable session) or newSession (to get a private session), passing a repository name as a String. If
there is no identity set for the repository, getSession throws a DfIdentityException. If a user name
and password stored in the identity fail to authenticate, getSession will throw a DfAuthentication
exception.

To release a session, call IDfSessionManager.release(), passing it the session reference. You should
release a session as soon as the work for which it is immediately required is complete, and you should
release the session in a finally block to ensure that it gets released in the event of an error or exception.
This discipline will help you avoid problems with session leaks, in which sessions are created and
remain open. It is safer and much more efficient to release sessions as soon as they are no longer
actively being used and get new sessions as needed than to store sessions for later use.

It is important to note that this pattern for releasing sessions applies only when the session was
obtained using a factory method of IDfSessionManager.
public static void demoSessionGetRelease
(String repository, String userName, String password) throws DfException

{

32 EMC Documentum Foundation Classes Version 6 Development Guide



Sessions and Session Managers

IDfSession mySession = null;

// Get a session manager with a single identity.

DfClientX clientx = new DfClientX();
IDfClient client = clientx.getLocalClient();
mySessMgr = client.newSessionManager();
IDfLoginInfo logininfo = clientx.getLoginInfo();
loginInfo.setUser(userName);
loginInfo.setPassword(password);
mySessMgr.setIdentity(repository, loginInfo);

// Get a session using a factory method of session manager.

IDfSession mySession = mySessMgr.getSession(repository);
try
{

/*
* Insert code that performs tasks in the repository.
*/
}
finally
{
mySessMgr.release(mySession);

}
}

Some legacy applications might still be getting sessions from IDfClient directly, which is now
discouraged in favor of the method above. In those cases, you should call IDfSession.disconnect().

When you can and cannot release a managed session

You can only release a managed session that was obtained using a factory method of the session
manager; that is, IDfSessionManager.getSession or IDfSessionManager.newSession. Getting a session
in this way implies ownership, and confers responsibility for releasing the session.

If you get a reference to an existing session, which might for example be stored as a data member of a
typed object, no ownership is implied, and you cannot release the session. This would be the case if
you obtained the session using IDfTypedObject.getSession.

The following snippet demonstrates these two cases:
// session is owned
IDfSession session = sessionManager.getSession("myRepository");
IDfSysObject object = session.getObject(objectId);
mySbo.doSomething(object);
sessionManager.release(session);

public class MySbo
{
private void doSomething( IDfSysObject object )
{
// session is not owned
IDfSession session = object.getSession();

EMC Documentum Foundation Classes Version 6 Development Guide 33



Sessions and Session Managers

IDfQuery query = new DfClientX().getQuery();
query.setDQL("select r_object_id from dm_relation where ...");
IDfCollection co = query.execute(session, IDfQuery.DF_READ_QUERY );
...
}

}

Note that the session instantiated using the session manager factory method is released as soon as the
calling code has finished using it. The session obtained by object.getSession, which is in a sense only
borrowed, is not released, and in fact cannot be released in this method.

Sessions can be released only once

Once a session is released, you cannot release or disconnect it again using the same session reference.
The following code will throw a runtime exception:
IDfSession session = sessionManager.getSession("myRepository");
sessionManager.release(session);
sessionManager.release(session); // throws runtime exception

Sessions cannot be used once released

Once you have released a session, you cannot use the session reference again to do anything with
the session (such as getting an object).
IDfSession session = sessionManager.getSession("myRepository");
sessionManager.release(session);
session.getObject(objectId); // throws runtime exception

Objects disconnected from sessions
There may be cases when it is preferable to release a session, but store the object(s) retrieved through
the session for later use. DFC 6 handles this for you transparently. If you attempt to do something
that requires a session with an object after the session with which the object was obtained has been
released, DFC will automatically reopen a session for the object. You can get a reference to this session
by calling object.getSession.

Users of earlier versions of DFC should note that you no longer need to call setSessionManager
to explicitly disconnect objects, nor is there a need to use beginClientControl/endClientControl to
temporarily turn off management of a session.

34 EMC Documentum Foundation Classes Version 6 Development Guide



Sessions and Session Managers

Related sessions (subconnections)
It is sometimes necessary to get a session to another repository based on an existing session. For
example, you may be writing a method that takes an object and opens a session on another repository
using the user credentials that were used to obtain the object. There are two recommended approaches
to solving this problem.

The first is to get a session using the session manager associated with the original session. This new
session is a peer of the original session, and your code is responsible for releasing both sessions.
IDfSession peerSession =
session.getSessionManager().getSession(repository2Name);

try
{
doSomethingUsingRepository2(peerSession);

}
finally
{
session.getSessionManager().releaseSession(peerSession);

}

A second approach is to use a related session (subconnection), obtained by calling
IDfSession.getRelatedSession. The lifetime of the related session will be dependent on the lifetime of
the original session; you cannot explicitly release it.
IDfSession relatedSession = session.getRelatedSession(repository2Name);
doSomethingUsingRepository2(relatedSession);

Both of these techniques allow you to make use of identities stored in the session manager.

Users of earlier versions of DFC should note that using setDocbaseScope for creating subconnections is
no longer recommended. Use one of the preceding techniques instead.

Original vs. object sessions
The original session is the session used by an application to obtain an object.

The object session is a session to the object’s repository that DFC used internally to get the object.

Generally, the original session and object session are the same.

IDfTypedObject.getOriginalSession() returns the original session.

IDfTypedObject.getObjectSession() returns the object session.

IDfTypedObject.getSession() is provided for compatibility purposes and returns the original session. It
is equivalent to IDfTypedObject.getObjectSession().

EMC Documentum Foundation Classes Version 6 Development Guide 35



Sessions and Session Managers

Transactions
DFC supports transactions at the session manager level and at the session level. A transaction
at the session manager level includes operations on any sessions obtained by a thread using
IDfSessionManager.newSession() or IDfSessionManager.getSession after the transaction is started (See
IDfSessionManager.beginTransaction() in the DFC Javadoc) and before it completes the transaction
(see IDfSessionManager.commitTransaction() and IDfSessionManager.abortTransaction()).

A transaction at the session level includes operations on the session that occur after the transaction
begins (see IDfSession.beginTrans()) and occur before it completes (see IDfSession.commitTrans() and
IDfSession.abortTrans()). Previous versions of DFC did not support calling beginTrans() on a session
obtained from a session manager. This restriction has been removed. The code below shows how a
TBO can use a session‑level transaction.
public class MyTBO
{
protected void doSave() throws DfException
{
boolean txStartedHere = false;
if ( !getObjectSession().isTransactionActive() )
{
getObjectSession().beginTrans();
txStartedHere = true;

}
try
{
doSomething(); // Do something that requires transactions
if ( txStartedHere )
getObjectSession().commitTrans();

}
finally
{
if ( txStartedHere && getObjectSession().isTransactionActive())
getObjectSession().abortTrans();

}
}

}

Configuring sessions using
IDfSessionManagerConfig
You can configure common session settings stored in the session configuration objects
using the IDfSessionManagerConfig interface. You can get an object of this type using the
IDfSessionManager.getConfig method. You can set attributes related to locale, time zone, dynamic
groups, and application codes. Generally the settings that you apply will be applied to future sessions,
not to sessions that exist at the time the settings are applied. The following snippet demonstrates the
use IDfSessionManagerConfig:

36 EMC Documentum Foundation Classes Version 6 Development Guide



Sessions and Session Managers

// get session manager
IDfClient client = new DfClientX().getLocalClient();
IDfSessionManager sm = client.newSessionManager();

// configure session manager
// settings common among future sessions
sm.getConfig().setLocale("en_US");
sm.getConfig().addApplicationCode("finance");

// continue setting up session manager
IDfLoginInfo li = new DfClientX().getLoginInfo();
li.setUser(user);
li.setPassword(password);
sm.setIdentity("bank", li);

// now you can get sessions and continue processing
IDfSession session = sessionManager.getSession("myRepository");

Getting sessions using login tickets
A login ticket is a token string that you can pass in place of a password to obtain a repository session.
You generate a login ticket using methods of an IDfSession object. There are two main use cases
to consider.

The first use is to provide additional sessions for a user who already has an authenticated session.
This technique is typically employed when a web application that already has a Documentum session
needs to build a link to a WDK‑based application. This enables a user who is already authenticated
to link to the second application without going through an additional login screen. The ticket in
this case is typically embedded in a URL. For documentation of this technique, see Ticketed Login
in theWeb Development Kit Development Guide.

The second use is to allow a session authenticated for a superuser to grant other users access to the
repository. This strategy can be used in a workflow method, in which the method has to perform
a task on the part of a user without requesting the user password. It is also used in JEE principal
authentication support, which allows a single login to the Web server and the Content Server. For
information on how to use this technique in WDK applications, see J2EE Principal Authentication
in Web Development Kit Development Guide. For information on building support for principal
authentication in custom (non‑WDK) web applications, see Principal authentication support, page 39.

For further information on login ticket behavior and server configuration dependencies, see Login
Tickets in Content Server Fundamentals. For information on related server configuration settings see
Configuring Login Tickets in Content Server Administrators Guide.

EMC Documentum Foundation Classes Version 6 Development Guide 37



Sessions and Session Managers

Methods for getting login tickets

The IDfSession interface defines three methods for generating login tickets: getLoginTicket,
getLoginTicketForUser, and getLoginTicketEx.

• The getLoginTicket method does not require that the session used to obtain the ticket be a
superuser, and it generates a ticket that can be used only by the same user who owned the session
that requested the ticket.

• The getLoginTicketEx requires that the session used to obtain a ticket be a superuser, and it can
be used to generate a ticket for any user. It has parameters that can be used to supplement or
override server settings: specifically the scope of the ticket (whether its use is restricted to a
specific server or repository, or whether it can be used globally); the time in minutes that the ticket
will remain valid after it is created; whether the ticket is for a single use; and if so, the name
of the server that it is restricted to.

• The getLoginTicketForUser requires that the session used to obtain a ticket belong to a superuser,
and it can be used to generate a ticket for any user. It uses default server settings for ticket scope,
ticket expiration time, and whether the ticket is for single use.

Generating a login ticket using a superuser account

The IDfSession.getLoginTicketEx method allows you to obtain tickets that can be used to log in any
user using a superuser account. The following sample assumes that you have already instantiated a
session manager (IDfSessionManager adminSessionMgr), and set an identity in adminSessionMgr
for a repository using credentials of a superuser account on that repository. The sample then obtains
a session for the repository from adminSessionMgr, and returns a login ticket. For information on
instantiating session managers and setting identities, see Getting session managers and sessions,
page 30.
/**
* Obtains a login ticket for userName from a superuser session
*
*/
public String dispenseTicket(String repository, String userName)
throws DfException

{

// This assumes we already have a session manager (IDfSessionManager)
// with an identity set for repository with superuser credentials.
session = adminSessionMgr.getSession(repository);
try
{
String ticket = session.getLoginTicketForUser(userName);
return ticket;

}
finally
{
adminSessionMgr.release(session);

38 EMC Documentum Foundation Classes Version 6 Development Guide



Sessions and Session Managers

}
}

To get a session for the user using this login ticket, you pass the ticket in place of the user’s password
when setting the identity for the user’s session manager. The following sample assumes that you have
already instantiated a session manager for the user.
public IDfSession getSessionWithTicket
(String repository, String userName) throws DfException

{
// get a ticket using the preceding sample method

String ticket = dispenseTicket(repository, userName);

// set an identity in the user session manager using the
// ticket in place of the password

DfClientX clientx = new DfClientX();
IDfLoginInfo loginInfo = clientx.getLoginInfo();
loginInfo.setUser(userName);
loginInfo.setPassword(ticket);

// if an identity for this repository already exists, replace it silently

if (userSessionMgr.hasIdentity(repository))
{
userSessionMgr.clearIdentity(repository);

}
userSessionMgr.setIdentity(repository, loginInfo);

// get the session and return it

IDfSession session = userSessionMgr.getSession(repository);
return session;

}

Principal authentication support
Java Enterprise Edition (JEE) principal authentication allows you to use the authentication mechanism
of a JEE application server to authenticate users of a web application. However, a separate mechanism
is required to obtain a session for the user on the repository, once the user is authenticated by the
application server. WDK provides built‑in support for this, so the information presented in this
section is useful primarily for developers of custom web applications not derived from WDK. For
more information on using principal authentication in WDK‑based applications, see J2EE Principal
Authentication inWeb Development Kit Development Guide.

EMC Documentum Foundation Classes Version 6 Development Guide 39



Sessions and Session Managers

Implementing principal support in your custom
application

To implement principal support, you must provide your own implementation of the
IDfPrincipalSupport interface and, optionally, of the IDfTrustManager interface. The sole method
to implement in IDfPrincipalSupport is getSession, which takes as arguments the repository and
principal names, and returns an IDfSession. The purpose of this method is to obtain a session for the
principal (that is, the user) on the specified repository using a login ticket generated using the login
credentials of a trusted authenticator (who is a superuser).
public IDfSession getSession
(String docbaseName,String principalName) throws DfPrincipalException

The intent of the IDfTrustManager interface is to obtain login credentials for the trusted authenticator
from a secure data source and return them in an IDfLoginInfo object to be used internally by the
IDfPrincipalSupport object. This is done in the IDfTrustManager.getTrustCredential method:
public IDfLoginInfo getTrustCredential(String docbaseName)

To obtain sessions using DFC principal support, use the IDfClient.setPrincipalSupport method,
passing it an instance of your IDfPrincipalSupport implementation class. This changes the behavior
of any session manager generated from the IDfClient, so that it will delegate the task of obtaining
the session to the IDfPrincipalSupport.getSession method. You then set the principal name in the
session manager using the setPrincipalName method. Thereafter, when a session is requested from
this session manager instance, it will use the principal support object getSession method to obtain a
session for the principal on a specified repository.

The following sample demonstrates the basic principal support mechanism.
public static void demoPrincipalIdentity(String repository, String principalName)
throws Exception

{
// This assumes that your trust manager implementation
// gets and stores the superuser credentials when it is constructed.
IDfTrustManager trustManager = new YourTrustManager();

// Initialize the client.
IDfClientX clientX = new DfClientX();
IDfClient localClient = clientX.getLocalClient();

// Set principal support on the client. This delegates the task of
// getting sessions to the IDfPrincipalSupport object.
IDfPrincipalSupport principalSupport =
new YourPrincipalSupport(localClient, trustManager);

localClient.setPrincipalSupport(principalSupport);

// Create session manager and set principal.
IDfSessionManager sessMgr = localClient.newSessionManager();
sessMgr.setPrincipalName(principalName)(;

// Session is obtained for the principal, not for the authenticator.
IDfSession session = sessMgr.getSession(repository);

try

40 EMC Documentum Foundation Classes Version 6 Development Guide



Sessions and Session Managers

{
System.out.println("Got session: " + session.getSessionId());
System.out.println("Username: " + session.getLoginInfo().getUser());

}
// Release the session in a finally clause.
finally
{
sessMgr.release(session);

}
}

Default classes for demonstrating principal support
implementation

DFC includes a default implementation of IDfPrincipalSupport, as well as of the supporting interface
IDfTrustManager, which together demonstrate a design pattern that you can use in building your
own principal support implementation. Direct use of these classes is not supported, because they
do not provide security for the trusted authenticator password, and because they may change in
future releases.

The default implementation of IDfPrincipalSupport, DfDefaultPrincipalSupport, gets the session by
generating a login ticket for the principal using the credentials of a trusted authenticator. The task of
obtaining the credentials for the authenticator is managed by another object, of type IDfTrustManager.
The IDfTrustManager.getTrustCredential method returns an IDfLoginInfo object containing the
credentials of the trusted authenticator, who must be a superuser. DfDefaultPrincipalSupport, which
is passed an instance of the IDfTrustManager implementation class, obtains the trust credentials from
the trust manager and uses them to request a login ticket for the principal.

The default implementation of IDfTrustManager, DfDefaultTrustManager, has overloaded constructors
that get the authenticator credentials from either a properties file, or from a Java Properties object
passed directly to the constructor. These DfDefaultTrustManager constructors do not provide any
security for the authenticator password, so it is critical that you do provide your own implementation
of IDfTrustManager, and obtain the credentials in a manner that meets your application’s security
requirements.

Note: Source code for these classes (which should be used as templates only) is available on the
developer network: http://developer.emc.com/developer/samplecode.htm.

Maintaining state in a session manager
You can cause the session manager to maintain the state of a repository object. The setSessionManager
method of IDfTypedObject accomplishes this. This method copies the state of the object from the

EMC Documentum Foundation Classes Version 6 Development Guide 41



Sessions and Session Managers

session to the session manager, so that disconnecting the session no longer makes references to the
object invalid.

Caution: Use setSessionManager sparingly. It is an expensive operation. If you find yourself
using it often, try to find a more efficient algorithm.

However, using setSessionManager is preferable to using the begin/end client control mechanism
(refer to the Javadocs for details) to prevent the session manager from disconnecting a session.

42 EMC Documentum Foundation Classes Version 6 Development Guide



Chapter 4
Creating a Test Application

The primary use of DFC is to add business logic to your applications. The presentation layer is built
using the Web Development Kit, most often via customization of the Webtop interface. Building
a custom UI on top of DFC requires a great deal of work, and will largely recreate effort that has
already been done for you.

While you should not create a completely new interface for your users, it can be helpful to have a small
application that you can use to work with the API directly and see the results. With that in mind, here
is a rudimentary interface class that will enable you to add and test behavior using the Operation API.

These examples were created with Oracle JDeveloper, and feature its idiosyncratic ways of building
the UI. You can use any IDE you prefer, using this example as a guideline.

To the extent possible, the sample classes have been created as self‑contained entities. However, a best
practice is to instantiate a Session Manager when you first open an application and continue to use it
until the application stops. Therefore, the logic for creating a Session Manager has been incorporated
as a method of the DfcTutorialFrame class.

This chapter contains the following sections:

• The DfcBaseTutorialFrame class, page 43
• The DfcBaseTutorialApplication class, page 50
• Running the tutorial application, page 51

The DfcBaseTutorialFrame class
DfcTestFrame displays the controls used to set arguments, execute commands, and view results. In
this example, it displays buttons used to navigate a directory in the repository.

Figure 2. Code listing — DfcTestFrame.java

Example 41. DfcBaseTutorialFrame.java

package com.emc.tutorial;

EMC Documentum Foundation Classes Version 6 Development Guide 43



Creating a Test Application

import com.documentum.com.DfClientX;
import com.documentum.fc.client.IDfClient;
import com.documentum.fc.client.IDfCollection;
import com.documentum.fc.client.IDfSession;
import com.documentum.fc.client.IDfSessionManager;
import com.documentum.fc.client.IDfSysObject;
import com.documentum.fc.client.IDfTypedObject;

import com.documentum.fc.common.IDfId;

import com.documentum.fc.common.IDfLoginInfo;

import java.awt.Dimension;

import java.awt.Font;
import java.awt.List;
import java.awt.Rectangle;

import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;

import java.util.StringTokenizer;
import java.util.Vector;

import javax.swing.JButton;
import javax.swing.JCheckBox;
import javax.swing.JFrame;
import javax.swing.JLabel;
import javax.swing.JScrollPane;
import javax.swing.JSeparator;
import javax.swing.JTextArea;
import javax.swing.JTextField;
import javax.swing.SwingConstants;

public class DfcBaseTutorialFrame extends JFrame
{

private JTextField jTextField_repositoryName = new JTextField();
private JLabel jLabel_repositoryName = new JLabel();
private JLabel jLabel_userName = new JLabel();
private JTextField jTextField_userName = new JTextField();
private JTextField jTextField_password = new JTextField();
private JLabel jLabel_password = new JLabel();
private JTextField jTextField_cwd = new JTextField();
private JLabel jLabel_cwd = new JLabel();
private JButton jButton_getDirectory = new JButton();
private Vector m_fileIDs = new Vector();
private List list_id = new List();
private IDfSessionManager m_sessionManager;
private JLabel jLabel_messages = new JLabel();
private JScrollPane jScrollPane_results = new JScrollPane();
private JTextArea jTextArea_results = new JTextArea();
private JLabel jLabel_results = new JLabel();
private JLabel jLabel_directoryContents = new JLabel();
private Vector m_breadcrumbs = new Vector();
private JButton jButton_upDirectory = new JButton();

44 EMC Documentum Foundation Classes Version 6 Development Guide



Creating a Test Application

private JSeparator jSeparator1 = new JSeparator();

public DfcBaseTutorialFrame()
{

try
{

jbInit();
}

catch (Exception e)
{

e.printStackTrace();
}

}

private void jbInit() throws Exception
{

this.getContentPane().setLayout(null);
this.setSize(new Dimension(705, 491));
this.setTitle("DFC Base Tutorial Frame");
jTextField_repositoryName.setBounds(new Rectangle(15, 25, 100, 25));
jTextField_repositoryName.setText("techpubs");
jLabel_repositoryName.setText("Repository Name");
jLabel_repositoryName.setBounds(new Rectangle(15, 10, 100, 15));
jLabel_repositoryName.setHorizontalAlignment(SwingConstants.CENTER);
jLabel_userName.setText("User Name");
jLabel_userName.setBounds(new Rectangle(133, 10, 95, 15));
jLabel_userName.setHorizontalAlignment(SwingConstants.CENTER);
jTextField_userName.setBounds(new Rectangle(133, 25, 95, 25));
jTextField_userName.setText("dmadmin");
jTextField_password.setBounds(new Rectangle(245, 25, 100, 25));
jTextField_password.setText("D3v3l0p3r");
jLabel_password.setText("Password");
jLabel_password.setBounds(new Rectangle(245, 10, 100, 15));
jLabel_password.setHorizontalAlignment(SwingConstants.CENTER);
jTextField_cwd.setBounds(new Rectangle(15, 75, 330, 25));
jTextField_cwd.setText("/dennisCabinet");
jTextField_cwd.addActionListener(new ActionListener()

{
public void actionPerformed(ActionEvent e)
{

jTextField_cwd_actionPerformed(e);
}

});
jLabel_cwd.setText("Current Working Directory");
jLabel_cwd.setBounds(new Rectangle(15, 55, 130, 20));
jLabel_cwd.setHorizontalAlignment(SwingConstants.CENTER);
jButton_getDirectory.setText("Get Directory");
jButton_getDirectory.setBounds(new Rectangle(15, 235, 100, 20));
jButton_getDirectory.addActionListener(new ActionListener()

{
public void actionPerformed(ActionEvent e)
{

jButton_getDirectory_actionPerformed(e);
}

});
jLabel_messages.setText("Messages appear here.");
jLabel_messages.setBounds(new Rectangle(15, 440, 670, 15));

EMC Documentum Foundation Classes Version 6 Development Guide 45



Creating a Test Application

jLabel_messages.setFont(new Font("Tahoma", 1, 12));
jScrollPane_results.setBounds(new Rectangle(15, 280, 330, 145));
jLabel_results.setText("Results:");
jLabel_results.setBounds(new Rectangle(15, 265, 135, 15));
jLabel_directoryContents.setText("Directory contents:");
jLabel_directoryContents.setBounds(new Rectangle(15, 105, 140, 15));
jButton_upDirectory.setText("Up One Level");
jButton_upDirectory.setBounds(new Rectangle(245, 235, 100, 20));
jButton_upDirectory.addActionListener(new ActionListener()

{
public void actionPerformed(ActionEvent e)
{

jButton_upDirectory_actionPerformed(e);
}

});
jSeparator1.setBounds(new Rectangle(350, 0, 5, 470));
jSeparator1.setOrientation(SwingConstants.VERTICAL);
jSeparator1.setSize(new Dimension(5, 435));
list_id.setBounds(new Rectangle(15, 120, 330, 110));
list_id.setSize(new Dimension(330, 110));
list_id.addActionListener(new ActionListener()

{
public void actionPerformed(ActionEvent e)
{

list_id_actionPerformed(e);
}

});
this.getContentPane().add(jSeparator1, null);
this.getContentPane().add(jButton_upDirectory, null);
this.getContentPane().add(jLabel_directoryContents, null);
this.getContentPane().add(jLabel_results, null);
jScrollPane_results.getViewport().add(jTextArea_results, null);
this.getContentPane().add(jScrollPane_results, null);
this.getContentPane().add(list_id, null);
this.getContentPane().add(jLabel_messages, null);
this.getContentPane().add(jButton_getDirectory, null);
this.getContentPane().add(jLabel_cwd, null);
this.getContentPane().add(jTextField_cwd, null);
this.getContentPane().add(jLabel_password, null);
this.getContentPane().add(jTextField_password, null);
this.getContentPane().add(jTextField_userName, null);
this.getContentPane().add(jLabel_userName, null);
this.getContentPane().add(jLabel_repositoryName, null);
this.getContentPane().add(jTextField_repositoryName, null);
createSessionManager();
getDirectory();
initDirectory();

}

private Boolean createSessionManager() {
try {

// The only class we instantiate directly is DfClientX.
DfClientX clientx = new DfClientX();

// Most objects are created using factory methods in interfaces.
// Create a client based on the DfClientX object.

IDfClient client = clientx.getLocalClient();

46 EMC Documentum Foundation Classes Version 6 Development Guide



Creating a Test Application

// Create a session manager based on the local client.
m_sessionManager = client.newSessionManager();

// Set the user information in the login information variable.
IDfLoginInfo loginInfo = clientx.getLoginInfo();
loginInfo.setUser(jTextField_userName.getText());
loginInfo.setPassword(jTextField_password.getText());

// Set the identity of the session manager object based on the repository
// name and login information.

m_sessionManager.setIdentity(
jTextField_repositoryName.getText(), loginInfo

);
return true;
}
catch (Exception ex)
{

ex.printStackTrace();
jLabel_messages.setText("Failed to instantiate Session Manager.");
return false;

}
}

private void initDirectory()
{

StringTokenizer st = new StringTokenizer(jTextField_cwd.getText(), "/");
m_breadcrumbs.removeAllElements();
while (st.hasMoreTokens())

m_breadcrumbs.add(st.nextToken());
StringBuffer newDirectory = new StringBuffer("");
for (int i = 0; i < m_breadcrumbs.size(); i++)

{
newDirectory.append("/" + m_breadcrumbs.elementAt(i));

}

}

private void getDirectory()
{

// Get the arguments and assign variable values.

String repositoryName = jTextField_repositoryName.getText();
String userName = jTextField_userName.getText();
String password = jTextField_password.getText();
String directory = jTextField_cwd.getText();
TutorialGetDirectory tgd = new TutorialGetDirectory();

// Empty the file IDs member variable.
m_fileIDs.clear();

// Empty the file list display.
list_id.removeAll();

IDfCollection folderList =
tgd.getDirectory(m_sessionManager, repositoryName, directory);

try

EMC Documentum Foundation Classes Version 6 Development Guide 47



Creating a Test Application

{
// Cycle through the collection getting the object ID and adding it
// to the m_listIDs Vector. Get the object name and add it to the
// file list control.

while (folderList.next())
{

IDfTypedObject doc = folderList.getTypedObject();
list_id.add(doc.getString("object_name"));
m_fileIDs.addElement(doc.getString("r_object_id"));

}
}

// Handle any exceptions.
catch (Exception ex)

{
jLabel_messages.setText("Exception has been thrown: " + ex);
ex.printStackTrace();
list_id.removeAll();

}
}

private void jButton_getDirectory_actionPerformed(ActionEvent e)
{

String repositoryName = jTextField_repositoryName.getText();
String userName = jTextField_userName.getText();
String password = jTextField_password.getText();
String directory = jTextField_cwd.getText();

IDfSession mySession = null;
TutorialSessionManager mySessMgr = null;
try

{
mySessMgr =

new TutorialSessionManager(
repositoryName,
userName,
password

);
mySession = mySessMgr.getSession();

if (list_id.getSelectedItem() != null)
{

String objectIdString =
m_fileIDs.elementAt(list_id.getSelectedIndex()).toString();

IDfId idObj = mySession.getIdByQualification(
"dm_sysobject where r_object_id='" + objectIdString + "'"

);
IDfSysObject sysObj =

(IDfSysObject) mySession.getObject(idObj);
if (sysObj.getTypeName().equals("dm_folder"))

{
jTextField_cwd.setText(directory + "/" +

list_id.getSelectedItem());
getDirectory();
initDirectory();

}

48 EMC Documentum Foundation Classes Version 6 Development Guide



Creating a Test Application

else
{

getDirectory();
initDirectory();

}
}

else
{

getDirectory();
initDirectory();

}
}

catch (Exception ex)
{

jLabel_messages.setText("Exception has been thrown: " + ex);
ex.printStackTrace();

}
finally

{
mySessMgr.releaseSession(mySession);

}
}

private void changeDirectory()
{

String repositoryName = jTextField_repositoryName.getText();
String userName = jTextField_userName.getText();
String password = jTextField_password.getText();
String directory = jTextField_cwd.getText();

IDfSession mySession = null;
TutorialSessionManager mySessMgr = null;
try

{
mySessMgr =

new TutorialSessionManager(repositoryName, userName, password);
mySession = mySessMgr.getSession();
String objectIdString =

m_fileIDs.elementAt(list_id.getSelectedIndex()).toString();

IDfId idObj =
mySession.getIdByQualification(

"dm_sysobject where r_object_id='" + objectIdString + "'"
);

// Instantiate an object from the ID.

IDfSysObject sysObj = (IDfSysObject) mySession.getObject(idObj);
if (sysObj.getTypeName().equals("dm_folder"))

{

jTextField_cwd.setText(directory + "/" +
list_id.getSelectedItem());

getDirectory();
initDirectory();

}
}

EMC Documentum Foundation Classes Version 6 Development Guide 49



Creating a Test Application

catch (Exception ex)
{

jLabel_messages.setText("Exception has been thrown: " + ex);
ex.printStackTrace();

}
finally

{
mySessMgr.releaseSession(mySession);

}
}

private void jButton_changeDirectory_actionPerformed(ActionEvent e)
{

changeDirectory();
}

private void jTextField_cwd_actionPerformed(ActionEvent e)
{

jButton_getDirectory_actionPerformed(e);
}

private void list_id_actionPerformed(ActionEvent e)
{

changeDirectory();
}

private void jButton_upDirectory_actionPerformed(ActionEvent e)
{

StringBuffer newDirectory = new StringBuffer("");
newDirectory.append("/" + m_breadcrumbs.elementAt(0));
if (m_breadcrumbs.size() > 1)

{
m_breadcrumbs.removeElementAt(m_breadcrumbs.size()  1);
for (int i = 1; i < m_breadcrumbs.size(); i++)

{
newDirectory.append("/" + m_breadcrumbs.elementAt(i));

}
jTextField_cwd.setText(newDirectory.toString());
getDirectory();

}
}

}

The DfcBaseTutorialApplication class
This is the runnable class with the main() method, used to start and stop the application.

Example 42. DfcBaseTutorialApplication.java

package com.emc.tutorial;

import java.awt.Dimension;

50 EMC Documentum Foundation Classes Version 6 Development Guide



Creating a Test Application

import java.awt.Toolkit;

import javax.swing.JFrame;
import javax.swing.UIManager;

public class DfcBaseTutorialApplication
{

public DfcBaseTutorialApplication()
{

JFrame frame = new DfcBaseTutorialFrame();
Dimension screenSize = Toolkit.getDefaultToolkit().getScreenSize();
Dimension frameSize = frame.getSize();
if (frameSize.height > screenSize.height)

{
frameSize.height = screenSize.height;

}
if (frameSize.width > screenSize.width)

{
frameSize.width = screenSize.width;

}
frame.setLocation( ( screenSize.width  frameSize.width ) / 2,
( screenSize.height  frameSize.height ) / 2 );

frame.setDefaultCloseOperation( JFrame.EXIT_ON_CLOSE );
frame.setVisible(true);

}

public static void main(String[] args)
{

try
{

UIManager.setLookAndFeel(UIManager.getSystemLookAndFeelClassName());
}

catch (Exception e)
{

e.printStackTrace();
}

new DfcBaseTutorialApplication();
}

}

Running the tutorial application
Compile the three base classes and run DfcBaseTutorialApplication.class. The application interface
appears.

To list the contents of a directory, enter values in the Repository Name, User Name, Password, andCurrent
Working Directory fields. Click the Get Directory button to update the file listing. For convenience,
you can modify the DfcBaseTutorialFrame class to launch the application with these fields already
populated with your own settings.

EMC Documentum Foundation Classes Version 6 Development Guide 51



Creating a Test Application

Figure 3. The DFC Base Tutorial Frame

This example demonstrated how you can create an application that connects to the content server and
retrieves information. Many of the remaining examples in this manual provide the code for a button
handler that you can add to this test application to call classes that demonstrate implementation
of individual behaviors using DFC.

52 EMC Documentum Foundation Classes Version 6 Development Guide



Chapter 5
Working with Objects

This chapter describes how to use DFC calls to work with objects stored in the Documentum repository.

When you are working with the metadata associated with a repository object, using DFC methods
directly can be more efficient and quicker to deploy. When you are working with document content, a
better choice is to work with document operations, covered in Working with Document Operations.

This chapter contains the following main sections:

• Understanding repository objects, page 53
• Creating a cabinet, page 54
• Creating a folder, page 56
• Creating a document object, page 58
• Accessing attributes, page 60
• Setting attributes, page 66
• Removing an attribute value, page 75
• Getting object content, page 77
• Destroying an object, page 79

Understanding repository objects
A repository object has two basic components: metadata and content. Metadata describe the object
(format, type, etc.) and store other pertinent information such as the object name, owner, creation date,
and modification date. As a developer, you are primarily concerned with manipulating document
metadata. Metadata are stored in database tables and associated with content objects stored in a
local file system.

Object content is the information of most interest to end users. If the object is a text document, the
content is the text. If the object is a graphic, the content is the binary information used to create
the picture.

EMC Documentum Foundation Classes Version 6 Development Guide 53



Working with Objects

Using DFC methods, developers can examine and manipulate the metadata associated with repository
objects.

The DFC Object Tutorial Frame
The examples in this chapter start with the DFC Base Tutorial Frame and add buttons and fields to
demonstrate object manipulation techniques. You can implement any or all of these self‑contained
examples.

Creating a cabinet
Before you begin manipulating repository objects, you might want to create your own cabinet to work
in. A cabinet is a top level container object used to hold folders. The cabinet is, in fact, a type of folder,
and is created using the interface IDfFolder. Setting its object type to “dm_cabinet” gives it additional
features, including the ability to exist as a top‑level object.

You can create a test button for creating a cabinet in the DFC Object Tutorial Frame.

54 EMC Documentum Foundation Classes Version 6 Development Guide



Working with Objects

To add the Create Cabinet button to the DFC Base Tutorial Frame

1. Create a JTextField control named jTextField_cabinetName.

2. Create a JButton control named jButton_makeCabinet.

3. Add a button handler method for Make Cabinet

4. Create the class TutorialMakeCabinet
The source code for the button handler and TutorialMakeCabinet class follow.

Example 51. Make Cabinet button handler method

private void jButton_makeCabinet_actionPerformed(ActionEvent e)
{

String repositoryName = jTextField_repositoryName.getText();
String cabinetName = jTextField_cabinetName.getText();

if (!cabinetName.equals(""))
{

TutorialMakeCabinet tmc = new TutorialMakeCabinet();
if (tmc.makeCabinet(

m_sessionManager,
repositoryName,
cabinetName)

)
{

jTextField_cwd.setText("/" + cabinetName);
getDirectory();
jLabel_messages.setText(

"Created cabinet " + cabinetName + "."
);

}

else
{

jLabel_messages.setText("Cabinet creation failed.");
}

}
else

{
jLabel_messages.setText("Enter a unique cabinet name " +

"to create a new cabinet.");
}

}

Example 52. The TutorialMakeCabinet class

package com.emc.tutorial;

import com.documentum.fc.client.IDfFolder;
import com.documentum.fc.client.IDfSession;
import com.documentum.fc.client.IDfSessionManager;
import com.documentum.fc.client.IDfSysObject;

public class TutorialMakeCabinet

EMC Documentum Foundation Classes Version 6 Development Guide 55



Working with Objects

{
public TutorialMakeCabinet()
{
}

public Boolean makeCabinet(
IDfSessionManager sessionManager,
String repositoryName,
String cabinetName

)
{

IDfSession mySession = null;
try

{
mySession = sessionManager.getSession(repositoryName);

// check to see if the cabinet already exists
IDfFolder myCabinet = mySession.getFolderByPath("/" + cabinetName);
if (myCabinet == null)

{
IDfSysObject newCabinet =

(IDfFolder) mySession.newObject(DM_CABINET);
newCabinet.setObjectName(cabinetName);
newCabinet.save();
return true;

}
else

{
return false;

}
}

catch (Exception ex)
{

ex.printStackTrace();
return false;

}
finally

{
sessionManager.release(mySession);

}
}
public static final String DM_CABINET = "dm_cabinet";

}

Creating a folder
Creating a folder is similar to creating a cabinet. The essential differences are that you will create a
dm_folder object and identify the parent cabinet or folder in which you’ll create it.

To add a Make Folder button to the DFC Base Tutorial Frame

1. Create a JTextField control named jTextField_folderName.

56 EMC Documentum Foundation Classes Version 6 Development Guide



Working with Objects

2. Create a JButton control named jButton_makeFolder.

3. Add a handler method for the Make Folder button.

4. Create the class TutorialMakeFolder
The code for the Make Folder button handler and the TutorialMakeFolder class follow.

Example 53. Make Folder button handler method

private void jButton_makeFolder_actionPerformed(ActionEvent e)
{

String repositoryName = jTextField_repositoryName.getText();
String folderName = jTextField_newFolder.getText();
String parentName = jTextField_cwd.getText();

if (!folderName.equals("") & !parentName.equals(""))
{

TutorialMakeFolder tmf = new TutorialMakeFolder();
if (

tmf.makeFolder(
m_sessionManager,
repositoryName,
folderName,
parentName)

)
{

getDirectory();
jLabel_messages.setText("Created folder " + folderName +

".");
}

else
{

jLabel_messages.setText("Folder creation failed.");
}

}
else

{
jLabel_messages.setText("Enter a folder name and current working" +

" directory to create a new folder.");
}

}

Example 54. The TutorialMakeFolder class

package com.emc.tutorial;

import com.documentum.fc.client.IDfFolder;
import com.documentum.fc.client.IDfSession;
import com.documentum.fc.client.IDfSessionManager;
import com.documentum.fc.client.IDfSysObject;

public class TutorialMakeFolder
{

public TutorialMakeFolder()
{

EMC Documentum Foundation Classes Version 6 Development Guide 57



Working with Objects

}

public Boolean makeFolder(
IDfSessionManager sessionManager,
String repositoryName,
String folderName,
String parentName

)
{

IDfSession mySession = null;
try

{
mySession = sessionManager.getSession(repositoryName);
IDfSysObject newFolder =

(IDfFolder) mySession.newObject(DM_FOLDER);
IDfFolder aFolder =

mySession.getFolderByPath(parentName + "/" + folderName);
if (aFolder == null)

{
newFolder.setObjectName(folderName);
newFolder.link(parentName);
newFolder.save();
return true;

}
else

{
return false;

}
}

catch (Exception ex)
{

ex.printStackTrace();
return false;

}
finally

{
sessionManager.release(mySession);

}
}
public static final String DM_FOLDER = "dm_folder";

}

Creating a document object
A document object represents both the content of a document and the metadata that describe the
document. In most cases, you create a document by importing an existing document from a local
source to the repository.

In the example TutorialMakeDocument, we create a document setting just the minimal required
information: the name of the document, the document type, the source of the content, and the parent
folder in which to create the new document object.

58 EMC Documentum Foundation Classes Version 6 Development Guide



Working with Objects

To add a Make Document button to the Dfc BaseTutorial Frame

1. Create a JTextField control named jTextField_documentName.

2. Create a JTextField control named jTextField_srcDocPath.

3. Create a JTextField control named jTextField_docType.

4. Create a JButton control named jButton_makeDocument.

5. Add a button handler method for Make Document.

6. Create the class TutorialMakeDocument
The following is an example of the Make Document button handler.

Example 55. The Make Document button handler

private void jButton_makeDocument_actionPerformed(ActionEvent e)
{

String repository = jTextField_repositoryName.getText();
String documentName = jTextField_documentName.getText();
String folderName = jTextField_cwd.getText();
String srcPath = jTextField_sourceDocumentPath.getText();
String docType = jTextField_documentType.getText();

TutorialMakeDocument tmd = new TutorialMakeDocument();
if (tmd.makeDocument(

m_sessionManager,
repository,
documentName,
docType,
srcPath,
folderName

)
)

{
jLabel_messages.setText("Created document " + documentName + ".");
getDirectory();

}
else

{
jLabel_messages.setText("Document creation failed.");

}
}

The following example creates a document object in the repository.

Example 56. The TutorialMakeDocument class

package com.emc.tutorial;

import com.documentum.fc.client.IDfSession;
import com.documentum.fc.client.IDfSessionManager;
import com.documentum.fc.client.IDfSysObject;

public class TutorialMakeDocument

EMC Documentum Foundation Classes Version 6 Development Guide 59



Working with Objects

{
public TutorialMakeDocument()
{
}

public Boolean makeDocument(
IDfSessionManager sessionManager,
String repositoryName,
String documentName,
String documentType,
String sourcePath,
String parentName)

{
IDfSession mySession = null;
try

{
mySession = sessionManager.getSession(repositoryName);
IDfSysObject newDoc =

(IDfSysObject) mySession.newObject(DM_DOCUMENT);
newDoc.setObjectName(documentName);
newDoc.setContentType(documentType);
newDoc.setFile(sourcePath);
newDoc.link(parentName);
newDoc.save();
return true;

}
catch (Exception ex)

{
ex.printStackTrace();
return false;

}
finally

{
sessionManager.release(mySession);

}
}
public static final String DM_DOCUMENT = "dm_document";

}

Accessing attributes
Having created a document or folder, you can examine its attributes by performing a “dump” of all
attributes or by specifying a particular attribute you want to examine.

Dumping Attributes

The most convenient way to begin working with attributes is to “dump” all of the object attributes to
get a list of their names and values.

60 EMC Documentum Foundation Classes Version 6 Development Guide



Working with Objects

To add a Dump Attributes button to the Dfc Base Tutorial Frame

1. Create a JButton control named jButton_dumpAttributes.

2. Add a button handler method for Dump Attributes.

3. Create and deploy the class TutorialDumpAttributes

Example 57. The Dump Attributes button handler

private void jButton_dumpAttributes_actionPerformed(ActionEvent e)
{

String repositoryName = jTextField_repositoryName.getText();

if (list_id.getSelectedIndex() == 1)
{

jLabel_messages.setText(
"Select an item in the file list to dump attributes."

);
}

else
{

String objectIdString =
m_fileIDs.elementAt(list_id.getSelectedIndex()).toString();

TutorialDumpAttributes tda = new TutorialDumpAttributes();
jTextArea_results.setText(

tda.dumpAttributes(
m_sessionManager,
repositoryName,
objectIdString)

);
jLabel_messages.setText("Query complete.");

}
}

Example 58. TutorialDumpAttributes class

package com.emc.tutorial;

import com.documentum.fc.client.IDfContainment;
import com.documentum.fc.client.IDfSession;
import com.documentum.fc.client.IDfSessionManager;
import com.documentum.fc.client.IDfSysObject;
import com.documentum.fc.common.DfId;
import com.documentum.fc.common.IDfId;

public class TutorialDumpAttributes
{

public TutorialDumpAttributes()
{
}

public String dumpAttributes
(

IDfSessionManager sessionManager,
String repositoryName,
String objectIdString

EMC Documentum Foundation Classes Version 6 Development Guide 61



Working with Objects

)
{

IDfSession mySession = null;
StringBuffer attributes = new StringBuffer("");
try

{
mySession = sessionManager.getSession(repositoryName);

IDfId idObj = mySession.getIdByQualification(
"dm_sysobject where r_object_id='" + objectIdString + "'"

);
IDfSysObject sysObj = (IDfSysObject) mySession.getObject(idObj);
attributes.append(sysObj.dump());

}
catch (Exception ex)

{
ex.printStackTrace();
attributes.append("\nException: " + ex.toString());

}
finally

{
sessionManager.release(mySession);

}
return attributes.toString();

}
}

Getting a single attribute by name

If you know the name of the attribute you want to access (or you just looked it up by dumping all
of the attributes), you can request the specific attribute directly.

To add a Get Attribute By Name button to the DFC Base Tutorial Frame

1. Create a JTextField control named jTextField_attributeName

2. Create a JButton control named jButton_getAttributeByName

3. Add a handler method for the Get Attribute By Name button.

4. Create and deploy the class TutorialGetAttributeByName

Example 59. Handler for the Get Attribute By Name button

private void jButton_getAttributeByName_actionPerformed(ActionEvent e)
{

String repositoryName = jTextField_repositoryName.getText();

if (list_id.getSelectedIndex() == 1 |
jTextField_attributeName.getText().equals(""))
{

jLabel_messages.setText(

62 EMC Documentum Foundation Classes Version 6 Development Guide



Working with Objects

"Select an item and enter an attribute name to get" +
" attribute information."

);
}

else
{

String objectIdString =
m_fileIDs.elementAt(list_id.getSelectedIndex()).toString();

String attributeName = jTextField_attributeName.getText();
TutorialGetAttributeByName tgabn =

new TutorialGetAttributeByName();
jTextArea_results.setText(

tgabn.getAttribute(
m_sessionManager,
repositoryName,
objectIdString,
attributeName

)
);
jLabel_messages.setText("Query complete.");

}
}

Example 510. The TutorialGetAttributeByName class

package com.emc.tutorial;

import com.documentum.fc.client.IDfSession;
import com.documentum.fc.client.IDfSessionManager;
import com.documentum.fc.client.IDfSysObject;
import com.documentum.fc.common.IDfId;

public class TutorialGetAttributeByName
{

public TutorialGetAttributeByName()
{
}

public String getAttribute(
IDfSessionManager sessionManager,
String repositoryName,
String objectIdString,
String attributeName

)
{

IDfSession mySession = null;
StringBuffer attribute = new StringBuffer("");
try

{
mySession = sessionManager.getSession(repositoryName);
IDfId idObj =

mySession.getIdByQualification(
"dm_sysobject where r_object_id='" + objectIdString + "'"

);
IDfSysObject sysObj = (IDfSysObject) mySession.getObject(idObj);
attribute.append(attributeName);

EMC Documentum Foundation Classes Version 6 Development Guide 63



Working with Objects

attribute.append(": ");
attribute.append(sysObj.getValue(attributeName).toString());

}
catch (Exception ex)

{
ex.printStackTrace();
attribute = new StringBuffer("");
attribute.append(ex.toString());

}
// Always, always, always release the session when finished using it.

finally
{

sessionManager.release(mySession);
}

return attribute.toString();
}

}

Getting a single attribute by number

There may be times where you capture the attribute’s index number rather than its name. The
IDfSystemObject.getAttr() method requires the attribute name as the argument. You can use the
attribute’s index number to get the attribute name, then continue on to get the attribute.

To add a Get Attribute By Number button to the DFC Base Tutorial Frame

1. Create a JTextField control named jTextField_attributeNumber

2. Create a JButton control named jButton_getAttributeByNumber

3. Add a handler method for the Get Attribute By Number button.

4. Create and deploy the class TutorialGetAttributeByNumber

Example 511. Handler for the Get Attribute By Number button

private void jButton_getAttributeByNumber_actionPerformed(ActionEvent e)
{

String repositoryName = jTextField_repositoryName.getText();

if (list_id.getSelectedIndex() == 1 |
jTextField_attributeNum.getText().equals(""))
{

jLabel_messages.setText(
"Select an item and enter an attribute number to get" +

"attribute information."
);

}
else

{
String objectIdString =

m_fileIDs.elementAt(list_id.getSelectedIndex()).toString();

64 EMC Documentum Foundation Classes Version 6 Development Guide



Working with Objects

int theIndex = Integer.parseInt(jTextField_attributeNum.getText());

TutorialGetAttributeByNumber tga =
new TutorialGetAttributeByNumber();

jTextArea_results.setText(
tga.getAttribute(

m_sessionManager,
repositoryName,
objectIdString,
theIndex

)
);
jLabel_messages.setText("Query complete.");

}
}

Example 512. The TutorialGetAttributeByNumber class

package com.emc.tutorial;

import com.documentum.fc.client.IDfSession;
import com.documentum.fc.client.IDfSessionManager;
import com.documentum.fc.client.IDfSysObject;
import com.documentum.fc.common.IDfId;

public class TutorialGetAttributeByNumber {
public TutorialGetAttributeByNumber() {
}
public String getAttribute (

IDfSessionManager sessionManager,
String repositoryName,
String objectIdString,
int theIndex

)
{

IDfSession mySession = null;
StringBuffer attribute = new StringBuffer("");
try {

mySession = sessionManager.getSession(repositoryName);
IDfId idObj = mySession.getIdByQualification(

"dm_sysobject where r_object_id='" + objectIdString + "'");
IDfSysObject sysObj = (IDfSysObject) mySession.getObject(idObj);
attribute.append(sysObj.getAttr(theIndex).getName());
attribute.append(": ");
attribute.append(sysObj.getValueAt(theIndex).toString());

}
catch (Exception ex) {

ex.printStackTrace();
attribute = new StringBuffer("");
attribute.append(ex.toString());

}
finally {

sessionManager.release(mySession);
}
return attribute.toString();

EMC Documentum Foundation Classes Version 6 Development Guide 65



Working with Objects

}
}

Setting attributes
Attributes are set according to their datatype. For example, you set a String value by calling the
following method.
IDfTypedObject.setString(String attributeName, String value)

The available datatypes are DFC versions of Boolean, integer, String, time, DfID, and undefined. In
practice, you will not work with the DfID because all object IDs are set internally and are not mutable
by custom applications.

Time values (including date values) are stored as numeric values, and are entered or displayed using a
pattern mask. For example, in these examples, we use the pattern IDfTime.DF_TIME_PATTERN_2,
mm/dd/yyyy. The complete list of time formats can be found in the Javadoc entry for IDfTime.

Setting a single attribute

You can set attributes directly by type. Most often, you will have a specific control that will set a
specific data type. Alternatively, this example queries for the data type of the attribute name the user
supplies, then uses a switch statement to set the value accordingly.

To add a Set Attribute By Name button to the DFC Base Tutorial Frame

1. If you have not done so already, create a JTextField control named jTextField_attributeName.

2. Create a JTextField control named jTextField_attributeValue

3. Create a JButton control named jButton_setAttributeByName.

4. Add a button handler method for Set Attribute By Name.

5. Create and deploy the class TutorialSetAttributeByName

Example 513. Handler for the Set Attribute By Name button

private void jButton_setAttributeByName_actionPerformed(ActionEvent e)
{

String repositoryName = jTextField_repositoryName.getText();
String attributeName = jTextField_attributeName.getText();
String attributeValue = jTextField_attributeValue.getText();

if (list_id.getSelectedIndex() == 1 |
jTextField_attributeName.getText().equals(""))
{

jLabel_messages.setText(

66 EMC Documentum Foundation Classes Version 6 Development Guide



Working with Objects

"Select an item, enter an attribute name and value to set" +
" attribute information.");

}
else

{
String objectIdString =

m_fileIDs.elementAt(list_id.getSelectedIndex()).toString();
TutorialSetAttributeByName tsabn =

new TutorialSetAttributeByName();
jTextArea_results.setText(
tsabn.setAttributeByName(

m_sessionManager,
repositoryName,
objectIdString,
attributeName,
attributeValue)

);
jLabel_messages.setText("Set attribute complete.");

}
}

Example 514. The TutorialSetAttributeByName class

package com.emc.tutorial;

import com.documentum.fc.client.IDfSession;
import com.documentum.fc.client.IDfSessionManager;
import com.documentum.fc.client.IDfSysObject;
import com.documentum.fc.client.IDfType;
import com.documentum.fc.common.DfId;
import com.documentum.fc.common.DfTime;
import com.documentum.fc.common.IDfId;
import com.documentum.fc.common.IDfTime;

public class TutorialSetAttributeByName
{

public TutorialSetAttributeByName()
{
}

public String setAttributeByName(
IDfSessionManager sessionManager,
String repositoryName,
String objectIdString,
String attributeName,
String attributeValue)

{
IDfSession mySession = null;
try

{
mySession = sessionManager.getSession(repositoryName);
IDfId idObj =

mySession.getIdByQualification(
"dm_sysobject where r_object_id='" + objectIdString + "'"

);

EMC Documentum Foundation Classes Version 6 Development Guide 67



Working with Objects

IDfSysObject sysObj = (IDfSysObject) mySession.getObject(idObj);

int attributeDatatype = sysObj.getAttrDataType(attributeName);
StringBuffer results = new StringBuffer("");
results.append("Previous value: " +

sysObj.getValue(attributeName).toString());
switch (attributeDatatype)

{
case IDfType.DF_BOOLEAN:

if (attributeValue.equals("F") |
attributeValue.equals("f") |
attributeValue.equals("0") |
attributeValue.equals("false") |
attributeValue.equals("FALSE"))
sysObj.setBoolean(attributeName, false);

if (attributeValue.equals("T") |
attributeValue.equals("t") |
attributeValue.equals("1") |
attributeValue.equals("true") |
attributeValue.equals("TRUE"))
sysObj.setBoolean(attributeName, true);

break;

case IDfType.DF_INTEGER:
sysObj.setInt(attributeName,

Integer.parseInt(attributeValue));
break;

case IDfType.DF_STRING:
sysObj.setString(attributeName, attributeValue);
break;

// This case should not arise  no usersettable IDs
case IDfType.DF_ID:

IDfId newId = new DfId(attributeValue);
sysObj.setId(attributeName, newId);
break;

case IDfType.DF_TIME:
DfTime newTime =

new DfTime(attributeValue, IDfTime.DF_TIME_PATTERN2);
sysObj.setTime(attributeName, newTime);
break;

case IDfType.DF_UNDEFINED:
sysObj.setString(attributeName, attributeValue);
break;

}
if (sysObj.fetch(null))

{
results = new StringBuffer("Object is no longer current.");

}
else

{
sysObj.save();
results.append("\nNew value: " + attributeValue);

68 EMC Documentum Foundation Classes Version 6 Development Guide



Working with Objects

}
return results.toString();

}
catch (Exception ex)

{
ex.printStackTrace();
return "Set attribute command failed.";

}
finally

{
sessionManager.release(mySession);

}
}

}

Setting an attribute by number

The IDfSysObject.setAttr() methods require an attribute name. If your application captures the
attribute’s index number, you can use it to get the name of the attribute, then continue on to set
the value.

To add a Set Attribute By Number button to the DFC Base Tutorial Frame

1. If you have not done so already, create a JTextField control named jTextField_attributeNumber.

2. If you have not done so already, create a JTextField control named jTextField_attributeValue

3. Create a JButton control named jButton_setAttributeByNumber.

4. Add a button handler method for Set Attribute By Number.

5. Create and deploy the class TutorialSetAttributeByNumber

Example 515. Handler for the Set Attribute By Number button

private void jButton_setAttributeByNumber_actionPerformed(ActionEvent e)
{

String repositoryName = jTextField_repositoryName.getText();
String attributeNumber = jTextField_attributeNum.getText();
String attributeValue = jTextField_attributeValue.getText();

if (list_id.getSelectedIndex() == 1 |
jTextField_attributeNum.getText().equals(""))
{

jLabel_messages.setText(
"Select an item, enter an attribute name and value to set" +
" attribute information."

);
}

else
{

EMC Documentum Foundation Classes Version 6 Development Guide 69



Working with Objects

String objectIdString =
m_fileIDs.elementAt(list_id.getSelectedIndex()).toString();

TutorialSetAttributeByNumber tsabn =
new TutorialSetAttributeByNumber();

jTextArea_results.setText(
tsabn.setAttributeByNumber(

m_sessionManager,
repositoryName,
objectIdString,
attributeNumber,
attributeValue

)
);
jLabel_messages.setText("Set attribute complete.");

}
}

Example 516. The TutorialSetAttributeByNumber class

package com.emc.tutorial;

import com.documentum.fc.client.IDfSession;
import com.documentum.fc.client.IDfSessionManager;
import com.documentum.fc.client.IDfSysObject;
import com.documentum.fc.client.IDfType;
import com.documentum.fc.common.DfId;
import com.documentum.fc.common.DfTime;
import com.documentum.fc.common.IDfId;
import com.documentum.fc.common.IDfTime;

public class TutorialSetAttributeByNumber
{

public TutorialSetAttributeByNumber()
{
}

public String setAttributeByNumber
(

IDfSessionManager sessionManager,
String repositoryName,
String objectIdString,
String attributeNumber,
String attributeValue

)
{

IDfSession mySession = null;

try
{

mySession = sessionManager.getSession(repositoryName);
IDfId idObj =

mySession.getIdByQualification(
"dm_sysobject where r_object_id='" +

objectIdString + "'"
);

70 EMC Documentum Foundation Classes Version 6 Development Guide



Working with Objects

IDfSysObject sysObj = (IDfSysObject) mySession.getObject(idObj);
int attributeInt = Integer.parseInt(attributeNumber);
String attributeName = sysObj.getAttr(attributeInt).getName();
int attributeDatatype = sysObj.getAttrDataType(attributeName);

StringBuffer results = new StringBuffer("");
results.append("Previous value: " +

sysObj.getValue(attributeName).toString());
switch (attributeDatatype)

{
case IDfType.DF_BOOLEAN:

if (attributeValue.equals("F") |
attributeValue.equals("f") |
attributeValue.equals("0") |
attributeValue.equals("false") |
attributeValue.equals("FALSE"))
sysObj.setBoolean(attributeName, false);

if (attributeValue.equals("T") |
attributeValue.equals("t") |
attributeValue.equals("1") |
attributeValue.equals("true") |
attributeValue.equals("TRUE"))
sysObj.setBoolean(attributeName, true);

break;

case IDfType.DF_INTEGER:
sysObj.setInt(attributeName,

Integer.parseInt(attributeValue));
break;

case IDfType.DF_STRING:
sysObj.setString(attributeName, attributeValue);
break;

// This case should not arise  no usersettable IDs
case IDfType.DF_ID:

IDfId newId = new DfId(attributeValue);
sysObj.setId(attributeName, newId);
break;

case IDfType.DF_TIME:
DfTime newTime =

new DfTime(attributeValue, IDfTime.DF_TIME_PATTERN2);
sysObj.setTime(attributeName, newTime);
break;

case IDfType.DF_UNDEFINED:
sysObj.setString(attributeName, attributeValue);
break;

}
if (sysObj.fetch(null))

{
results = new StringBuffer("Object is no longer current.");

}
else

{
sysObj.save();

EMC Documentum Foundation Classes Version 6 Development Guide 71



Working with Objects

results.append("\nNew value: " + attributeValue);
}

return results.toString();
}

catch (Exception ex)
{

ex.printStackTrace();
return "Set attribute command failed.";

}
finally

{
sessionManager.release(mySession);

}
}

}

Appending a repeating attribute

If you use the regular set[Datatype] method for setting a repeating attribute, the first value (at the
zero index) will be set with the value you provide. You can use an append[Datatype] method to
add a value to a repeating attribute.

To add an Append Repeating Attribute button to the DFC Base Tutorial Frame

1. If you have not already done so, create a JTextField control named jTextField_attributeName.

2. If you have not already done so, create a JTextField control named jTextField_attributeValue.

3. Create a JButton control named jButton_appendRepeatingAttribute

4. Add a button handler method for Append Repeating Attribute.

5. Create and deploy the class TutorialAppendRepeatingAttribute

Example 517. Handler for the Append Repeating Attribute button

private void jButton_appendRepeatingAttribute_actionPerformed(ActionEvent e)
{

String repositoryName = jTextField_repositoryName.getText();
String attributeName = jTextField_attributeName.getText();
String attributeValue = jTextField_attributeValue.getText();

if (list_id.getSelectedIndex() == 1 |
jTextField_attributeName.getText().equals(""))
{

jLabel_messages.setText(
"Select an item, enter an attribute name, index, and value " +
"to set repeating attribute information."

);
}

else
{

72 EMC Documentum Foundation Classes Version 6 Development Guide



Working with Objects

String objectIdString =
m_fileIDs.elementAt(list_id.getSelectedIndex()).toString();

TutorialAppendRepeatingAttribute tara =
new TutorialAppendRepeatingAttribute();

tara.appendRepeatingAttribute(
m_sessionManager,
repositoryName,
objectIdString,
attributeName,
attributeValue

);

jLabel_messages.setText("Set attribute complete.");
}

}

Example 518. The TutorialAppendRepeatingAttribute class

package com.emc.tutorial;

import com.documentum.fc.client.IDfSession;
import com.documentum.fc.client.IDfSessionManager;
import com.documentum.fc.client.IDfSysObject;
import com.documentum.fc.client.IDfType;
import com.documentum.fc.common.DfId;
import com.documentum.fc.common.DfTime;
import com.documentum.fc.common.IDfId;
import com.documentum.fc.common.IDfTime;

public class TutorialAppendRepeatingAttribute
{

public TutorialAppendRepeatingAttribute()
{
}

public String appendRepeatingAttribute
(

IDfSessionManager sessionManager,
String repositoryName,
String objectIdString,
String attributeName,
String attributeValue)

{
IDfSession mySession = null;
try

{
mySession = sessionManager.getSession(repositoryName);
IDfId idObj =

mySession.getIdByQualification(
"dm_sysobject where r_object_id='" + objectIdString + "'"

);

IDfSysObject sysObj = (IDfSysObject) mySession.getObject(idObj);

int attributeDatatype = sysObj.getAttrDataType(attributeName);
StringBuffer results = new StringBuffer("");

EMC Documentum Foundation Classes Version 6 Development Guide 73



Working with Objects

results.append("Previous value: " +
sysObj.getValue(attributeName).toString());

switch (attributeDatatype)
{

case IDfType.DF_BOOLEAN:
if (attributeValue.equals("F") |

attributeValue.equals("f") |
attributeValue.equals("0") |
attributeValue.equals("false") |
attributeValue.equals("FALSE"))
sysObj.setBoolean(attributeName, false);

if (attributeValue.equals("T") |
attributeValue.equals("t") |
attributeValue.equals("1") |
attributeValue.equals("true") |
attributeValue.equals("TRUE"))
sysObj.appendBoolean(attributeName, true);

results.append("\nNew value: " + attributeValue);
break;

case IDfType.DF_INTEGER:
sysObj.appendInt(attributeName,

Integer.parseInt(attributeValue));
break;

case IDfType.DF_STRING:
sysObj.appendString(attributeName, attributeValue);
break;

// This case should not arise  no usersettable IDs
case IDfType.DF_ID:

IDfId newId = new DfId(attributeValue);
sysObj.appendId(attributeName, newId);
break;

case IDfType.DF_TIME:
DfTime newTime =

new DfTime(attributeValue, IDfTime.DF_TIME_PATTERN2);
if (newTime.isValid())

sysObj.appendTime(attributeName, newTime);
else

results = new StringBuffer("");
break;

case IDfType.DF_UNDEFINED:
sysObj.appendString(attributeName, attributeValue);
break;

}
sysObj.save();
return results.toString();

}
catch (Exception ex)

{
ex.printStackTrace();
return "Set attribute command failed.";

}

74 EMC Documentum Foundation Classes Version 6 Development Guide



Working with Objects

finally
{

sessionManager.release(mySession);
}

}
}

Removing an attribute value
You can also remove attribute values from system objects. If the attribute value is a single value, you
can set the value of the variable to null. For a repeating attribute, you can either delete an individual
value by providing the index of the value, or delete all values for the attribute. The example below
uses simple tests to decide which of these options to choose: your own application will most likely
need to use more robust decision‑making logic, but the API calls will be the same once you’ve
determined which attributes are to be removed.

To add a Remove Attribute button to the DFC Base Tutorial Frame

1. If you haven’t already done so, create a JTextField control named jTextField_attributeName.

2. Create a JTextField control named jTextField_attributeIndex.

3. Create a JButton control named jButton_removeAttribute

4. Add a button handler method for Remove Attribute.

5. Create and deploy the class TutorialRemoveAttribute

Example 519. Hander for the Remove Attribute button

private void jButton_removeAttribute_actionPerformed(ActionEvent e)
{

String repositoryName = jTextField_repositoryName.getText();
String attributeName = jTextField_attributeName.getText();
String objectIdString =

m_fileIDs.elementAt(list_id.getSelectedIndex()).toString();
String attributeIndex = jTextField_attributeIndex.getText();
TutorialRemoveAttribute tra = new TutorialRemoveAttribute();
if (

tra.removeAttribute(
m_sessionManager,
repositoryName,
objectIdString,
attributeName,
attributeIndex
)

)
{

jLabel_messages.setText("Attribute removed.");
}

else

EMC Documentum Foundation Classes Version 6 Development Guide 75



Working with Objects

{
jLabel_messages.setText("Attribute removal operation failed.");

}
}

Example 520. The TutorialRemoveAttribute class

package com.emc.tutorial;

import com.documentum.fc.client.IDfSession;
import com.documentum.fc.client.IDfSessionManager;
import com.documentum.fc.client.IDfSysObject;
import com.documentum.fc.common.IDfId;

public class TutorialRemoveAttribute
{

public TutorialRemoveAttribute()
{
}

public Boolean removeAttribute
(

IDfSessionManager sessionManager,
String repositoryName,
String objectIdString,
String attributeName,
String attributeIndex

)
{

IDfSession mySession = null;

TutorialSessionManager mySessMgr = null;
try

{
mySession = sessionManager.getSession(repositoryName);
IDfId idObj =

mySession.getIdByQualification(
"dm_sysobject where r_object_id='" + objectIdString + "'"

);
IDfSysObject sysObj = (IDfSysObject) mySession.getObject(idObj);
int indexInt = 1;
try

{
indexInt = Integer.parseInt(attributeIndex);

}
catch (Exception ex)

{
ex.printStackTrace();

}
if (sysObj.isAttrRepeating(attributeName))

{
if (indexInt > 1)

{
sysObj.remove(attributeName, indexInt);
sysObj.save();

}

76 EMC Documentum Foundation Classes Version 6 Development Guide



Working with Objects

else
{

sysObj.removeAll(attributeName);
sysObj.save();

}
}

else
{

TutorialSetAttributeByName tsabn =
new TutorialSetAttributeByName();

tsabn.setAttributeByName(
sessionManager,
repositoryName,
objectIdString,
attributeName,
null

);

}
return true;

}
catch (Exception ex)

{
ex.printStackTrace();
return false;

}
finally

{
sessionManager.release(mySession);

}
}

}

Getting object content
The IDfSysObject.getContent() command lets you get the contents of a document as a
ByteArrayInputStream. If you are working with the content of a file, particularly if you intend to save
changes, you should use the operation interfaces, which wrap the behavior required to safely check
out, update, and check in document content. There may be times, though, that you want to read the
content of a file without manipulating it. In those cases, you can use the getContent() method.

To add a Get Content button to the DFC Base Tutorial Frame

1. Create a JButton control named jButton_getDocumentContent

2. Add a button handler method for Get Document Content..

3. Create and deploy the class TutorialGetTextContent

EMC Documentum Foundation Classes Version 6 Development Guide 77



Working with Objects

Example 521. Handler for the Get Document Content button

private void jButton_getDocumentContent_actionPerformed(ActionEvent e)
{

String repositoryName = jTextField_repositoryName.getText();
String objectIdString =

m_fileIDs.elementAt(list_id.getSelectedIndex()).toString();

TutorialGetTextContent tgtc = new TutorialGetTextContent();

jTextArea_results.setText(
tgtc.getContent(

m_sessionManager,
repositoryName,
objectIdString

)
);

}

Example 522. The TutorialGetTextContent class

package com.emc.tutorial;

import com.documentum.fc.client.IDfSession;
import com.documentum.fc.client.IDfSessionManager;
import com.documentum.fc.client.IDfSysObject;
import com.documentum.fc.common.IDfId;

import java.io.BufferedReader;
import java.io.ByteArrayInputStream;
import java.io.InputStreamReader;

public class TutorialGetTextContent
{

public TutorialGetTextContent()
{
}

public String getContent(
IDfSessionManager sessionManager,
String repositoryName,
String objectIdString

)
{

IDfSession mySession = null;
StringBuffer sb = new StringBuffer("");

try
{

mySession = sessionManager.getSession(repositoryName);

// Get the object ID based on the object ID string.
IDfId idObj =

mySession.getIdByQualification(
"dm_sysobject where r_object_id='" + objectIdString + "'"

);

78 EMC Documentum Foundation Classes Version 6 Development Guide



Working with Objects

// Instantiate an object from the ID.

IDfSysObject sysObj = (IDfSysObject) mySession.getObject(idObj);
if (sysObj.getContentType().equals("crtext") |

sysObj.getContentType().equals("text"))
{

ByteArrayInputStream buf = sysObj.getContent();
int i = 0;
InputStreamReader readInput =

new InputStreamReader(buf, "UTF8");
BufferedReader br = new BufferedReader(readInput);
while (br.ready())

{
sb.append(br.readLine());
sb.append("\n");

}
return sb.toString();

}
else

{
return "Use getContent to view text documents.";

}
}

// Handle any exceptions.
catch (Exception ex)

{
ex.printStackTrace();
return "Exception has been thrown: " + ex;

}
// Always, always, release the session in the "finally" clause.

finally
{

sessionManager.release(mySession);
}

}
}

Destroying an object
You can use the IDfSystemObject.destroyAllVersions() method to permanently remove an object
from the database. If you use the IDfPersistentObject.destroy() method, you will destroy only the
specific system object corresponding to the r_object_id your provide. In this example, we use the
destroyAllVersions() method, which destroys not only the system object with the corresponding ID
but all iterations of the object.

If you attempt to destroy a directory that has children, the method will return an error.

To add a Destroy button to the DFC Base Tutorial Frame

1. Create a JButton control named jButton_destroy

EMC Documentum Foundation Classes Version 6 Development Guide 79



Working with Objects

2. Add a handler method for the Destroy button.

3. Create and deploy the class TutorialDestroyObject.

Example 523. Handler for the Destroy button

private void jButton_destroy_actionPerformed(ActionEvent e)
{

String repositoryName = jTextField_repositoryName.getText();
String objectIdString =

m_fileIDs.elementAt(list_id.getSelectedIndex()).toString();

TutorialDestroyObject tdo = new TutorialDestroyObject();
if (tdo.destroyObject(

m_sessionManager,
repositoryName,
objectIdString

)
)
{

getDirectory();
jLabel_messages.setText("Destroyed object '" + objectIdString +

"'.");
}

else
{

jLabel_messages.setText("Destroy command failed.");
}

}

Example 524. The TutorialDestroyObject class

package com.emc.tutorial;

import com.documentum.fc.client.IDfSession;
import com.documentum.fc.client.IDfSessionManager;
import com.documentum.fc.client.IDfSysObject;
import com.documentum.fc.common.IDfId;

public class TutorialDestroyObject
{

public TutorialDestroyObject()
{
}

public Boolean destroyObject(
IDfSessionManager sessionManager,
String repositoryName,
String objectIdString

)
{

IDfSession mySession = null;
try

{
mySession = sessionManager.getSession(repositoryName);
IDfId idObj =

80 EMC Documentum Foundation Classes Version 6 Development Guide



Working with Objects

mySession.getIdByQualification(
"dm_sysobject where r_object_id='" + objectIdString + "'"

);
IDfSysObject sysObj = (IDfSysObject) mySession.getObject(idObj);
sysObj.destroyAllVersions();
return true;

}
catch (Exception ex)

{
ex.printStackTrace();
return false;

}
finally

{
sessionManager.release(mySession);

}
}

}

EMC Documentum Foundation Classes Version 6 Development Guide 81



Working with Objects

82 EMC Documentum Foundation Classes Version 6 Development Guide



Chapter 6
Working with Document Operations

This chapter describes the way to use DFC to perform the most common operations on documents.
Most information about documents also applies to the broader category of repository objects
represented by the IDfSysObject interface.

The chapter contains the following main sections:

• Understanding documents, page 83
• Understanding operations, page 85
• Types of operation, page 86
• Basic steps for manipulating documents, page 87
• Operations for manipulating documents, page 91
• Handling document manipulation errors, page 124
• Operations and transactions, page 126

Understanding documents
The Documentum Content Server Fundamentalsmanual explains Documentum facilities for managing
documents. This section provides a concise summary of what you need to know to understand
the remainder of this chapter.

Documentum maintains a repository of objects that it classifies according to a type hierarchy. For this
discussion, SysObjects are at the top of the hierarchy. A document is a specific kind of SysObject. Its
primary purpose is to help you manage content.

Documentum maintains more than one version of a document. A version tree is an original document
and all of its versions. Every version of the document has a unique object ID, but every version has the
same chronicle ID, namely, the object ID of the original document.

EMC Documentum Foundation Classes Version 6 Development Guide 83



Working with Document Operations

Virtual documents

A virtual document is a container document that includes one or more objects, called components,
organized in a tree structure. A component can be another virtual document or a simple document. A
virtual document can have any number of components, nested to any level. Documentum imposes no
limit on the depth of nesting in a virtual document.

Documentum uses two sets of terminology for virtual documents. In the first set, a virtual document
that contains a component is called the component’s parent, and the component is called the virtual
document’s child. Children, or children of children to any depth, are called descendants.

Note: Internal variables, Javadoc comments, and registry keys sometimes use the alternate spelling
descendent.

The second set of terminology derives from graph theory, even though a virtual document forms a
tree, and not an arbitrary graph. The virtual document and each of its descendants is called a node. The
directed relationship between a parent node and a child node is called an edge.

In both sets of terminology, the original virtual document is sometimes called the root.

You can associate a particular version of a component with the virtual document (this is called early
binding) or you can associate the component’s entire version tree with the virtual document. The
latter allows you to select which version to include at the time you construct the document (this
is called late binding).

Documentum provides a flexible set of rules for controlling the way it assembles documents. An
assembly is a snapshot of a virtual document. It consists of the set of specific component versions that
result from assembling the virtual document according to a set of binding rules. To preserve it, you
must attach it to a SysObject: usually either the root of the virtual document or a SysObject created to
hold the assembly. A SysObject can have at most one attached assembly.

You can version a virtual document and manage its versions just as you do for a simple document.
Deleting a virtual document version also removes any containment objects or assembly objects
associated with that version.

When you copy a virtual document, the server can make a copy of each component, or it can create an
internal reference or pointer to the source component. It maintains information in the containment
object about which of these possibilities to choose. One option is to require the copy operation
to specify the choice.

Whether it copies a component or creates a reference, Documentum creates a new containment object
corresponding to that component.

Note: DFC allows you to process the root of a virtual document as an ordinary document. For
example, suppose that doc is an object of type IDfDocument and also happens to be the root of a
virtual document. If you tell DFC to check out doc, it does not check out any of the descendants. If
you want DFC to check out the descendants along with the root document, you must first execute an
instruction like

84 EMC Documentum Foundation Classes Version 6 Development Guide



Working with Document Operations

IDfVirtualDocument vDoc =
doc.asVirtualDocument(CURRENT, false)

If you tell DFC to check out vDoc, it processes the current version of doc and each of its descendants.
The DFC Javadocs explain the parameters of the asVirtualDocument method.

Documentum represents the nodes of virtual documents by containment objects and the nodes of
assemblies by assembly objects. An assembly object refers to the SysObject to which the assembly is
attached, and to the virtual document from which the assembly came.

If an object appears more than once as a node in a virtual document or assembly, each node has a
separate associated containment object or assembly object. No object can appear as a descendant of
itself in a virtual document.

XML Documents

Documentum’s XML support has many features. Information about those subjects appears in
Documentum Content Server Fundamentals and in the XML Application Development Guide.

Using XML support requires you to provide a controlling XML application. When you import an XML
document, DFC examines the controlling application’s configuration file and applies any chunking
rules that you specify there.

If the application’s configuration file specifies chunking rules, DFC creates a virtual document from
the chunks it creates. It imports other documents that the XML document refers to as entity references
or links, and makes them components of the virtual document. It uses attributes of the containment
object associated with a component to remember whether it came from an entity or a link and to
maintain other necessary information. Assembly objects have the same XML‑related attributes
as containment objects do.

Understanding operations
Operations are used to manipulate documents in Documentum. Operations provide interfaces and
a processing environment to ensure that Documentum can handle a variety of documents and
collections of documents in a standard way. You obtain an operation of the appropriate kind, place
one or more documents into it, and execute the operation.

All of the examples in this chapter pertain only to documents, but operations can be used to work with
objects of type IDfSysObject, not just the subtype IDfDocument.

For example, to check out a document, take the following steps:

1. Obtain a checkout operation.

2. Add the document to the operation.

EMC Documentum Foundation Classes Version 6 Development Guide 85



Working with Document Operations

3. Execute the operation.

DFC carries out the behind‑the‑scenes tasks associated with checking out a document. For a
virtual document, for example, DFC adds all of its components to the operation and ensures
that links between them are still valid when it stores the documents into the checkout directory
on the file system. It corrects filename conflicts, and it keeps a local record of which documents it
checks out. This is only a partial description of what DFC does when you check out a document.
Because of the number and complexity of the underlying tasks, DFC wraps seemingly elementary
document‑manipulation tasks in operations.

An IDfClientX object provides factory methods for creating operations. Once you have an IDfClientX
object (say cX) and a SysObject (say doc) representing the document, the code for the checkout looks
like this:

// Obtain a checkout operation
IDfCheckoutOperation checkout =cX.getCheckoutOperation();

// Add the document to the checkout operation
checkout.add(doc); //This might fail and return a null

// Check the document out
checkout.execute(); //This might produce errors without
//throwing an exception

In your own applications, you would add code to handle a null returned by the add method or errors
produced by the execute method.

Types of operation
DFC provides operation types and corresponding nodes (to be explained in subsequent sections) for
many tasks you perform on documents or, where appropriate, files or folders. The following table
summarizes these.

Table 1. DFC operation types and nodes

Task Operation Type Operation Node Type

Import into a repository IDfImportOperation IDfImportNode

Export from a repository IDfExportOperation IDfExportNode

Check into a repository IDfCheckinOperation IDfCheckinNode

Check out of a repository IDfCheckoutOperation IDfCheckoutNode

Cancel a checkout IDfCancelCheckoutOperation IDfCancelCheckoutNode

Delete from a repository IDfDeleteOperation IDfDeleteNode

86 EMC Documentum Foundation Classes Version 6 Development Guide



Working with Document Operations

Task Operation Type Operation Node Type

Copy from one repository
location to another

IDfCopyOperation IDfCopyNode

Move from one repository
location to another

IDfMoveOperation IDfMoveNode

Validate an XML document
against a DTD or Schema

IDfValidationOperation IDfValidationNode

Transform an XML document
using XSLT

IDfXMLTransformOperation IDfXMLTransformNode

Pre‑cache objects in a BOCS
repository

IDfPredictiveCachingOpera‑
tion

IDfPredictiveCachingNode

Basic steps for manipulating documents
This section describes the basic steps common to using the facilities of the operations package to
manipulate documents. It sets forth the basic steps, then discusses the steps in greater detail.

Steps for manipulating documents

This section describes the basic steps common to document manipulation operations. Details of
manipulating documents, page 88 provides more detailed information about these steps.

To perform a documentmanipulation task:

1. Use the appropriate factory method of IDfClientX to obtain an operation of the type appropriate to
the document‑manipulation task.
For example, if you want to check documents into a repository, start by calling
getCheckinOperation.

Note: Each operation has a type (for example, IDfCheckinOperation) that inherits most of its
methods (in particular, its add and execute methods) from IDfOperation.

2. Set parameters to control the way the operation performs the task.
Each operation type has setXxx methods for setting its parameters.
The operation behaves in predefined (default) ways if you do not set optional parameters. Some
parameters (the session for an import operation, for example) are mandatory.

3. Add documents to the operation:

a. Use its inherited add method to place a document, file, or folder into the operation.

EMC Documentum Foundation Classes Version 6 Development Guide 87



Working with Document Operations

The add method returns the newly created node, or a null if it fails (refer to Handling
document manipulation errors, page 124 ).

b. Set parameters to change the way the operation handles this item and its descendants.
Each type of operation node has methods for setting parameters that are important for that
type of node. These are generally the same as the methods for the corresponding type of
operation. If you do not set parameters, the operation handles this item according to the
setXxx methods.

c. Repeat the previous two substeps for all items you add to the operation.

4. Invoke the operation’s inherited execute method to perform the task.
Note that this step may add and process additional nodes. For example, if part of the execution
entails scanning an XML document for links, DFC may add the linked documents to the operation.
The execute method returns a boolean value to indicate its success (true) or failure (false). See
Handling document manipulation errors, page 124 ) for more information.

5. Process the results.

a. Handle errors.
If it detects errors, the execute method returns the boolean value false. You can use the
operation’s inherited getErrors method to obtain a list of failures.
For details of how to process errors, see Processing the results, page 90.

b. Perform tasks specific to the operation.
For example, after an import operation, you may want to take note of all of the new objects that
the operation created in the repository. You might want to display or modify their properties.

Details of manipulating documents

This section discusses some issues and background for the steps of the general procedure in Steps
for manipulating documents, page 87.

Obtaining the operation

Each operation factory method of IDfClientX instantiates an operation object of the corresponding
type. For example, getImportOperation factory method instantiates an IDfImportOperation object.

88 EMC Documentum Foundation Classes Version 6 Development Guide



Working with Document Operations

Setting parameters for the operation

Different operations accept different parameters to control the way they carry out their tasks. Some
parameters are optional, some mandatory.

Note: You must use the setSession method of IDfImportOperation or IDfXMLTransformOperation to
set a repository session before adding nodes to either of these types of operation.

Adding documents to the operation

An operation contains a structure of nodes and descendants. When you obtain the operation, it
has no nodes. When you use the operation’s add method to include documents in the operation, it
creates new root nodes. The add method returns the node as an IDfOperationNode object. You must
cast it to the appropriate operation node type to use any methods the type does not inherit from
IDfOperationNode (see Working with nodes, page 90).

Note: If the add method cannot create a node for the specified document, it returns a null argument.
Be sure to test for this case, because it does not usually throw an exception.

DFC might include additional nodes in the operation. For example, if you add a repository folder, DFC
adds nodes for the documents linked to that folder, as children of the folder’s node in the operation.

Each node can have zero or more child nodes. If you add a virtual document, the add method creates
as many descendant nodes as necessary to create an image of the virtual document’s structure
within the operation.

You can add objects from more than one repository to an operation.

You can use a variety of methods to obtain and step through all nodes of the operation (see Working
with nodes, page 90 ). You might want to set parameters on individual nodes differently from the
way you set them on the operation.

Executing the Operation

The operations package processes the objects in an operation as a group, possibly invoking many
DFC calls for each object. Operations encapsulate Documentum client conventions for registering,
naming, and managing local content files.

DFC executes the operation in a predefined set of steps, applying each step to all of the documents in
the operation before proceeding to the next step. It processes each document in an operation only
once, even if the document appears at more than one node.

Once DFC has executed a step of the operation on all of the documents in the operation, it cannot
execute that step again. If you want to perform the same task again, you must construct a new
operation to do so.

EMC Documentum Foundation Classes Version 6 Development Guide 89



Working with Document Operations

Normally, you use the operation’s execute method and let DFC proceed through the execution steps.
DFC provides a limited ability for you to execute an operation in steps, so that you can perform special
processing between steps. Documentum does not recommend this approach, because the number and
identity of steps in an operation may change with future versions of DFC. If you have a programming
hurdle that you cannot get over without using steps, work with Documentum Technical Support
or Consulting to design a solution.

Processing the results

If DFC encounters an error while processing one node in an operation, it continues to process the other
nodes. For example, if one object in a checkout operation is locked, the operation checks out the
others. Only fatal conditions cause an operation to throw an exception. DFC catches other exceptions
internally and converts them into IDfOperationError objects. The getErrors method returns an IDfList
object containing those errors, or a null if there are no errors. The calling program can examine
the errors, and decide whether to undo the operation, or to accept the results for those objects that
did not generate errors.

Once you have checked the errors you may want to examine and further process the results of the
operation. The next section, Working with nodes, page 90, shows how to access the objects and
results associated with the nodes of the operation.

Working with nodes

This section shows how to access the objects and results associated with the nodes of an operation.

Note: Each operation node type (for example, IDfCheckinNode) inherits most of its methods from
IDfOperationNode.

The getChildren method of an IDfOperationNode object returns the first level of nodes under the given
node. You can use this method recursively to step through all of the descendant nodes. Alternatively,
you can use the operation’s getNodes method to obtain a flat list of descendant nodes, that is, an
IDfList object containing of all of its descendant nodes without the structure.

These methods return nodes as objects of type IDfOperationNode, not as the specific node type (for
example, IDfCheckinNode).

The getId method of an IDfOperationNode object returns a unique identifier for the node, not the
object ID of the corresponding document. IDfOperationNode does not have a method for obtaining the
object ID of the corresponding object. Each operation node type (for example, IDfCheckinNode) has
its own getObjectID method. You must cast the IDfOperationNode object to a node of the specific
type before obtaining the object ID.

90 EMC Documentum Foundation Classes Version 6 Development Guide



Working with Document Operations

Operations for manipulating documents
This section provides sample code and discusses specific details of the following kinds of document
manipulation operations:
• Checking out, page 93
• Checking in, page 97
• Cancelling checkout, page 100
• Importing, page 104
• Exporting, page 108
• Copying, page 111
• Moving, page 114
• Deleting, page 116
• Predictive caching, page 119
• Validating an XML document against a DTD or schema, page 120
• Performing an XSL transformation of an XML document, page 121
The examples use the terms file and directory to refer to entities on the file system and the terms
document and folder to repository entities represented by DFC objects of type IDfDocument and
IDfFolder.

These examples assume the use of a simple UI, similar to the one described in ChapterChapter
4, Creating a Test Application, which enables the user to pass a Session Manager and additional
information such as a document ID or directory path to give the essential information required by the
operation.

EMC Documentum Foundation Classes Version 6 Development Guide 91



Working with Document Operations

92 EMC Documentum Foundation Classes Version 6 Development Guide



Working with Document Operations

Checking out

The execute method of an IDfCheckoutOperation object checks out the documents in the operation.
The checkout operation:
• Locks the document
• Copies the document to your local disk
• Always creates registry entries to enable DFC to manage the files it creates on the file system
Example 61. Handler for the Check Out button

private void jButton_checkOut_actionPerformed(ActionEvent e)
{

String repositoryName = jTextField_repositoryName.getText();
String docId =

m_fileIDs.elementAt(list_id.getSelectedIndex()).toString();
TutorialCheckOut tco = new TutorialCheckOut();
jLabel_messages.setText(

tco.checkoutExample(
m_sessionManager,
repositoryName,
docId
)

);
initDirectory();
getDirectory();

}

Example 62. TutorialCheckout.java

package com.emc.tutorial;

import com.documentum.com.DfClientX;
import com.documentum.com.IDfClientX;
import com.documentum.fc.client.IDfDocument;
import com.documentum.fc.client.IDfSession;
import com.documentum.fc.client.IDfSessionManager;
import com.documentum.fc.client.IDfSysObject;
import com.documentum.fc.common.DfId;
import com.documentum.fc.common.IDfId;
import com.documentum.operations.IDfCheckoutNode;
import com.documentum.operations.IDfCheckoutOperation;

public class TutorialCheckOut
{

public TutorialCheckOut()
{
}

public String checkoutExample
(

IDfSessionManager sessionManager,
String repositoryName,
String docId

)

EMC Documentum Foundation Classes Version 6 Development Guide 93



Working with Document Operations

{
StringBuffer result = new StringBuffer("");
IDfSession mySession = null;

try
{

mySession = sessionManager.getSession(repositoryName);

// Get the object ID based on the object ID string.
IDfId idObj =

mySession.getIdByQualification(
"dm_sysobject where r_object_id='" + docId + "'"

);

// Instantiate an object from the ID.

IDfSysObject sysObj = (IDfSysObject) mySession.getObject(idObj);

// Instantiate a client.
IDfClientX clientx = new DfClientX();

// Use the factory method to create a checkout operation object.
IDfCheckoutOperation coOp = clientx.getCheckoutOperation();

// Set the location where the local copy of the checked out file
// is stored.
coOp.setDestinationDirectory("C:\\");

// Get the document instance using the document ID.
IDfDocument doc =

(IDfDocument) mySession.getObject(new DfId(docId));

// Create the checkout node by adding the document to the checkout
// operation.
IDfCheckoutNode coNode = (IDfCheckoutNode) coOp.add(doc);

// Verify that the node exists.
if (coNode == null)

{
result.append("coNode is null");

}

// Execute the checkout operation. Return the result.
if (coOp.execute())

{
result.append("Successfully checked out file ID: " + docId);

}
else

{
result.append("Checkout failed.");

}
return result.toString();

}
catch (Exception ex)

{
ex.printStackTrace();
return "Exception hs been thrown: " + ex;

94 EMC Documentum Foundation Classes Version 6 Development Guide



Working with Document Operations

}
finally
{

sessionManager.release(mySession);
}

}
}

Special considerations for checkout operations

Follow the steps in Steps for manipulating documents, page 87.

If any node corresponds to a document that is already checked out, the system does not check it out
again. DFC does not treat this as an error. If you cancel the checkout, however, DFC cancels the
checkout of the previously checked out node as well.

DFC applies XML processing to XML documents. If necessary, it modifies the resulting files to ensure
that it has enough information to check in the documents properly.

You can use many of the same methods for setting up checkout operations and processing results
that you use for export operations.

Checking out a virtual document

If the operation’s add method receives a virtual document as an argument, it also adds all of the
document’s descendants (determined by applying the applicable binding rules), creating a separate
node for each.

Example 63. The TutorialCheckoutVdm class

package dfctestenvironment;

import com.documentum.com.DfClientX;
import com.documentum.com.IDfClientX;
import com.documentum.fc.client.IDfDocument;
import com.documentum.fc.client.IDfSession;
import com.documentum.fc.client.IDfVirtualDocument;
import com.documentum.fc.common.DfId;
import com.documentum.operations.IDfCheckoutNode;
import com.documentum.operations.IDfCheckoutOperation;

public class TutorialCheckoutVdm {
public TutorialCheckoutVdm() {
}
public String checkoutExample(

IDfSessionManager sessionManager,
String repositoryName
String docId)

EMC Documentum Foundation Classes Version 6 Development Guide 95



Working with Document Operations

{
try {

String result = "";

// Instantiate a session.
IDfSession mySession = sessionManager.getSession (repositoryName);

// Instantiate a client.
IDfClientX clientx = new DfClientX();

// Use the factory method to create a checkout operation object.
IDfCheckoutOperation coOp = clientx.getCheckoutOperation();

// Set the location where the local copy of the checked out file is stored.
coOp.setDestinationDirectory("C:\\");

// Get the document instance using the document ID.
IDfDocument doc = (IDfDocument) mySession.getObject(new DfId(docId));

// Create an empty checkout node object.
IDfCheckoutNode coNode;

// If the doc is a virtual document, instantiate it as a virtual document
// object and add it to the checkout operation. Otherwise, add the document
// object to the checkout operation.

if (doc.isVirtualDocument()){
IDfVirtualDocument vDoc = doc.asVirtualDocument( "CURRENT",false);
coNode = (IDfCheckoutNode)coOp.add(vDoc);

}
else {

coNode = (IDfCheckoutNode)coOp.add(doc);
}

// Verify that the node exists.
if (coNode == null) {

result = ("coNode is null");
}

// Execute the checkout operation. Return the result.
if ( coOp.execute()) {

result = "Successfully checked out file ID: " + docId;
}
else {

result = ("Checkout failed.");
}
return result;

}
catch (Exception ex) {

ex.printStackTrace();
return "Exception has been thrown: " + ex;

}
finally {

sessionManager.release(mySession);
}

}

96 EMC Documentum Foundation Classes Version 6 Development Guide



Working with Document Operations

Checking in

The execute method of an IDfCheckinOperation object checks documents into the repository. It creates
new objects as required, transfers the content to the repository, and removes local files if appropriate.
It checks in existing objects that any of the nodes refer to (for example, through XML links).

Example 64. Handler for the Check In button
Check in a document as the next major version (for example, version 1.2 would become version 2.0).
The default increment is NEXT_MINOR (for example, version 1.2 would become version 1.3).
private void jButton_checkIn_actionPerformed(ActionEvent e)
{

String repositoryName = jTextField_repositoryName.getText();
String docId =

m_fileIDs.elementAt(list_id.getSelectedIndex()).toString();
TutorialCheckIn tci = new TutorialCheckIn();
jLabel_messages.setText(

tci.checkinExample(
m_sessionManager,
repositoryName,
docId

)
);
initDirectory();
getDirectory();

}

Example 65. The TutorialCheckIn class

package com.emc.tutorial;

import com.documentum.com.DfClientX;
import com.documentum.com.IDfClientX;
import com.documentum.fc.client.IDfDocument;
import com.documentum.fc.client.IDfSession;
import com.documentum.fc.client.IDfSessionManager;
import com.documentum.fc.client.IDfSysObject;
import com.documentum.fc.common.DfId;
import com.documentum.fc.common.IDfId;
import com.documentum.operations.IDfCheckinNode;
import com.documentum.operations.IDfCheckinOperation;

public class TutorialCheckIn
{

public TutorialCheckIn()
{
}

public String checkinExample(
IDfSessionManager sessionManager,
String repositoryName,
String docId

)
{

EMC Documentum Foundation Classes Version 6 Development Guide 97



Working with Document Operations

IDfSession mySession = null;
try

{
mySession = sessionManager.getSession(repositoryName);

// Get the object ID based on the object ID string.
IDfId idObj =

mySession.getIdByQualification(
"dm_sysobject where r_object_id='" + docId + "'"

);

// Instantiate an object from the ID.

IDfSysObject sysObj = (IDfSysObject) mySession.getObject(idObj);

// Instantiate a client.
IDfClientX clientx = new DfClientX();

// Use the factory method to create an IDfCheckinOperation instance.
IDfCheckinOperation cio = clientx.getCheckinOperation();

// Set the version increment. In this case, the next major version
// ( version + 1)

cio.setCheckinVersion(IDfCheckinOperation.NEXT_MAJOR);

// When updating to the next major version, you need to explicitly
// set the version label for the new object to "CURRENT".

cio.setVersionLabels("CURRENT");

// Create a document object that represents the document being
// checked in.

IDfDocument doc =
(IDfDocument) mySession.getObject(new DfId(docId));

// Create a checkin node, adding it to the checkin operation.
IDfCheckinNode node = (IDfCheckinNode) cio.add(doc);

// Execute the checkin operation and return the result.
if (!cio.execute())

{
return "Checkin failed.";

}

// After the item is created, you can get it immediately using the
// getNewObjectId method.

IDfId newId = node.getNewObjectId();
return "Checkin succeeded  new object ID is: " + newId;

}
catch (Exception ex)

{
ex.printStackTrace();
return "Checkin failed.";

}
finally
{

sessionManager.release(mySession);

98 EMC Documentum Foundation Classes Version 6 Development Guide



Working with Document Operations

}
}

}

Special considerations for checkin operations

Follow the steps in Steps for manipulating documents, page 87.

Setting up the operation

To check in a document, you pass an object of type IDfSysObject or IDfVirtualDocument, not the file on
the local file system, to the operation’s add method. In the local client file registry, DFC records the path
and filename of the local file that represents the content of an object. If you move or rename the file,
DFC loses track of it and reports an error when you try to check it in.

Setting the content file, as in IDfCheckinNode.setFilePath, overrides DFC’s saved information.

If you specify a document that is not checked out, DFC does not check it in. DFC does not treat
this as an error.

You can specify checkin version, symbolic label, or alternate content file, and you can direct DFC to
preserve the local file.

If between checkout and checkin you remove a link between documents, DFC adds the orphaned
document to the checkin operation as a root node, but the relationship between the documents no
longer exists in the repository.

Processing the checked in documents

Executing a checkin operation normally results in the creation of new objects in the repository. If
opCheckin is the IDfCheckinOperation object, you can obtain a complete list of the new objects by
calling
IDfList list = opCheckin.getNewObjects();

The list contains the object IDs of the newly created SysObjects.

In addition, the IDfCheckinNode objects associated with the operation are still available after you
execute the operation (see Working with nodes, page 90 ). You can use their methods to find out many
other facts about the new SysObjects associated with those nodes.

EMC Documentum Foundation Classes Version 6 Development Guide 99



Working with Document Operations

Cancelling checkout

The execute method of an IDfCancelCheckoutOperation object cancels the checkout of documents by
releasing locks, deleting local files if appropriate, and removing registry entries.

If the operation’s add method receives a virtual document as an argument, it also adds all of the
document’s descendants (determined by applying the applicable binding rules), creating a separate
operation node for each.

Example 66. Handler for the Cancel Checkout button

private void jButton_cancelCheckOut_actionPerformed(ActionEvent e)
{

String repositoryName = jTextField_repositoryName.getText();
String docId =

m_fileIDs.elementAt(list_id.getSelectedIndex()).toString();
TutorialCancelCheckOut tcco = new TutorialCancelCheckOut();
jLabel_messages.setText(

tcco.cancelCheckOutExample(
m_sessionManager,
repositoryName,
docId

)
);

}

Example 67. TutorialCancelCheckout.java
Cancel checkout of a document.
package com.emc.tutorial;

import com.documentum.com.DfClientX;
import com.documentum.com.IDfClientX;
import com.documentum.fc.client.IDfDocument;
import com.documentum.fc.client.IDfSession;
import com.documentum.fc.client.IDfSessionManager;
import com.documentum.fc.client.IDfSysObject;
import com.documentum.fc.common.DfException;
import com.documentum.fc.common.DfId;
import com.documentum.fc.common.IDfId;
import com.documentum.operations.IDfCancelCheckoutNode;
import com.documentum.operations.IDfCancelCheckoutOperation;

public class TutorialCancelCheckOut
{

public TutorialCancelCheckOut()
{
}

public String cancelCheckOutExample(
IDfSessionManager sessionManager,
String repositoryName,
String docId

)

100 EMC Documentum Foundation Classes Version 6 Development Guide



Working with Document Operations

{
IDfSession mySession = null;

try
{

mySession = sessionManager.getSession(repositoryName);

// Get the object ID based on the object ID string.
IDfId idObj =

mySession.getIdByQualification(
"dm_sysobject where r_object_id='" + docId + "'"

);

// Instantiate an object from the ID.

IDfSysObject sysObj = (IDfSysObject) mySession.getObject(idObj);

// Get a new client instance.
IDfClientX clientx = new DfClientX();

// Use the factory method to create a checkout operation object.
IDfCancelCheckoutOperation cco =

clientx.getCancelCheckoutOperation();

// Instantiate the document object from the ID string.
IDfDocument doc =

(IDfDocument) mySession.getObject(new DfId(docId));

// Indicate whether to keep the local file.
cco.setKeepLocalFile(true);

// Create an empty cancel checkout node.
IDfCancelCheckoutNode node;

// Populate the cancel checkout node and add it to the cancel checkout
// operation.

node = (IDfCancelCheckoutNode) cco.add(doc);

// Check to see if the node is null  this will not throw an error.
if (node == null)

{
return "Node is null";

}

// Execute the operation and return the result.
if (!cco.execute())

{
return "Operation failed";

}
return "Successfully cancelled checkout of file ID: " + docId;

}
// Handle any exceptions.
catch (Exception ex)

{
ex.printStackTrace();
return "Exception has been thrown: " + ex;

}

EMC Documentum Foundation Classes Version 6 Development Guide 101



Working with Document Operations

// Always, always, release the session in the "finally" clause.
finally

{
sessionManager.release(mySession);

}
}

}

Special considerations for cancel checkout operations

Follow the steps in Steps for manipulating documents, page 87.

If a document in the cancel checkout operation is not checked out, DFC does not process it. DFC
does not treat this as an error.

Cancel checkout for virtual document

If the operation’s add method receives a virtual document as an argument, it also adds all of the
document’s descendants (determined by applying the applicable binding rules), creating a separate
operation node for each.

Example 68. The TutorialCancelCheckoutVdm class

package dfctestenvironment;

import com.documentum.com.DfClientX;
import com.documentum.com.IDfClientX;
import com.documentum.fc.client.IDfDocument;
import com.documentum.fc.client.IDfSession;
import com.documentum.fc.client.IDfVirtualDocument;
import com.documentum.fc.common.DfException;
import com.documentum.fc.common.DfId;
import com.documentum.operations.IDfCancelCheckoutNode;
import com.documentum.operations.IDfCancelCheckoutOperation;

public class TutorialCancelCheckoutVdm {
public TutorialCancelCheckoutVdm() {
}
public String cancelCheckoutExample(

IDfSession mySession,
String docId) throws DfException

{
try
{

// Get a new client instance.
IDfClientX clientx = new DfClientX();

102 EMC Documentum Foundation Classes Version 6 Development Guide



Working with Document Operations

// Use the factory method to create a checkout operation object.
IDfCancelCheckoutOperation cco =

clientx.getCancelCheckoutOperation();

// Instantiate the document object from the ID string.
IDfDocument doc =

(IDfDocument) mySession.getObject(new DfId(docId));

// Indicate whether to keep the local file.
cco.setKeepLocalFile(true);

// Create an empty cancel checkout node.
IDfCancelCheckoutNode node;

// If it is a virtual document, instantiate it as a vitual document and add
// the virtual document to the operation. Otherwise, add the doc to the
// operation.

if (doc.isVirtualDocument()) {
IDfVirtualDocument vdoc = doc.asVirtualDocument("CURRENT", false);
node = (IDfCancelCheckoutNode)cco.add(vdoc);

}
else
{

node = (IDfCancelCheckoutNode)cco.add(doc);
}

// Check to see if the node is null  this will not throw an error.
if (node==null) {return "Node is null";}

// Execute the operation and return the result.
if (!cco.execute()){

return "Operation failed";
}
return "Successfully cancelled checkout of file ID: " + docId;

}
catch (Exception e){

e.printStackTrace();
return "Exception thrown.";

}
}

}

EMC Documentum Foundation Classes Version 6 Development Guide 103



Working with Document Operations

Importing

The execute method of an IDfImportOperation object imports files and directories into the repository.
It creates objects as required, transfers the content to the repository, and removes local files if
appropriate. If any of the nodes of the operation refer to existing local files (for example, through XML
or OLE links), it imports those into the repository too.

Example 69. Handler for the Import button

private void jButton_import_actionPerformed(ActionEvent e)
{

String repositoryName = jTextField_repositoryName.getText();
String sourceFilePath = jTextField_importFilePath.getText();
String destinationDirectory = jTextField_cwd.getText();
TutorialImport ti = new TutorialImport();
jLabel_messages.setText(

ti.importExample(
m_sessionManager,
repositoryName,
destinationDirectory,
sourceFilePath

)
);
initDirectory();
getDirectory();

}

Example 610. TutorialImport.java

package com.emc.tutorial;

import com.documentum.com.DfClientX;
import com.documentum.com.IDfClientX;
import com.documentum.fc.client.IDfFolder;
import com.documentum.fc.client.IDfSession;
import com.documentum.fc.client.IDfSessionManager;
import com.documentum.fc.common.DfException;
import com.documentum.operations.IDfFile;
import com.documentum.operations.IDfImportNode;
import com.documentum.operations.IDfImportOperation;

public class TutorialImport
{

public TutorialImport()
{
}

public String importExample(
IDfSessionManager sessionManager,
String repositoryName,
String destinationDirectory,
String sourceFilePath

)
{

104 EMC Documentum Foundation Classes Version 6 Development Guide



Working with Document Operations

IDfSession mySession = null;

try
{

mySession = sessionManager.getSession(repositoryName);

// Create a new client instance.
IDfClientX clientx = new DfClientX();

// Use the factory method to create an IDfImportOperation instance.
IDfImportOperation opi = clientx.getImportOperation();

// You must explicitly set the session for an import operation.
opi.setSession(mySession);

// Create an instance of the target folder.
IDfFolder folder = mySession.getFolderByPath(destinationDirectory);

// Create a file instance for the local file.
IDfFile file = clientx.getFile(sourceFilePath);
if (!file.exists())

return ("File does not exist.");

// Set the destination folder.
opi.setDestinationFolderId(folder.getObjectId());

// Create the import node, adding the file to the import operation.
IDfImportNode node = (IDfImportNode) opi.add(file);
if (node == null)

return ("Node is null.");

// Execute the import operation and return the results.
if (opi.execute())

{
String resultString =

("Item" + opi.getNewObjects().toString() +
" imported successfully.");

return resultString;
}

else
{

return ("Error during import operation.");
}

// Handle any exceptions.
}

catch (Exception ex)
{

ex.printStackTrace();
return "Exception has been thrown: " + ex;

}

// Always, always, release the session in the "finally" clause.
finally

{
sessionManager.release(mySession);

}
}

EMC Documentum Foundation Classes Version 6 Development Guide 105



Working with Document Operations

}

Special Considerations for Import Operations

Follow the steps in Steps for manipulating documents, page 87.

Setting up the operation

Use the object’s setSession method to specify a repository session and the object’s
setDestinationFolderId method to specify the repository cabinet or folder into which the operation
should import documents.

You must set the session before adding files to the operation.

You can set the destination folder, either on the operation or on each node. The node setting overrides
the operation setting. If you set neither, DFC uses its default destination folder.

You can add an IDfFile object or specify a file system path. You can also specify whether to keep the
file on the file system (the default choice) or delete it after the operation is successful.

If you add a file system directory to the operation, DFC imports all files in that directory and proceeds
recursively to add each subdirectory to the operation. The resulting repository folder hierarchy
mirrors the file system directory hierarchy.

You can also control version labels, object names, object types and formats of the imported objects.

If you are importing a document with OLE links, all of the linked files can be imported for you
automatically and stored as nodes in a virtual document. See Microsoft Object Linking and Embedding
(OLE), page 20 for information on configuring your system to accommodate OLE links.

XML processing

You can import XML files without doing XML processing. If nodeImport is an IDfImportNode object,
you can turn off XML processing on the node and all its descendants by calling
nodeImport.setXMLApplicationName("Ignore");

Turning off this kind of processing can shorten the time it takes DFC to perform the operation.

Processing the imported documents

Executing an import operation results in the creation of new objects in the repository. If opImport is
the IDfImportOperation object, you can obtain a complete list of the new objects by calling

106 EMC Documentum Foundation Classes Version 6 Development Guide



Working with Document Operations

IDfList list = opImport.getNewObjects();

The list contains the object IDs of the newly created SysObjects.

In addition, the IDfImportNode objects associated with the operation are still available after you
execute the operation (see Working with nodes, page 90). You can use their methods to find out many
other facts about the new SysObjects associated with those nodes. For example, you can find out object
IDs, object names, version labels, file paths, and formats.

EMC Documentum Foundation Classes Version 6 Development Guide 107



Working with Document Operations

Exporting

The execute method of an IDfExportOperation object creates copies of documents on the local file
system. If the operation’s add method receives a virtual document as an argument, it also adds all
of the document’s descendants (determined by applying the applicable binding rules), creating a
separate node for each.

Example 611. Handler for the Export button

private void jButton_export_actionPerformed(ActionEvent e)
{

String repositoryName = jTextField_repositoryName.getText();
String docId =

m_fileIDs.elementAt(list_id.getSelectedIndex()).toString();
String targetLocalDirectory = jTextField_localDirectory.getText();
TutorialExport te = new TutorialExport();

jLabel_messages.setText(
te.exportExample(

m_sessionManager,
repositoryName,
docId,
targetLocalDirectory)

);
}

Example 612. TutorialExport.java
This example does not create registry information about the resulting file.
package com.emc.tutorial;

import com.documentum.com.DfClientX;
import com.documentum.com.IDfClientX;
import com.documentum.fc.client.IDfDocument;
import com.documentum.fc.client.IDfFormat;
import com.documentum.fc.client.IDfSession;
import com.documentum.fc.client.IDfSessionManager;
import com.documentum.fc.client.IDfSysObject;
import com.documentum.fc.common.DfId;
import com.documentum.fc.common.IDfId;
import com.documentum.operations.IDfExportNode;
import com.documentum.operations.IDfExportOperation;

public class TutorialExport
{

public TutorialExport()
{
}

public String exportExample(
IDfSessionManager sessionManager,
String repositoryName,
String docId,
String targetLocalDirectory

)

108 EMC Documentum Foundation Classes Version 6 Development Guide



Working with Document Operations

{
IDfSession mySession = null;
StringBuffer sb = new StringBuffer("");

try
{

mySession = sessionManager.getSession(repositoryName);

// Get the object ID based on the object ID string.
IDfId idObj =

mySession.getIdByQualification(
"dm_sysobject where r_object_id='" + docId + "'"

);

// Instantiate an object from the ID.

IDfSysObject sysObj = (IDfSysObject) mySession.getObject(idObj);

// Create a new client instance.
IDfClientX clientx = new DfClientX();

// Use the factory method to create an IDfExportOperation instance.
IDfExportOperation eo = clientx.getExportOperation();

// Create a document object that represents the document being exported.
IDfDocument doc =

(IDfDocument) mySession.getObject(new DfId(docId));

// Create an export node, adding the document to the export operation object.
IDfExportNode node = (IDfExportNode) eo.add(doc);

// Get the document's format.
IDfFormat format = doc.getFormat();

// If necessary, append a path separator to the targetLocalDirectory value.
if (targetLocalDirectory.lastIndexOf("/") !=

targetLocalDirectory.length()  1 &&
targetLocalDirectory.lastIndexOf("\\") !=
targetLocalDirectory.length()  1)
{

targetLocalDirectory += "/";
}

// Set the full file path on the local system.
node.setFilePath(targetLocalDirectory + doc.getObjectName() + "." +

format.getDOSExtension());

// Execute and return results
if (eo.execute())

{
return "Export operation successful." + "\n" + sb.toString();

}
else

{
return "Export operation failed.";

}

EMC Documentum Foundation Classes Version 6 Development Guide 109



Working with Document Operations

}
// Handle any exceptions.

catch (Exception ex)
{

ex.printStackTrace();
return "Exception has been thrown: " + ex;

}

// Always, always, release the session in the "finally" clause.
finally

{
sessionManager.release(mySession);

}
}

}

Special considerations for export operations

Follow the steps in Steps for manipulating documents, page 87.

By default, an export operation creates files on the local system and makes no provision for
Documentum to manage them. You can tell DFC to create registry entries for the files by invoking
the setRecordInRegistry method of an object of type either IDfExportOperation or IDfExportNode,
using the parameters described in the Javadocs.

If any node corresponds to a checked out document, DFC copies the latest repository version to the
local file system. DFC does not treat this as an error.

You can find out where on the file system the export operation creates files. Use the
getDefaultDestinationDirectory and getDestinationDirectory methods of IDfExportOperation objects
and the getFilePath method of IDfExportNode objects to do this.

Exporting the contents of a folder requires adding each document individually to the operation.

If you are exporting a virtual document with OLE links, the document can be reassembled for you
automatically. See Microsoft Object Linking and Embedding (OLE), page 20 for information on
configuring your system to accommodate OLE links.

110 EMC Documentum Foundation Classes Version 6 Development Guide



Working with Document Operations

Copying

The execute method of an IDfCopyOperation object copies the current versions of documents or folders
from one repository location to another.

If the operation’s add method receives a virtual document as an argument, it also adds all of the
document’s descendants (determined by applying the applicable binding rules), creating a separate
node of the operation for each.

If the add method receives a folder (unless you override this default behavior), it also adds all
documents and folders linked to that folder. This continues recursively until the entire hierarchy of
documents and subfolders under the original folder is part of the operation. The execute method
replicates this hierarchy at the target location.

Example 613. Handler for the Copy button

private void jButton_copy_actionPerformed(ActionEvent e)
{

String repositoryName = jTextField_repositoryName.getText();
String docId =

m_fileIDs.elementAt(list_id.getSelectedIndex()).toString();

// Add a field to the application that allows you to enter a path
// for the location of copy of the document.

String destinationDirectory = jTextField_destinationDirectory.getText();
TutorialCopy tc = new TutorialCopy();
jLabel_messages.setText(

tc.copyExample(
m_sessionManager,
repositoryName,
docId,
destinationDirectory

)
);

}

Example 614. TutorialCopy.java

package com.emc.tutorial;

import com.documentum.com.DfClientX;
import com.documentum.com.IDfClientX;
import com.documentum.fc.client.IDfDocument;
import com.documentum.fc.client.IDfFolder;
import com.documentum.fc.client.IDfSession;
import com.documentum.fc.client.IDfSessionManager;
import com.documentum.fc.client.IDfSysObject;
import com.documentum.fc.common.DfId;
import com.documentum.fc.common.IDfId;
import com.documentum.operations.IDfCopyNode;
import com.documentum.operations.IDfCopyOperation;

public class TutorialCopy

EMC Documentum Foundation Classes Version 6 Development Guide 111



Working with Document Operations

{
public TutorialCopy()
{
}

public String copyExample(
IDfSessionManager sessionManager,
String repositoryName,
String docId,
String destination

)
{

IDfSession mySession = null;
StringBuffer sb = new StringBuffer("");

try
{

mySession = sessionManager.getSession(repositoryName);

// Get the object ID based on the object ID string.
IDfId idObj = mySession.getIdByQualification(

"dm_sysobject where r_object_id='" + docId + "'"
);

// Instantiate an object from the ID.

IDfSysObject sysObj = (IDfSysObject) mySession.getObject(idObj);

// Create a new client instance.
IDfClientX clientx = new DfClientX();

// Use the factory method to create an IDfCopyOperation instance.
IDfCopyOperation co = clientx.getCopyOperation();

// Remove the path separator if it exists.
if (destination.lastIndexOf("/") == destination.length()1 ||

destination.lastIndexOf("\\") == destination.length()1)
{

destination = destination.substring(0,destination.length()1);
}

// Create an instance for the destination directory.
IDfFolder destinationDirectory =

mySession.getFolderByPath(destination);

// Set the destination directory by ID.
co.setDestinationFolderId(destinationDirectory.getObjectId());

// Create a document object that represents the document being copied.
IDfDocument doc =

(IDfDocument) mySession.getObject(new DfId(docId));

// Create a copy node, adding the document to the copy operation object.
IDfCopyNode node = (IDfCopyNode) co.add(doc);

// Execute and return results

112 EMC Documentum Foundation Classes Version 6 Development Guide



Working with Document Operations

if (co.execute())
{

return "Copy operation successful.";
}

else
{

return "Copy operation failed.";
}

}
// Handle any exceptions.

catch (Exception ex)
{

ex.printStackTrace();
return "Exception has been thrown: " + ex;

}

// Always, always, release the session in the "finally" clause.
finally

{
sessionManager.release(mySession);

}
}

}

Special considerations for copy operations

Follow the steps in Steps for manipulating documents, page 87.

You must set the destination folder, either on the operation or on each of its nodes.

You can use the setDeepFolders method of the operation object (node objects do not have this method)
to override the default behavior of recursively adding folder contents to the operation.

Certain settings of the attributes of dm_relation and dm_relation_type objects associated with an
object may cause DFC to add related objects to the copy operation. Refer to the Server Object Reference
manual for details.

EMC Documentum Foundation Classes Version 6 Development Guide 113



Working with Document Operations

Moving

The execute method of an IDfMoveOperation object moves the current versions of documents or folders
from one repository location to another by unlinking them from the source location and linking them
to the destination. Versions other than the current version remain linked to the original location.

If the operation’s add method receives a virtual document as an argument, it also adds all of the
document’s descendants (determined by applying the applicable binding rules), creating a separate
node for each.

If the add method receives a folder (unless you override this default behavior), it adds all documents
and folders linked to that folder. This continues recursively until the entire hierarchy of documents
and subfolders under the original folder is part of the operation. The execute method links this
hierarchy to the target location.

Example 615. TutorialMove.java
Move a document.
package dfctutorialenvironment;
import com.documentum.com.DfClientX;
import com.documentum.com.IDfClientX;
import com.documentum.fc.client.IDfDocument;
import com.documentum.fc.client.IDfFolder;
import com.documentum.fc.client.IDfSession;
import com.documentum.fc.common.DfException;
import com.documentum.fc.common.DfId;
import com.documentum.fc.common.IDfId;
import com.documentum.operations.IDfMoveNode;
import com.documentum.operations.IDfMoveOperation;

public class TutorialMove {
public TutorialMove() {
}
public String moveExample (
IDfSession mySession,
String docId,
String destination

) throws DfException {

// Create a new client instance.
IDfClientX clientx = new DfClientX();

// Use the factory method to create an IDfCopyOperation instance.
IDfMoveOperation mo = clientx.getMoveOperation();

// Create an instance for the destination directory.
IDfFolder destinationDirectory = mySession.getFolderByPath(destination);

// Set the destination directory by ID.
mo.setDestinationFolderId(destinationDirectory.getObjectId());

// Create a document object that represents the document being copied.
IDfDocument doc = (IDfDocument) mySession.getObject(new DfId(docId));

114 EMC Documentum Foundation Classes Version 6 Development Guide



Working with Document Operations

// Create a move node, adding the document to the move operation object.
IDfMoveNode node = (IDfMoveNode)mo.add(doc);

// Execute and return results
if (mo.execute()) {
return "Move operation successful.";

}
else {
return "Move operation failed.";

}
}

}

Special considerations for move operations

Follow the steps in Steps for manipulating documents, page 87. Options for moving are essentially the
same as for copying.

If the operation entails moving a checked out document, DFC leaves the document unmodified
and reports an error.

EMC Documentum Foundation Classes Version 6 Development Guide 115



Working with Document Operations

Deleting

The execute method of an IDfDeleteOperation object removes documents and folders from the
repository.

If the operation’s add method receives a virtual document as an argument, it also adds all of
the document’s descendants (determined by applying the applicable binding rules), creating a
separate node for each. You can use the enableDeepDeleteVirtualDocumentsInFolders method of
IDfDeleteOperation to override this behavior.

Example 616. Handler for the Delete button

private void jButton_delete_actionPerformed(ActionEvent e)
{

String repositoryName = jTextField_repositoryName.getText();
String docId =

m_fileIDs.elementAt(list_id.getSelectedIndex()).toString();

// Create a checkbox control that lets you set a Boolean value
// for whether or not the application should destroy all versions
// or just the current version (current version only = true).

Boolean currentVersionOnly = jCheckBox_deleteCurrentOnly.isSelected();
TutorialDelete td = new TutorialDelete();
jLabel_messages.setText(

td.deleteExample(
m_sessionManager,
repositoryName,
docId,
currentVersionOnly

)
);
initDirectory();
getDirectory();

}

Example 617. TutorialDelete.java
Delete a document.
package com.emc.tutorial;

import com.documentum.com.DfClientX;
import com.documentum.com.IDfClientX;
import com.documentum.fc.client.IDfDocument;
import com.documentum.fc.client.IDfSession;
import com.documentum.fc.client.IDfSessionManager;
import com.documentum.fc.client.IDfSysObject;
import com.documentum.fc.client.IDfVirtualDocument;
import com.documentum.fc.client.IDfVirtualDocumentNode;
import com.documentum.fc.common.DfId;
import com.documentum.fc.common.IDfId;
import com.documentum.operations.IDfDeleteNode;
import com.documentum.operations.IDfDeleteOperation;

116 EMC Documentum Foundation Classes Version 6 Development Guide



Working with Document Operations

public class TutorialDelete
{

public TutorialDelete()
{
}

public String deleteExample(
IDfSessionManager sessionManager,
String repositoryName,
String docId,
Boolean currentVersionOnly

)
{

IDfSession mySession = null;

try
{

mySession = sessionManager.getSession(repositoryName);

// Get the object ID based on the object ID string.
IDfId idObj = mySession.getIdByQualification(

"dm_sysobject where r_object_id='" + docId + "'");

// Instantiate an object from the ID.
IDfSysObject sysObj = (IDfSysObject) mySession.getObject(idObj);

// Create a new client instance.
IDfClientX clientx = new DfClientX();

// Use the factory method to create an IDfDeleteOperation instance.
IDfDeleteOperation delo = clientx.getDeleteOperation();

// Create a document object that represents the document being copied.
IDfDocument doc =

(IDfDocument) mySession.getObject(new DfId(docId));

// Set the deletion policy. You must do this prior to adding nodes to the
// Delete operation.

if (currentVersionOnly)
{

// Default value is SELECTED_VERSIONS
// delo.setVersionDeletionPolicy(
// IDfDeleteOperation.SELECTED_VERSIONS
// );

}
else

{
delo.setVersionDeletionPolicy(

IDfDeleteOperation.ALL_VERSIONS
);

}

// Create a delete node using the factory method.
IDfDeleteNode node = (IDfDeleteNode) delo.add(doc);

if (node == null)

EMC Documentum Foundation Classes Version 6 Development Guide 117



Working with Document Operations

return "Node is null.";

// Execute the delete operation and return results.
if (delo.execute())

{
return "Delete operation succeeded.";

}
else

{
return "Delete operation failed";

}
}

// Handle any exceptions.
catch (Exception ex)

{
ex.printStackTrace();
return "Exception has been thrown: " + ex;

}

// Always, always, release the session in the "finally" clause.
finally

{
sessionManager.release(mySession);

}
}

}

Special considerations for delete operations

Follow the steps in Steps for manipulating documents, page 87. If the operation entails deleting a
checked out document, DFC leaves the document unmodified and reports an error.

118 EMC Documentum Foundation Classes Version 6 Development Guide



Working with Document Operations

Predictive caching

Predictive caching can help you to improve the user experience by sending system objects to Branch
Office Caching Services servers before they are requested by users. For example, a company‑wide
report could be sent to all repository caches when it is added to the local repository rather that waiting
for a user request on each server. Another use for this capability would be to cache an object in
response to an advance in a workflow procedure, making the document readily available for the
next user in the flow.

Example 618. Predictive caching operation for a single document

void preCache (IDfClientX clientx,IDfDocument doc, IDfList networkLocationIds) {
IDfPredictiveCachingOperation pco =
clientx.getPredictiveCachingOperation();

// Add the document and cast the node to the appropriate type
IDfPredictiveCachingNode node =
(IDfPredictiveCachingNode)pco.add( doc );

if( node == null ) { /* handle errors */ }

// Set properties on the node
node.setTimeToLive(IDfPredictiveCachingOperation.DAY);
node.setNetworkLocationIds(networkLocationIds);
node.setMinimumContentSize(1000);

// Execute the operation
if( !pco.execute() ) { /* handle errors */ }

}

Special considerations for predictive caching operations

Follow the steps in Steps for manipulating documents, page 87.

setTimeToLive sets a time limit, in milliseconds, for BOCS. BOCS will attempt to pre‑cache the content
until the specified delay after successful execution of the operation.

setNetworkLocationIds sets the list of the network location identifiers to be used for content
pre‑caching. All BOCS servers for the specified network locations will attempt to pre‑cache the content.

setMinimumContentSize is used to ensure that documents that are cached will provide a performance
improvement. Smaller documents are transferred quickly enough that there is no detectable
improvement in performance. Use this method to set the smallest content size, in bytes, that will be
cached. Documents smaller than the minimum size will be skipped.

EMC Documentum Foundation Classes Version 6 Development Guide 119



Working with Document Operations

Validating an XML document against a DTD or schema

DFC uses a modified version of the Xerces XML parser, which it includes in dfc.jar. See the DFC
release notes for details about the specific version and the Documentum modifications.

The execute method of an IDfValidationOperation object runs the parser in validation mode to
determine whether or not documents are well formed and conform to the DTD or schema. If you
do not specify it explicitly, DFC determines the XML application automatically and looks in the
application’s folder in the repository for the DTD or schema.

If any argument or the DTD or schema is in the repository, the execute method makes a temporary
copy on the file system and performs the validation there.

If the parser detects errors, the operation’s execute method returns a value of false, and you can use the
operation’s getErrors method to obtain the error information that the parser returns.

Example 619. Validating an XML document
Validate an XML document, using C:\Temp for a working directory.
void validateXMLDoc( IDfClientX clientx, // Factory for operations

IDfDocument doc ) // Document to validate
throws DfException
{
// Obtain validation operation
IDfValidationOperation validate = clientx.getValidationOperation();
validate.setDestinationDirectory( "C:/Temp" );

// Convert the document to a node tree
IDfVirtualDocument vDoc = doc.asVirtualDocument( "CURRENT", false );

// Add the document to the operation
IDfValidationNode node = (IDfValidationNode)validate.add( vDoc );
if( node == null ) { /* handle errors */ }

// Execute the operation
if( !validate.execute() ) { /* handle errors */ }
}

Special considerations for validation operations

Follow the steps in Steps for manipulating documents, page 87.

You can use the operation’s setDestinationDirectory method to specify the file system directory to
which the operation exports the XML files and DTDs or schemas that it passes to the parser.

120 EMC Documentum Foundation Classes Version 6 Development Guide



Working with Document Operations

Performing an XSL transformation of an XML document

The execute method of the IDfXMLTransformOperation interface uses the Xalan transformation engine
and the specified XSLT stylesheet to transform an XML file or document. It places the output into a
new document or attaches it to the original document as a rendition. It can also output an object of
type IDfFile or any java.io.Writer or java.io.OutputStream stream.

Note: Refer to the DFC release notes for details about the specific version of the Xalan transformation
engine that DFC requires.

Example 620. Transform to an HTML file
Transform the file C:\Newsletter.xml into an HTML file C:\Newsletter.htm, using an XSLT stylesheet
from the repository.

void transformXML2HTMLUsingStylesheetObject(
IDfClientX clientx, // Factory for operations
IDfSession session, // Repository session (required)
IDfDocument docStylesheet ) // XSL stylesheet in repository

throws DfException, IOException
{
// Obtain transformation operation
IDfXMLTransformOperation opTran = clientx.getXMLTransformOperation();

// Set operation properties
opTran.setSession( session );
opTran.setTransformation( docStylesheet );
FileOutputStream out = new FileOutputStream( "C:\\Newsletter.htm" );
opTran.setDestination( out );

// Add the XML file to the operation
IDfXMLTransformNode node = (IDfXMLTransformNode)

opTran.add( "C:\\Newsletter.xml" );
if( node == null ) { /* handle errors */ }

// Set node properties
node.setOutputFormat( "html" );

// Execute the operation
if( !opTran.execute() ) { /* handle errors */ }
}

EMC Documentum Foundation Classes Version 6 Development Guide 121



Working with Document Operations

Example 621. Transform to an HTML file, import result into repository
Transform the file C:\Newsletter.xml into a new HTML document, using the XSLT stylesheet
C:\Stylesheet.xsl, and import it into the repository.

void transformXML2HTMLUsingStylesheetFile(
IDfClientX clientx, // Factory for operations
IDfSession session, // Repository session (required)
IDfId idDestFolder ) // Destination folder

throws DfException
{
// Obtain transformation operation
IDfXMLTransformOperation opTran = clientx.getXMLTransformOperation();

/// Set transformation operation properties
opTran.setSession( session );
opTran.setTransformation( "C:\\Stylesheet.xsl" );

// Obtain import operation
IDfImportOperation opImp = clientx.getImportOperation();

// Set import operation properties
opImp.setSession( session );
opImp.setDestinationFolderId( idDestFolder );

// Specify the import operation as the destination of the
// transformation operation. In effect, this adds the output
// of the transformation operation to the import operation,
// but it does not explicitly create an import node
opTran.setDestination( opImp );

// Add the XML file to the transform operation
IDfXMLTransformNode nodeTran =
(IDfXMLTransformNode)opTran.add( "C:\\Newsletter.xml" );
if( nodeTran == null ) { /* handle errors */ }

// Specify the output format
// (NOTE: on the transformation node. There is no import node)
nodeTran.setOutputFormat( "html" );

// Execute the operation
if( !opTran.execute() ) { /* handle errors */ }
}

122 EMC Documentum Foundation Classes Version 6 Development Guide



Working with Document Operations

Example 622. Transform an XML document into an HTML rendition
Transform an XML document into an HTML rendition, using an XSLT stylesheet from the repository.

void transformXML2HTMLRendition(
IDfClientX clientx, // Factory for operations
IDfSession session, // Repository session (required)
IDfDocument docXml, // Root of the XML document
IDfDocument docStylesheet ) // XSL stylesheet in repository

throws DfException
{
// Obtain transformation operation
IDfXMLTransformOperation opTran = clientx.getXMLTransformOperation();

opTran.setSession( session );
opTran.setTransformation( docStylesheet );

// Add XML document to the transformation operation
IDfXMLTransformNode node = (IDfXMLTransformNode) opTran.add( docXml );
if( node == null ) { /* handle errors */ }

//Set HTML file for the rendition

// Set format for the rendition
node.setOutputFormat( "html" );

// Execute the operation
if( !opTran.execute() ) { /* handle errors */ }
}

DFC creates a rendition because the output format differs from the input format and you did not call
optran.setDestination to specify an output directory.

Special considerations for XML transform operations

Follow the steps in Steps for manipulating documents, page 87.

You must use the operations setSession method to specify a repository session. This operation requires
a session, even if all of the files it operates on are on the file system.

The add method of an IDfXMLTransformOperation object accepts Java types as well as Documentum
types. It allows you to specify the file to transform as an object of any of the following types:
• IDfDocument
• IDfFile
• String (for example C:/PhoneInfo.xml)
• DOM (org.w3c.dom.Document)
• java.io.Reader
• URL

EMC Documentum Foundation Classes Version 6 Development Guide 123



Working with Document Operations

Handling document manipulation errors
This section describes the ways that DFC reports errors that arise in the course of populating or
executing operations.

The add Method Cannot Create a Node

The add method of any operation returns a null node if it cannot successfully add the document,
file or folder that you pass it as an argument. Test for a null to detect and handle this failure. DFC
does not report the reason for returning a null.

The execute Method Encounters Errors

The execute method of an operation throws DfException only in the case of a fatal error. Otherwise
it creates a list of errors, which you can examine when the execute method returns or, if you use
an operation monitor, as they occur.

Examining Errors After Execution

After you execute an operation, you can use its getErrors method to retrieve an IDfList object
containing the errors. You must cast each to IDfOperationError to read its error message.

After detecting that the operation’s execute method has returned errors, you can use the operation’s
abort method to undo as much of the operation as it can. You cannot undo XML validation or
transform operations, nor can you restore deleted objects.

Example 623. Generate an Operation Exception
Generate a DfException to report the errors that occurred in the course of executing an operation.

public DfException generateOperationException(
IDfOperation operation,
IDfSession session,
String msg )

throws DfException
{
String message = msg;
DfException e;
try {

// Initialize variables
String strNodeName = "";

124 EMC Documentum Foundation Classes Version 6 Development Guide



Working with Document Operations

String strNodeId = "";
String strSucceeded = "";
IDfId idNodesObj = null;
IDfOperationError error = null;
IDfOperationNode node = null;

// Get the list of errors
IDfList errorList = operation.getErrors();

// Iterate through errors and build the error messages
for( int i = 0; i < errorList.getCount(); ++i ) {

// Get next error
error = (IDfOperationError)errorList.get( i );

// Get the node at which the error happened
node = error.getNode();

// Use method described in another example
idNodesObj = this.getObjectId( session, node );
if( idNodesObj <> null ) {;
strNodeId = idNodesObj.getId();
strNodeName = session.apiGet( "get", strNodeId + ",object_name" );
message += "Node: [" + strNodeId + "], " + strNodeName + ", "

+ error.getMessage() + ", " + error.getException().toString();
} // end for
} // end try
catch( Exception err )
{ message += err.toString(); }
finally {
// Create a DfException to report the errors
e = new DfException();
e.setMessage( message );
} // end finally
return e;
}

Example 624. Obtain the Object ID of an Operation Node
Obtain the IDfId for the operation node.

IDfId getObjectId( IDfSession session, IDfOperationNode node ) {
try {

return
node instanceof IDfImportNode ? ((IDfImportNode)node).getObjectId()
: node instanceof IDfExportNode ? ((IDfExportNode)node).getObjectId()
: node instanceof IDfCheckoutNode ?

((IDfCheckoutNode)node).getObjectId()
: node instanceof IDfCheckinNode ?

((IDfCheckinNode)node).getObjectId()
: node instanceof IDfCancelCheckoutNode ?

((IDfCancelCheckoutNode)node).getObjectId()
: node instanceof IDfDeleteNode ? ((IDfDeleteNode)node).getObjectId()
: node instanceof IDfCopyNode ? ((IDfCopyNode)node).getObjectId()
: node instanceof IDfMoveNode ? ((IDfMoveNode)node).getObjectId()
: null;

EMC Documentum Foundation Classes Version 6 Development Guide 125



Working with Document Operations

} catch( Exception e ) { return null; }
}

Using an Operation Monitor to Examine Errors

You can monitor an operation for progress and errors. Create a class that implements the
IDfOperationMonitor interface and register it by calling the setOperationMonitor method of
IDfOperation. The operation periodically notifies the operation monitor of its progress or of errors
that it encounters.

During execution, DFC calls the methods of the installed operation monitor to report progress or
errors. You can display this information to an end user. In each case DFC expects a response that tells
it whether or not to continue. You can make this decision in the program or ask an end user to decide.

Your operation monitor class must implement the following methods:
• progressReport

DFC supplies the percentage of completion of the operation and of its current step. DFC expects a
response that tells it whether to continue or to abort the operation.

• reportError

DFC passes an object of type IDfOperationError representing the error it has encountered. It
expects a response that tells it whether to continue or to abort the operation.

• getYesNoAnswer

This is the same as reportError, except that DFC gives you more choices. DFC passes an object
of type IDfOperationError representing the error it has encountered. It expects a response of
yes, no, or abort.

The Javadocs explain these methods and arguments in greater detail.

Operations and transactions
Operations do not use session transactions (see ), because operations
• Support distributed operations involving multiple repositories.
• May potentially process vast numbers of objects.
• Manage non‑database resources such as the system registry and the local file system.

You can undo most operations by calling an operation’s abort method. The abort method is specific
to each operation, but generally undoes repository actions and cleans up registry entries and local
content files. Some operations (for example, delete) cannot be undone.

126 EMC Documentum Foundation Classes Version 6 Development Guide



Working with Document Operations

If you know an operation only contains objects from a single repository, and the number of objects
being processed is small enough to ensure sufficient database resources, you can wrap the operation
execution in a session transaction.

You can also include operations in session manager transactions. Session manager transactions can
include operations on objects in different repositories, but you must still pay attention to database
resources. Session manager transactions are not completely atomic, because they do not use a
two‑phase commit. For information about what session transactions can and cannot do, refer to .

EMC Documentum Foundation Classes Version 6 Development Guide 127



Working with Document Operations

128 EMC Documentum Foundation Classes Version 6 Development Guide



Chapter 7
Using the Business Object Framework
(BOF)

This chapter introduces the Business Object Framework (BOF). It contains the following major sections:
• Overview of BOF, page 129
• BOF infrastructure, page 130
• Service‑based Business Objects (SBOs), page 134
• Type‑based Business Objects (TBOs), page 142
• Calling TBOs and SBOs, page 158
• Aspects, page 166

Overview of BOF
BOF’s main goals are to centralize and standardize the process of customizing Documentum
functionality. BOF centralizes business logic within the framework. Using BOF, you can develop
business logic that
• Always executes, regardless of the client program
• Can extend the implementation of core Documentum functionality
• Runs well in concert with an application server environment
In order to achieve this, the framework leaves customization of the user interface to the clients.
BOF customizations embody business logic and are independent of considerations of presentation
or format.

If you develop BOF customizations and want to access them from the .NET platform, you must take
additional steps. We do not provide tools to assist you in this. You can, however, expose some custom
functionality as web services. You can access web services from a variety of platforms (in particular,
.NET). TheWeb Services Framework Development Guide provides information about deploying and
using the web services.

EMC Documentum Foundation Classes Version 6 Development Guide 129



Using the Business Object Framework (BOF)

BOF infrastructure
This section describes the infrastructure that supports the Business Object Framework.

Modules and registries

To understand BOF, first look at how it stores customizations in a repository. A module is a unit
of executable business logic and its supporting material (for example, documentation, third party
software, and so forth).

DFC uses a special type of repository folder (dmc_module) to contain a module. The Content Server
Object Reference Manual describes the attributes of this type. The attributes identify the module
type, its implementation class, the interfaces it implements, and the modules it depends on. Other
attributes provide version information, a description of the module’s functionality, and the developer’s
contact information.

Every repository has a System cabinet, which contains a top level folder called Modules. The folders in
the Modules directory store the JAR files for the interface and implementation classes. Under Modules
are the following folders, corresponding to the out‑of‑the‑box module types:
• /System/Modules/SBO

Contains service based objects (SBOs). An SBO is a module whose executable business logic is
Java code that extends DfService. Refer to Service‑based Business Objects (SBOs), page 134 for
more information about SBOs.

• /System/Modules/TBO

Contains type based objects (TBOs), that is, customizations of specific repository types. A TBO is a
module in which the executable Java code extends a DFC repository type (normally, DfDocument)
and implements the IDfBusinessObject interface. Refer to Type‑based Business Objects (TBOs),
page 142 for more information about TBOs.

• /System/Modules/Aspect

Contains aspects, a type of module used to apply behaviors and properties to system objects
dynamically.

You can create other subfolders of /System/Modules to represent other types of module. For example,
if the repository uses Java‑based evaluation of validation expressions (see Validation Expressions in
Java, page 201), the associated modules appear under /System/Modules/Validation.

The bottom level folders under this hierarchy (except for aspects) are of type dmc_module. Each
contains an individual module.

A module that is in other respects like an SBO but does not implement the IDfService interface is
called a simple module. You can use simple modules to implement repository methods, such as those
associated with workflows and document lifecycles. The implementation class of a simple module

130 EMC Documentum Foundation Classes Version 6 Development Guide



Using the Business Object Framework (BOF)

should implement the marker interface IDfModule. Use the newModule method of IDfClient to
access a simple module.

The hierarchy of folders under /System/Modules/ is the repository’s module registry, or simply its
registry.

Note: Earlier versions of DFC maintained a registry of TBOs and SBOs on each client machine. That
registry is called the Documentum business object registry (DBOR). The DBOR form of registry is
deprecated, but for now you can still use it, even in systems that contain repository based registries.
Where both are present, DFC gives preference to the repository based registry.

Packaging support

Service‑based Business Objects (SBOs), page 134 and Type‑based Business Objects (TBOs), page 142,
describe the mechanics of constructing the classes and interfaces that constitute the most common
types of module. These details are not very different from the way they were in earlier versions.
The key changes are in packaging. This section describes BOF features that help you package your
business logic into modules.

Application Builder (DAB)

Application Builder (DAB) provides tools to package modules and install them in a repository’s
registry.

To prepare a module for packaging by DAB, you must first prepare a JAR file that contains only the
module’s implementation classes and another JAR file that contains only its (optional) interface classes.
You must also have JAR files containing the interfaces of any modules your module depends on. Then
prepare any Java libraries and documentation that you want to include in the module. DAB can
package items, such as configuration files, that are not in JARs. You can access these from a module
implementation by using the class’s getResourceAsStream method.

Use DAB to package all of these into a module and place the module into a DocApp.

You can use the DocApp Installer (DAI) to install the module into the module registries of the target
repositories. This requires administrator privileges on each repository.

Whether this is the first deployment or an update of your module, the process is the same. For the
first deployment, you must also ensure that the module’s interface JAR is installed on client machines.
For updates, this is not required unless the interface changes. Refer to Deploying module interfaces,
page 133 for more information. Be certain that you have properly configured the global registry for
your DFC instance before attempting to access your custom modules. Refer to Documentum Foundation
Classes Installation Guide for more information.

EMC Documentum Foundation Classes Version 6 Development Guide 131



Using the Business Object Framework (BOF)

JAR files

DAB packages JAR files into repository objects of type dmc_jar. The Object Reference Manual describes
the attributes of the dmc_jar type. Those attributes, which DAB sets using information that you
supply, specify the minimum Java version that the classes in the JAR file require. They also specify
whether the JAR contains implementations, interfaces, or both.

DAB links the interface and implementation JARs for your module directly to the module’s top level
folder; that is, to the dmc_module object that defines the module. It links the interface JARs of modules
that your module depends on into the External Interfaces subfolder of the top level folder.

Libraries and sandboxing

DAB links JARs (in the form of dmc_jar objects) for supporting software into folders of type
dmc_java_library, which are created in the /System/Java Libraries folder. It links the dmc_java_library
folder to the top level folder of each module in which the Java library is included. The Content Server
Object Reference Manual describes the attributes of the dmc_java_library type. The single attribute of
this type specifies whether or not to sandbox the JAR files linked to that folder.

The verb sandbox refers to the practice of loading the given Java library into memory in such a way
that other applications cannot access it. This can have a heavy cost in memory use, but it enables
different applications to use different versions of the same library without conflicts. A module with a
sandboxed Xerces library, for example, uses its own version, even if there is a different version on the
classpath and a third version in use by a different module.

DFC achieves sandboxing by using a shared BOF class loader and separate class loaders for each
module. These class loaders try to load classes first, before delegating to the usual hierarchy of Java
class loaders.

Note: Java libraries can contain interfaces, implementations, or both. Do not include both interfaces
and implementations in your own Java libraries. If the library is a third party software package, you
may have to include both. In this case, do not use interfaces defined in that library in the method
signatures of your classes.

If you prepare a separate JAR for your module’s interfaces but fail to remove those interfaces from the
implementation JAR, you will encounter a ClassCastException when you try to use your module.

You can sandbox libraries that contain only implementations. You can sandbox third party libraries.
Never sandbox a library that contains an interface that is part of your module’s method signature.

DFC automatically sandboxes the implementation JARs of modules.

DFC automatically sandboxes files that are not JARs. You can access them as resources of the
associated class loader.

132 EMC Documentum Foundation Classes Version 6 Development Guide



Using the Business Object Framework (BOF)

Deploying module interfaces

You must deploy the interface classes of your modules to each client machine, that is, to each machine
running an instance of DFC. Typically, you install the interface classes with the application that uses
them. They do not need to be on the global classpath.

A TBO that provides no methods of its own (for example, if it only overrides methods of DfDocument)
does not need an interface. For a TBO that does not have an interface, there is nothing to install
on the client machines.

In order to use hot deployment of revised implementation classes (see Dynamic delivery mechanism,
page 133), you must not change the module’s interface. You can extend module interfaces without
breaking existing customizations.

Dynamic delivery mechanism

BOF delivers the implementation classes of TBOs, SBOs, and other modules dynamically from
repository based registries to client machines. A TBO, an aspect, or a simple module is specific to its
repository. An SBO is not. BOF can deliver SBO implementation classes to client machines from a
single repository. Global registry, page 134 explains how DFC does this.

Delivering implementation classes dynamically from a repository means that you don’t need to
register those classes on client machines. It also means that all client machines use the same version of
the implementation class. You deploy the class to one place, and DFC does the rest.

The delivery mechanism supports hot deployment, that is, deployment of new implementations without
stopping the application server. This means that applications can pick up changes immediately and
automatically. You deploy the module to the global registry, and all clients quickly become aware of
the change and start using the new version. DFC works simultaneously with the new version and
existing instantiations of the old version until the old version is completely phased out.

The delivery mechanism relies on local caching of modules on client machines (where the term client
machine often means the machine running an application server and, usually, WDK). DFC does not
load TBOs, aspects, or simple modules into the cache until an application tries to use them. Once DFC
has downloaded a module, it only reloads parts of the module that change.

DFC checks for updates to the modules in its local cache whenever an application tries to use one or
after an interval specified in seconds in dfc.bof.cacheconsistency.interval in the dfc.properties file. The
default value is 60 seconds.

If DFC tries to access a module registry and fails, it tries again after a specified interval. The interval,
in seconds, is the value of dfc.bof.registry.connect.attempt.interval in the dfc.properties file. The
default value is 60 seconds.

DFC maintains its module cache on the file system of the client machine. You can specify the location
by setting dfc.cache.dir in the dfc.properties file. The default value is the cache subdirectory of the

EMC Documentum Foundation Classes Version 6 Development Guide 133



Using the Business Object Framework (BOF)

directory specified in dfc.data.dir. All applications that use the given DFC installation share the cache.
You can even share the cache among more than one DFC installation.

Global registry

DFC delivers SBOs from a central repository. That repository’s registry is called the global registry.

Global registry user

The global registry user, who has the user name of dm_bof_registry, is the repository user whose
account is used by DFC clients to connect to the repository to access required service‑based objects
or network locations stored in the global registry. This user has Read access to objects in the
/System/Modules, /System/BocsConfig, /dm_bof_registry, and /System/NetworkLocations only, and
no other objects.

Accessing the global registry

The identity of the global registry is a property of the DFC installation. Different DFC installations can
use different global registries, but a single DFC installation can have only one global registry.

In addition to efficiency, local caching provides backup if the global registry repository is unavailable.
By default, DFC preloads all SBO implementation classes from the global registry to the local cache.
That is, DFC downloads these classes, regardless of whether or not any application has tried to
instantiate them. DFC does this only once. Thereafter, it downloads an implementation only if it
changes presumably an infrequent event. Restarting DFC does not cause it to lose the contents of its
local cache. This provides backup if the application loses its connection to the repository containing
the global registry.

The dfc.properties file contains properties that relate to accessing the global registry. Refer to BOF and
global registry settings, page 17 for information about using these properties.

Servicebased Business Objects (SBOs)
This section contains the following main sections:
• SBO introduction, page 135
• SBO architecture, page 135
• Implementing SBOs, page 136

134 EMC Documentum Foundation Classes Version 6 Development Guide



Using the Business Object Framework (BOF)

• Calling SBOs, page 158
• SBO Error Handling, page 141
• SBO Best Practices, page 141

SBO introduction

A service based object (SBO) is a type of module designed to enable developers to access Documentum
functionality by writing small amounts of relevant code. The underlying framework handles most
of the details of connecting to Documentum repositories. SBOs are similar to session beans in an
Enterprise JavaBean (EJB) environment.

SBOs can operate on multiple object types, retrieve objects unrelated to Documentum objects (for
example, external email messages), and perform processing. You can use SBOs to implement
functionality that applies to more than one repository type. For example, a Documentum Inbox
object is an SBO. It retrieves items from a user’s inbox and performs operations like removing and
forwarding items.

You can use SBOs to implement utility functions to be called by multiple TBOs. A TBO has the
references it needs to instantiate an SBO.

You can implement an SBO so that an application server component can call the SBO, and the SBO
can obtain and release repository sessions dynamically as needed.

SBOs are the basis for the web services framework.

SBO architecture

An SBO associates an interface with an implementation class. Each folder under /System/Modules/SBO
corresponds to an SBO. The name of the folder is the name of the SBO, which by convention is the
name of the interface.

SBOs are not associated with a repository type, nor are they specific to the repository in which they
reside. As a result, each DFC installation uses a global registry (see Global registry, page 134). The
dfc.properties file contains the information necessary to enable DFC to fetch SBO implementation
classes from the global registry.

You instantiate SBOs with the newService method of IDfClient, which requires you to pass it a session
manager. The newService method searches the registry for the SBO and instantiates the associated
Java class. Using its session manager, an SBO can access objects from more than one repository.

You can easily design an SBO to be stateless, except for the reference to its session manager.

Note: DFC does not enforce a naming convention for SBOs, but we recommend that you follow the
naming convention explained in Follow the Naming Convention, page 141.

EMC Documentum Foundation Classes Version 6 Development Guide 135



Using the Business Object Framework (BOF)

Implementing SBOs

This section explains how to implement an SBO.

An SBO is defined by its interface. Callers cannot instantiate an SBO’s implementation class directly.
The interface should refer only to the specific functionality that the SBO provides. A separate
interface, IDfService, provides access to functionality common to all SBOs. The SBO’s implementation
class, however, should not extend IDfService. Instead, the SBO’s implementation class must extend
DfService, which implements IDfService. Extending DfService ensures that the SBO provides several
methods for revealing information about itself to DFC and to applications that use the SBO.

To create an SBO, first specify its defining interface. Then create an implementation class that
implements the defining interface and extends DfService. DfService is an abstract class that defines
common methods for SBOs.

Override the following abstract methods of DfService to provide information about your SBO:
• getVersion returns the current version of the service as a string.

The version is a string and must consist of an integer followed by up to three instances of dot
integers (for example, 1.0 or 2.1.1.36). The version number is used to determine installation options.

• getVendorString returns the vendor’s copyright statement (for example, ʺCopyright 1994‑2005
EMC Corporation. All rights reserved.ʺ) as a string.

• isCompatible checks whether the class is compatible with a specified service version

This allows you to upgrade service implementations without breaking existing code. Java does
not support multiple versions of interfaces.

• supportsFeature checks whether the string passed as an argument matches a feature that the
SBO supports.

The getVersion and isCompatible methods are important tools for managing SBOs in an open
environment. The getVendorString method provides a convenient way for you to include your
copyright information. The supportsFeature method can be useful if you develop conventions for
naming and describing features.

SBO programming differs little from programming for other environments. The following sections
address the principal additional considerations.

Stateful and stateless SBOs

SBOs can maintain state between calls, but they are easier to deploy to multithreaded and other
environments if they do not do so. For example, a checkin service needs parameters like retainLock
and versionLabels. A stateful interface for such a service provides get and set methods for such
parameters. A stateless interface makes you pass the state as calling arguments.

136 EMC Documentum Foundation Classes Version 6 Development Guide



Using the Business Object Framework (BOF)

Managing Sessions for SBOs

This section presents session manager related considerations for implementing SBOs.

Overview

When implementing an SBO, you normally use the getSession and releaseSession methods of
DfService to obtain a DFC session and return it when finished. Once you have a session, use the
methods of IDfSession and other DFC interfaces to implement the SBO’s functionality.

If you need to access the session manager directly, however, you can do so from any method of a
service, because the session manager object is a member of the DfService class. The getSessionManager
method returns this object. To request a new session, for example, use the session manager’s
newSession method.

Structuring Methods to Use Sessions

Each SBO method that obtains a repository session must release the session when it is finished
accessing the repository. The following example shows how to structure a method to ensure that
it releases its session, even if exceptions occur:
public void doSomething( String strRepository, . . . ) {

IDfSession session = getSession ( strRepository );
try { /* do something */ }
catch( Exception e ) { /* handle error */ }
finally { releaseSession( session ); }

}

Managing repository names

To obtain a session, an SBO needs a repository name. To provide the repository name, you can design
your code in any of the following ways:
• Pass the repository name to every service method.

This allows a stateless operation. Use this approach whenever possible.
• Store the repository name in an instance variable of the SBO, and provide a method to set it

(for example, setRepository (strRepository)).

This makes the repository available from all of the SBO’s methods.
• Extract the repository name from an object ID.

A method that takes an object ID as an argument can extract the repository name from the object
ID (use the getDocbaseNameFromId method of IDfClient).

EMC Documentum Foundation Classes Version 6 Development Guide 137



Using the Business Object Framework (BOF)

Maintaining State Beyond the Life of the SBO

The EMC | Documentum architecture enables SBOs to return persistent objects to the calling program.
Persistent objects normally maintain their state in the associated session object. But an SBO must
release the sessions it uses before returning to the calling program. At any time thereafter, the session
manager might disconnect the session, making the state of the returned objects invalid.

The calling program must ensure that the session manager does not disconnect the session until the
calling program no longer needs the returned objects.

Another reason for preserving state between SBO calls occurs when a program performs a query or
accesses an object. It must obtain a session and apply that session to any subsequent calls requiring
authentication and Content Server operations. For application servers, this means maintaining the
session information between HTTP requests.

The main means of preserving state information are setSessionManager and transactions. Maintaining
state in a session manager, page 41 describes the setSessionManager mechanism and its cost in
resources. Using Transactions With SBOs, page 138 provides details about using transactions with
SBOs.

You can also use the DfCollectionEx class to return a collection of typed objects from a service.
DfCollectionEx locks the session until you call its close method.

Obtaining Session Manager State Information

For testing or performance tuning you can examine such session manager state as reference
counters, the number of sessions, and repositories currently connected. Use the getStatistics method
of IDfSessionManager to retrieve an IDfSessionManagerStatistics object that contains the state
information. The statistics object provides a snapshot of the session manager’s internal data as of the
time you call getStatistics. DFC does not update this object if the session manager’s state subsequently
changes.

The DFC Javadocs describe the available state information.

Using Transactions With SBOs

DFC supports two transaction processing mechanisms: session based and session manager based.
describes the differences between the two transaction mechanisms. You cannot use session based
transactions within an SBO method. DFC throws an exception if you try to do so.

Use the following guidelines for transactions within an SBO:

• Never begin a transaction if one is already active.

The isTransactionActive method returns true if the session manager has a transaction active.

138 EMC Documentum Foundation Classes Version 6 Development Guide



Using the Business Object Framework (BOF)

• If the SBO does not begin the transaction, do not use commitTransaction or abortTransaction
within the SBO’s methods.

If you need to abort a transaction from within an SBO method, use the session manager’s
setTransactionRollbackOnly method instead, as described in the next paragraph.

When you need the flow of a program to continue when transaction errors occur, use the session
manager’s setTransactionRollbackOnly. Thereafter, DFC silently ignores attempts to commit the
transaction. The owner of the transaction does not know that one of its method calls aborted the
transaction unless it calls the getTransactionRollbackOnly method, which returns true if some part of
the program ever called setTransactionRollbackOnly. Note that setTransactionRollbackOnly does not
throw an exception, so the program continues as if the batch process were valid.

The following program illustrates this.
void serviceMethodThatRollsBack( String strRepository, IDfId idDoc )

throws DfNoTransactionAvailableException, DfException {

IDfSessionManager sMgr = getSessionManager();
IDfSession = getSession( strRepository );
if( ! sMgr.isTransactionActive() ) {
throw new DfNoTransactionAvailableException();
}

try {
IDfPersistentObject obj = session.getObject( idDoc );
obj.checkout()
modifyObject( obj );
obj.save();
}

catch( Exception e ) {
setTransactionRollbackOnly();
throw new DfException();
}

}

When more than one thread is involved in session manager transactions, calling beginTransaction
from a second thread causes the session manager to create a new session for the new thread.

The session manager supports transaction handling across multiple services. It does not disconnect or
release sessions while transactions are pending.

For example, suppose one service creates folders and a second service stores documents in these
folders. To make sure that you remove the folders if the document creation fails, place the two
service calls into a transaction. The DFC session transaction is bound to one DFC session, so it is
important to use the same DFC session across the two services calls. Each service performs its own
atomic operation. At the start of each operation, they request a DFC session and at the end they
release this session back to the session pool. The session manager holds on to the session as long as
the transaction remains open.

EMC Documentum Foundation Classes Version 6 Development Guide 139



Using the Business Object Framework (BOF)

Use the beginTransaction method to start a new transaction. Use the commitTransaction or
abortTransaction method to end it. You must call getSession after you call beginTransaction, or the
session object cannot participate in the transaction.

Use the isTransactionActive method to ask whether the session manager has a transaction active that
you can join. DFC does not allow nested transactions.

The transaction mechanism handles the following issues:
• With multiple threads, transaction handling operates on the current thread only.

For example, if there is an existing session for one thread, DFC creates a new session for the
second thread automatically. This also means that you cannot begin a transaction in one thread
and commit it in a second thread.

• The session manager provides a separate session for each thread that calls beginTransaction.

For threads that already have a session before the transaction begins, DFC creates a new session.
• When a client starts a transaction using the beginTransaction method, the session manager does

not allow any other DFC‑based transactions to occur.
The following example illustrates a client application calling two services that must be inside a
transaction, in which case both calls must succeed, or nothing changes:

IDfClient client = DfClientX.getLocalClient();
IDfSessionManager sMgr = client.newSessionManager();

sMgr.setIdentity(repo, loginInfo);

IMyService1 s1 = (IMyService1)
client.newService(IMyService1.class.getName(), sMgr);

IMyService2 s2 = (IMyService2)
client.newService(IMyService2.class.getName(), sMgr);

s1.setRepository( strRepository1 );
s2.setRepository( strRepository2 ) ;

sMgr.beginTransaction();

try {
s1.doRepositoryUpdate();
s2.doRepositoryUpdate();
sMgr.commitTransaction();
}

catch (Exception e) {
sMgr.abortTransaction();
}

If either of these service methods throws an exception, the program bypasses commit and executes
abort.

Each of the doRepositoryUpdate methods calls the session manager’s getSession method.

140 EMC Documentum Foundation Classes Version 6 Development Guide



Using the Business Object Framework (BOF)

Note that the two services in the example are updating different repositories. Committing or
aborting the managed transaction causes the session manager to commit or abort transactions with
each repository.

Session manager transactions involving more than one repository have an inherent weakness that
arises from their reliance on the separate transaction mechanisms of the databases underlying the
repositories. Refer to for information about what session manager transactions can and cannot do.

SBO Error Handling

The factory method that instantiates SBOs throws a variety of exceptions. For example, it throws
DfServiceInstantiationException if DFC finds the requested service but is unable to instantiate the
specified Java class. This can happen if the Java class is not in the classpath or is an invalid data class.
Security for Java classes on an application server can also cause this exception.

SBO Best Practices

This section describes best practices for using SBOs.

Follow the Naming Convention

DFC does not enforce a naming convention for SBOs, but we recommend that you give an
SBO the same name as the fully qualified name of the interface it implements. For example, if
you produce an SBO that implements an interface called IContentValidator, you might name it
com.myFirm.services.IContentValidator. If you do this, the call to instantiate an SBO becomes simple.
For example, to instantiate an instance of the SBO that implements the IContentValidator interface,
simply write
IContentValidator cv = (IContentValidator)client.newService(

IContentValidator.class.getName(), sMgr);

The only constraint DFC imposes on SBO names is that names must be unique within a registry.

Don’t Reuse SBOs

Instantiate a new SBO each time you need one, rather than reusing one. Refer to Calling SBOs, page
158 for details.

EMC Documentum Foundation Classes Version 6 Development Guide 141



Using the Business Object Framework (BOF)

Make SBOs Stateless

Make SBOs as close to stateless as possible. Refer to Stateful and stateless SBOs, page 136 for details.

Rely on DFC to Cache Repository Data

DFC caches persistent repository data. There is no convenient way to keep a private cache
synchronized with the DFC cache, so rely on the DFC cache, rather than implementing a separate
cache as part of your service’s implementation.

Typebased Business Objects (TBOs)

Use of Typebased Business Objects

Type‑based Business Objects are used for modifying and extending the behavior of persistent
repository object types, including core DFC types (such as documents and users) and other TBOs.
TBOs extend DFC object types that inherit from IDfPersistentObject, and which map to persistent
repository objects, such as dm_document or dm_user. The TBOs themselves map to custom repository
object types.

For example, suppose you want to add or modify behaviors exhibited by a custom repository type
derived from dm_document, which we will call mycompany_sop. Typically, you might want to extend
behavior that occurs whenever a document of type mycompany_sop is checked in, by starting a
workflow, validating or setting XML attributes, applying a lifecycle, or creating a rendition. Or you
may want to add new behaviors to the object type that are called from a client application or from an
SBO.

A TBO provides a client‑independent, component‑based means of implementing this type of business
logic, using either or both of the following techniques:

• Override the methods of the parent class from which the TBO class is derived. This approach is
typically used to add pre‑ or postprocessing to the parent method that will be invoked during
normal operations such as checkin, checkout, or link.

• Add new methods to the TBO class that can be called by an SBO or by a DFC client application.

Creating a TBO

The following sections describe how to create a TBO. Here is a summary of the steps required:

142 EMC Documentum Foundation Classes Version 6 Development Guide



Using the Business Object Framework (BOF)

1. Create a custom repository type.

2. Create the TBO interface.

3. Create the TBO class.

4. Implement the methods of IDfBusinessObject.

5. Code your business logic by adding new methods and overriding methods of the parent class.

The following sections provide more detailed instructions for building TBOs. The sample code
provided is works from the assumption that the TBO is derived from the DfDocument class, and that
its purpose is to extend the behavior of the custom object on checkin and save.

Create a custom repository type

Using Application Builder, create and configure your custom type. For an example implementation,
seeDeploying the SBO and TBO, page 164.

Create the TBO interface

Creating an interface for the TBO is generally recommended, but optional if you do not intend to
extend the parent class of the TBO by adding new methods. If you only intend to override methods
inherited from the parent class, there is no strict need for a TBO interface, but use of such an interface
may make your code more self‑documenting, and make it easier to add new methods to the TBO
should you have a need to add them in the future.

The design of the TBO interface should be determined by which methods you want to expose to client
applications and SBOs. If your TBO needs to expose new public methods, declare their signatures in
the TBO interface. Two other questions to consider are (1) whether to extend the interface of the TBO
superclass (e.g. IDfDocument), and (2) whether to extend IDfBusinessObject.

While the TBO class will need to extend the base DFC class (for example DfDocument), you may want
to make the TBO interface more restricted by redeclaring only those methods of the base class that
your business logic requires you to expose to clients. This avoids polluting the custom interface with
unnecessary methods from higher‑level DFC interfaces. On the other hand, if your TBO needs to
expose a large number of methods from the base DFC class, it may be more natural to have the TBO
interface extend the interface of the superclass. This is a matter of design preference.

Although not a functional requirement of the BOF framework, it is generally accepted practice for the
TBO interface to extend IDfBusinessObject, merging into the TBO’s contract its concerns as a business
object with its concerns as a persistent object subtype. This enables you to get an instance of the TBO
class and call IDfBusinessObject methods without the complication of a cast to IDfBusinessObject:
IMySop mySop = (IMySop) session.getObject(id);
if (mySop.supportsFeature("some_feature"))

EMC Documentum Foundation Classes Version 6 Development Guide 143



Using the Business Object Framework (BOF)

{
mySop.mySopMethod();

}

The following sample TBO interface extends IDfBusinessObject and redeclares a few required methods
of the TBO superclass (rather than extending the interface of the superclass):
import com.documentum.fc.common.DfException;
import com.documentum.fc.common.IDfId;
import com.documentum.fc.client.IDfBusinessObject;

/**
* TBO interface intended to override checkout and save behaviors of
* IDfDocument. IDfDocument is not extended because only a few of its
* methods are required IDfBusinessObject is extended to permit calling
* its methods without casting the TBO instance to IDfBusinessObject
*/
public interface IMySop extends IDfBusinessObject
{
public boolean isCheckedOut() throws DfException;
public void checkout() throws DfException;
public IDfId checkin(boolean fRetainLock, String versionLabels)
throws DfException;

public void save() throws DfException;
}

Define the TBO implementation class

The main class for your TBO is the class that will be associated with a custom repository object type
when deploying the TBO. This class will normally extend the DFC type class associated with the
repository type from which your custom repository type is derived. For example, if your custom
repository type my_sop extends dm_document, extend the DfDocument class. In this case the TBO
class must implement IDfBusinessObject (either directly or by implementing your custom TBO
interface that extends IDfBusinessObject) and it must implement IDfDynamicInheritance.
public class MySop extends DfDocument implements IMySop,
IDfDynamicInheritance

144 EMC Documentum Foundation Classes Version 6 Development Guide



Using the Business Object Framework (BOF)

Figure 4. Basic TBO design

It is also an option to create more hierarchical levels between your main TBO class and the DFC
superclass. For example, you may want to place generic methods used in multiple TBOs in
an abstract class. In this case the higher class will extend the DFC superclass and implement
IDfDynamicInheritance, and the main TBO class would extend the abstract class and implement the
TBO interface. This will result in the correct runtime behavior for dynamic inheritance.
public abstract class MyGenericDoc extends DfDocument
implements IDfDynamicInheritance

public class MySop extends MyGenericDoc implements IMySop

Figure 5. TBO design with extended intervening class

EMC Documentum Foundation Classes Version 6 Development Guide 145



Using the Business Object Framework (BOF)

Note that in this situation you would need to package both MyGenericDoc and MySop into the TBO
class jar file, and specify MySop as the main TBO class when deploying the TBO in the repository. For
an example of packaging and deploying business objects see Deploying the SBO and TBO, page 164.

Implement methods of IDfBusinessObject

To fulfill its contract as a class of type IDfBusinessObject, the TBO class must implement the following
methods:

• getVersion
• getVendorString
• isCompatible
• supportsFeature
The version support features getVersion and isCompatible must have functioning implementations
(these are required and used by the Business Object Framework) and it is important to keep the TBO
version data up‑to‑date. Functional implementation of the supportsFeature method is optional: you
can provide a dummy implementation that just returns a Boolean value.

For further information see IDfBusinessObject in the Javadocs.

getVersion method

The getVersion method must return a string representing the version of the business object, using the
format <major version>.<minor version> (for example 1.10), which can be extended to include as many
as four total integers, separated by periods (for example 1.10.2.12). Application Builder returns an
error if you try to deploy a TBO that returns an invalid version string.

getVendorString method

The getVendorString method returns a string containing information about the business object vendor,
generally a copyright string.

isCompatible method

The isCompatible method takes a String argument in the format <major version>.<minor version> (for
example 1.10), which can be extended to include as many as four total integers, separated by periods
(for example 1.10.2.12). The isCompatible method, which is intended to be used in conjunction with
getVersion, must return true if the TBO is compatible with the version and false if it is not.

146 EMC Documentum Foundation Classes Version 6 Development Guide



Using the Business Object Framework (BOF)

supportsFeature method

The supportsFeature method is passed a string representing an application or service feature, and
returns true if this feature is supported and false otherwise. Its intention is to allow your application
to store lists of features supported by the TBO, perhaps allowing the calling application to switch
off features that are not supported.

Support for features is an optional adjunct to mandatory version compatibility support. Features are a
convenient way of advertising functionality that avoids imposing complicated version checking on
the client. If you choose not to use this method, your TBO can provide a minimal implementation of
supportsFeature that just returns a boolean value.

Code the TBO business logic

You can implement business logic in your TBO by adding new methods, or by adding overriding
methods of the class that your TBO class extends. When overriding methods, you will most likely
want to add custom behavior as pre‑ or postprocessing before or after a call to super.<methodName>.
The following sample shows an override of the IDfSysObject.doCheckin method that writes an entry
to the log.
protected IDfId doCheckin(boolean fRetainLock,

String versionLabels,
String oldCompoundArchValue,
String oldSpecialAppValue,
String newCompoundArchValue,
String newSpecialAppValue,
Object[] extendedArgs) throws DfException

{
Date now = new Date();
DfLogger.warn(this, now + " doCheckin() called", null, null);
// your preprocessing logic here
return super.doCheckin(fRetainLock,

versionLabels,
oldCompoundArchValue,
oldSpecialAppValue,
newCompoundArchValue,
newSpecialAppValue,
extendedArgs);

// your postprocessing logic here
}

Override only methods beginning with do (doSave, doCheckin, doCheckout, and similar). The
signatures for these methods are documented in Appendix .

EMC Documentum Foundation Classes Version 6 Development Guide 147



Using the Business Object Framework (BOF)

Using a TBO from a client application

A TBO is an extension of a core DFC typed object, so instantiating a TBO is no different from
instantiating a core DFC typed object. To instantiate a TBO from a client application, use a method
of IDfSession that fetches an object, such as getObject, newObject, or getObjectByQualification. The
session object used to generate the TBO must be a managed session, that is, a session that was
instantiated using a IDfSessionManager.getSession or newSession factory method.

The following test method exercises a TBO by getting a known object of the TBO type from the
repository using getObjectByQualification and checking it in.
private void testCheckinOverride(String userName,

String docName,
String password,
String docbaseName,
String typeName) throws Exception

{
IDfSessionManager sessionManager = null;
IDfSession docbaseSession = null;
IMyCompanySop mySop = null;
try
{
// get a managed session
IDfClient localClient = DfClient.getLocalClient();
sessionManager = localClient.newSessionManager();
IDfLoginInfo loginInfo = new DfLoginInfo();
loginInfo.setUser(userName);
loginInfo.setPassword(password);
sessionManager.setIdentity(docbaseName, loginInfo);
docbaseSession = sessionManager.getSession(docbaseName);

// get the test document
// the query string must uniquely identify it
StringBuffer bufQual = new StringBuffer(32);
bufQual.append(typeName)

.append(" where object_name like '")

.append(docName).append("'");
mySop = (IMyCompanySop)
docbaseSession.getObjectByQualification(bufQual.toString());

if (mySop == null)
{
fail("Unable to locate object with name " + docName);
}

// check in document to see whether anything gets
//written to the log

if (!mySop.isCheckedOut())
{
mySop.checkout();
}
if (mySop.isCheckedOut())
{
mySop.checkin(false, "MOD_TEST_FILE");
}

}

148 EMC Documentum Foundation Classes Version 6 Development Guide



Using the Business Object Framework (BOF)

catch (Throwable e)
{
fail("Failed with exception " + e);

}
finally
{
if ((sessionManager != null) && (docbaseSession != null))
{

sessionManager.release(docbaseSession);
}

}
}

Using TBOs from SBOs

If you are instantiating a TBO from an SBO, use the IDfService.getSession method, which returns a
session managed by the session manager associated with the SBO. The following sample SBO method
gets and returns a TBO:
public IDfDocument getDoc( String strRepository, IDfId idDoc )
{
IDfSession session = null;
IDfDocument doc = null;
try
{
// calls IDfService.getSession
session = getSession ( strRepository );
doc = (IDfDocument)session.getObject( idDoc );
// note no call to setSessionManager
// this is not needed in Documentum 6
}
finally
{
releaseSession( session );
}
return doc;

}

Note the absence of any call to setSessionManager in the preceding listing. In Documentum 5 a call
to setSessionManager was required to disconnect the object from the session and place it in the state
of the session manager. This allowed the SBO to release the session and return the TBO instance
without the object becoming stale (that is, disassociated from its session context). In Documentum 6
there is transparent handling of the association of objects and sessions: if you return an object and
release its session, DFC will create a new session for the object when it is required. Legacy calls to
setSessionManager will continue to work, but are no longer required for this purpose.

EMC Documentum Foundation Classes Version 6 Development Guide 149



Using the Business Object Framework (BOF)

Getting sessions inside TBOs

You can obtain a reference to the session that was originally used to fetch an object using the
IDfTypedObject.getSession method. However, when you obtain a session in this way you cannot
release it (if you attempt this an exception will be thrown), and you cannot change its repository scope
(that is, the name of the repository to which the session maintains a connection). This is because no
ownership of the session is implied when you get an existing session using IDfTypedObject.getSession.
You can only release sessions that were obtained using a factory method of a session manager. This
restriction prevents a misuse of sessions that could lead to abstruse bugs.

If you need to get a session independent of any session associated with the TBO object, you can use
IDfTypedObject.getSessionManager to return the session manager associated with the TBO object.
You can then get sessions using the factory methods of this session manager (which allows you to
use any identities defined in the session manager) and release them (in a finally block) after you have
finished using the session.

The IDfTypedObject.getSession method returns the session on which the object was originally fetched,
which in most situations will be the session maintaining a connection to the repository that holds the
object. However, in a distributed environment where DFC is doing work in multiple repositories, the
session on which the object was originally fetched and the session to the object’s repository may not
be the same. In this case you will generally want to obtain the session maintaining a connection to
the object’s repository. To do this you can use the IDfTypedObject.getObjectSession method instead
of getSession. If you specifically want to get the session that was originally used to fetch the object,
you can use the getOriginalSession method. The IDfTypedObject.getSession method is a synonym
for getOriginalSession.

Inheritance of TBO methods by repository subtypes
without TBOs

If you create a repository object type B that does not have a TBO but which inherits from a repository
type A that does have a TBO, object B will inherit the behaviors defined by A’s TBO. This means that
you do not have to create a TBO for each repository subtype unless you need to extend or override
the behaviors associated with the parent type. This inheritance mechanism allows administrators to
create repository subtypes that behave in a natural way, inheriting the behaviors of the parent type,
without the developer having to write another TBO.

For example, suppose you have a repository type generic_sop, which has custom behaviors on checkin
defined in a class GenericSop. If an administrator then created a new type my_sop, the new type
would inherit the custom checkin behaviors of generic_sop automatically, without the developer
needing to implement and test a new TBO for my_sop. Similarly, if a process fetches an object of
type my_sop using IDfSession.getObject or a similar method, the getObject method will return an
instance of GenericSop.

150 EMC Documentum Foundation Classes Version 6 Development Guide



Using the Business Object Framework (BOF)

Figure 6. Inheritance by object subtype without associated TBO

Dynamic inheritance

Dynamic inheritance is a BOF mechanism that modifies the class inheritance of a TBO dynamically
at runtime, driven by the hierarchical relationship of associated repository objects. This mechanism
enforces consistency between the repository object hierarchy and the associated class hierarchy. It
also allows you to design polymorphic TBOs that inherit from different superclasses depending on
runtime dynamic resolution of the class hierarchy.

For example, suppose you have the following TBO design, in which repository objects are related
hierarchically, but in which the associated TBO classes each inherit from DFDocument:

EMC Documentum Foundation Classes Version 6 Development Guide 151



Using the Business Object Framework (BOF)

Figure 7. Designtime dynamic inheritance hierarchies

If dynamic inheritance is enabled, at runtime the class hierarchy is resolved dynamically to correspond
to the repository object hierarchy, so that the MySop class inherits from GenericSop:

Figure 8. Runtime dynamic inheritance hierarchies

152 EMC Documentum Foundation Classes Version 6 Development Guide



Using the Business Object Framework (BOF)

Exploiting dynamic inheritance with TBO reuse

The dynamic inheritance mechanism allows you to design reusable components that exhibit different
behaviors at runtime inherited from their dynamically determined superclass. For example, in the
following design‑time configuration, the MyDoc class is packaged in two TBOs: one in which it is
associated with type my_sop, and one in which it is associated with type my_report:

Figure 9. Designtime dynamic inheritance with TBO reuse

At runtime, MyDoc will inherit from GenericSop where it is associated with the my_sop repository
object type, and from GenericReport where it is associated with the my_report repository object type.

Figure 10. Runtime dynamic inheritance with TBO reuse

EMC Documentum Foundation Classes Version 6 Development Guide 153



Using the Business Object Framework (BOF)

Signatures of Methods to Override

This section contains a list of methods of DfSysObject, DfPersistentObject, and DfTypedObject that
are designed to be overridden by implementors of TBOs. All of these methods are protected. You
should make your overrides of these methods protected as well.

Table 2. Methods to override when implementing TBOs

Methods of DfSysObject

IDfId doAddESignature (String userName, String password, String signatureJustification, String
formatToSign, String hashAlgorithm, String preSignatureHash, String signatureMethodName,
String applicationProperties, String passThroughArgument1, String passThroughArgument2,
Object[] extendedArgs) throws DfException

IDfId doAddReference (IDfId folderId, String bindingCondition, String bindingLabel, Object[]
extendedArgs) throws DfException

void doAddRendition (String fileName, String formatName, int pageNumber, String pageModifier,
String storageName, boolean atomic, boolean keep, boolean batch, String otherFileName, Object[]
extendedArgs) throws DfException

void doAppendFile (String fileName, String otherFileName, Object[] extendedArgs) throws
DfException

IDfCollection doAssemble (IDfId virtualDocumentId, int interruptFrequency, String qualification,
String nodesortList, Object[] extendedArgs) throws DfException

IDfVirtualDocument doAsVirtualDocument (String lateBindingValue, boolean followRootAssembly,
Object[] extendedArgs) throws DfException

void doAttachPolicy (IDfId policyId, String state, String scope, Object[] extendedArgs) throws
DfException

void doBindFile ( int pageNumber, IDfId srcId, int srcPageNumber, Object[] extendedArgs) throws
DfException

IDfId doBranch (String versionLabel, Object[] extendedArgs) throws DfException

void doCancelScheduledDemote (IDfTime scheduleDate, Object[] extendedArgs) throws
DfException

void doCancelScheduledPromote (IDfTime scheduleDate, Object[] extendedArgs) throws
DfException

void doCancelScheduledResume (IDfTime schedule, Object[] extendedArgs) throws DfException

void doCancelScheduledSuspend (IDfTime scheduleDate, Object[] extendedArgs) throws
DfException

154 EMC Documentum Foundation Classes Version 6 Development Guide



Using the Business Object Framework (BOF)

IDfId doCheckin (boolean fRetainLock, String versionLabels, String oldCompoundArchValue,
String oldSpecialAppValue, String newCompoundArchValue, String newSpecialAppValue, Object[]
extendedArgs)

IDfId doCheckout (String versionLabel, String compoundArchValue, String specialAppValue,
Object[] extendedArgs)

void doDemote (String state, boolean toBase, Object[] extendedArgs) throws DfException

void doDestroyAllVersions (Object[] extendedArgs) throws DfException

void doDetachPolicy (Object[] extendedArgs) throws DfException

void doDisassemble (Object[] extendedArgs) throws DfException

boolean doFetch (String currencyCheckValue, boolean usePersistentCache, boolean useSharedCache,
Object[] extendedArgs) throws DfException

void doFreeze (boolean freezeComponents, Object[] extendedArgs) throws DfException

void doInsertFile (String fileName, int pageNumber, String otherFileName, Object[] extendedArgs)
throws DfException

void doGrant (String accessorName, int accessorPermit, String extendedPermission, Object[]
extendedArgs) throws DfException

void doGrantPermit (IDfPermit permit, Object[] extendedArgs) throws DfException

void doLink (String folderSpec, Object[] extendedArgs) throws DfException

void doLock (Object[] extendedArgs) throws DfException

void doMark (String versionLabels, Object[] extendedArgs) throws DfException

void doPromote (String state, boolean override, boolean fTestOnly, Object[] extendedArgs) throws
DfException

void doPrune (boolean keepSLabel, Object[] extendedArgs) throws DfException

IDfId doQueue (String queueOwner, String event, int priority, boolean sendMail, IDfTime dueDate,
String message, Object[] extendedArgs) throws DfException

void doRefreshReference (Object[] extendedArgs) throws DfException

void doRegisterEvent (String message, String event, int priority, boolean sendMail, Object[]
extendedArgs) throws DfException

void doRemovePart (IDfId containmentId, double orderNo, boolean orderNoFlag, Object[]
extendedArgs) throws DfException

void doRemoveRendition (String formatName, int pageNumber, String pageModifier, boolean
atomic, Object[] extendedArgs) throws DfException

String doResolveAlias (String scopeAlias, Object[] extendedArgs) throws DfException

void doResume (String state, boolean toBase, boolean override, boolean fTestOnly, Object[]
extendedArgs) throws DfException

EMC Documentum Foundation Classes Version 6 Development Guide 155



Using the Business Object Framework (BOF)

void doRevert (boolean aclOnly, Object[] extendedArgs) throws DfException

void doRevoke (String accessorName, String extendedPermission, Object[] extendedArgs) throws
DfException

void doRevokePermit (IDfPermit permit, Object[] extendedArgs) throws DfException

void doSave (boolean saveLock, String versionLabel, Object[] extendedArgs) throws DfException

IDfId doSaveAsNew (boolean shareContent, boolean copyRelations, Object[] extendedArgs)
throws DfException

void doScheduleDemote (String state, IDfTime scheduleDate, Object[] extendedArgs) throws
DfException

void doSchedulePromote (String state, IDfTime scheduleDate, boolean override, Object[]
extendedArgs) throws DfException

void doScheduleResume (String state, IDfTime scheduleDate, boolean toBase, boolean override,
Object[] extendedArgs) throws DfException

void doScheduleSuspend (String state, IDfTime scheduleDate, boolean override, Object[]
extendedArgs) throws DfException

void doSetACL (IDfACL acl, Object[] extendedArgs) throws DfException

void doSetFile (String fileName, String formatName, int pageNumber, String otherFile, Object[]
extendedArgs) throws DfException

void doSetIsVirtualDocument (boolean treatAsVirtual, Object[] extendedArgs) throws DfException

void doSetPath (String fileName, String formatName, int pageNumber, String otherFile, Object[]
extendedArgs) throws DfException

void doSuspend (String state, boolean override, boolean fTestOnly, Object[] extendedArgs) throws
DfException

void doUnfreeze (boolean thawComponents, Object[] extendedArgs) throws DfException

void doUnlink (String folderSpec, Object[] extendedArgs) throws DfException

void doUnmark (String versionLabels, Object[] extendedArgs) throws DfException

void doUnRegisterEvent (String event, Object[] extendedArgs) throws DfException

void doUpdatePart (IDfId containmentId, String versionLabel, double orderNumber, boolean
useNodeVerLabel, boolean followAssembly, int copyChild, String containType, String containDesc,
Object[] extendedArgs) throws DfException

void doUseACL (String aclType, Object[] extendedArgs) throws DfException

void doVerifyESignature (Object[] extendedArgs) throws DfException

Methods of DfPersistentObject

IDfRelation doAddChildRelative (String relationTypeName, IDfId childId, String childLabel,
boolean isPermanent, String description, Object[] extendedArgs) throws DfException

156 EMC Documentum Foundation Classes Version 6 Development Guide



Using the Business Object Framework (BOF)

IDfRelation doAddParentRelative (String relationTypeName, IDfId parentId, String childLabel,
boolean isPermanent, String description, Object[] extendedArgs) throws DfException

void doDestroy (boolean force, Object[] extendedArgs) throws DfException

void doRemoveChildRelative (String relationTypeName, IDfId childId, String childLabel, Object[]
extendedArgs) throws DfException

void doRemoveParentRelative (String relationTypeName, IDfId parentId, String childLabel, Object[]
extendedArgs) throws DfException

void doRevert (boolean aclOnly, Object[] extendedArgs) throws DfException

void doSave (boolean saveLock, String versionLabel, Object[] extendedArgs) throws DfException

void doSignoff (String user, String password, String reason, Object[] extendedArgs) throws
DfException

Methods of DfTypedObject

void doAppendString (String attrName, String value, Object[] extendedArgs) throws DfException

String doGetString (String attrName, int valueIndex, Object[] extendedArgs) throws DfException

void doInsertString (String attrName, int valueIndex, String value, Object[] extendedArgs) throws
DfException

doSetString (String attrName, int valueIndex, String value, Object[] extendedArgs) throws
DfException

void doRemove (String attrName, int beginIndex, int endIndex, Object[] extendedArgs) throws
DfException

Methods of DfGroup

boolean doAddGroup (String groupName, Object[] extendedArgs) throws DfException

boolean doAddUser (String userName, Object[] extendedArgs) throws DfException

void doRemoveAllGroups (Object[] extendedArgs) throws DfException

void doRemoveAllUsers (Object[] extendedArgs) throws DfException

boolean doRemoveGroup (String groupName, Object[] extendedArgs) throws DfException

boolean doRemoveUser (String userName, Object[] extendedArgs) throws DfException

void doRenameGroup (String groupName, boolean isImmediate, boolean unlockObjects, boolean
reportOnly, Object[] extendedArgs) throws DfException

Methods of DfUser

void doChangeHomeDocbase (String homeDocbase, boolean isImmediate, Object[] extendedArgs)
throws DfException

void doRenameUser (String userName, boolean isImmediate, boolean unlockObjects, boolean
reportOnly, Object[] extendedArgs) throws DfException

EMC Documentum Foundation Classes Version 6 Development Guide 157



Using the Business Object Framework (BOF)

void doSetAliasSet (String aliasSetName, Object[] extendedArgs) throws DfException

void doSetClientCapability (int clientCapability, Object[] extendedArgs) throws DfException

void doSetDefaultACL (String aclName, Object[] extendedArgs) throws DfException

void doSetDefaultFolder (String folderPath, boolean isPrivate, Object[] extendedArgs) throws
DfException

void doSetHomeDocbase (String docbaseName, Object[] extendedArgs) throws DfException

void doSetUserOSName (String accountName, String domainName, Object[] extendedArgs)
throws DfException

void doSetUserState (int userState, boolean unlockObjects, Object[] extendedArgs) throws
DfException

Calling TBOs and SBOs
This section describes special considerations for using TBOs and SBOs.

The BOF deployment mechanism requires you to take steps to ensure that your applications have
access to the interfaces of your modules. Refer to Deploying module interfaces, page 133 for more
information.

Calling SBOs

This section provides rules and guidelines for instantiating SBOs and calling their methods.

The client application should instantiate a new SBO each time it needs one, rather than reusing one.
For example, to call a service during an HTTP request in a web application, instantiate the service,
execute the appropriate methods, then abandon the service object.

This approach is thread safe, and it is efficient, because it requires little resource overhead. The
required steps to instantiate a service are:

1. Prepare an IDfLoginInfo object containing the necessary login information.

2. Instantiate a session manager object.

3. Call the service factory method.

The following code illustrates these steps:
IDfClient client = DfClient.getLocalClient();
IDfLoginInfo loginInfo = new DfLoginInfo();
loginInfo.setUser( strUser );
loginInfo.setPassword( strPassword );

158 EMC Documentum Foundation Classes Version 6 Development Guide



Using the Business Object Framework (BOF)

if( strDomain != null )
loginInfo.setDomain( strDomain );

IDfSessionManager sMgr = client.newSessionManager();
sMgr.setIdentity( strRepository, loginInfo );
IAutoNumber autonumber = (IAutoNumber)

client.newService( IAutoNumber.class.getName(), sMgr);

An SBO client application uses the newService factory method of IDfClient to instantiate a service:
public IDfService newService ( String name, IDfSessionManager sMgr )

throws DfServiceException;

The method takes the service name and a session manager as parameters, and returns the service
interface, which you must cast to the specific service interface. The newService method uses the
service name to look up the Java implementation class in the registry. It stores the session manager as
a member of the service, so that the service implementation can access the session manager when it
needs a DFC session.

Returning a TBO from an SBO

The following example shows how to return a TBO, or any repository object, from within an SBO
method.
public IDfDocument getDoc( String strRepository, IDfId idDoc ) {
IDfSession session = null;
IDfDocument doc = null;
try {
session = getSession ( strRepository );
doc = (IDfDocument)session.getObject( idDoc );
doc.setSessionManager (getSessionManager());

}
finally { releaseSession( session ); }
return doc;

}

Because getDoc is a method of an SBO, which must extend DfService, it has access to the session
manager associated with the service. The methods getSession, getSessionManager, and releaseSession
provide this access.

Refer to Maintaining state in a session manager, page 41 for information about the substantial costs of
using the setSessionManager method.

EMC Documentum Foundation Classes Version 6 Development Guide 159



Using the Business Object Framework (BOF)

Calling TBOs

Client applications and methods of SBOs can use TBOs. Use a factory method of IDfSession to
instantiate a TBO’s class. Release the session when you finish with the object.

Within a method of an SBO, use getSession to obtain a session from the session manager. DFC releases
the session when the service method is finished, making the session object invalid.

Use the setSessionManager method to transfer a TBO to the control of the session manager when
you want to:

• Release the DFC session but keep an instance of the TBO.
• Store the TBO in the SBO state.
Refer to Maintaining state in a session manager, page 41 for information about the substantial costs of
using the setSessionManager method.

Sample SBO and TBO implementation
This section presents a straightforward example of a SBO and TBO for you to use as reference for
creating your own business objects. The example is trivial — the TBO and SBO work together to set an
arbitrary value (flavor) when a document is saved or checked in to the repository. The setFlavor()
method represents the location where you can add any business logic required for your application.

ITutorialSBO

Create an interface for the service‑based object. This interface provides the empty setFlavorSBO
method, to be overridden in the implementation class. All SBOs must extend the IDfService interface.

Example 71. ITutorialSBO.java

package com.documentum.tutorial

import com.documentum.fc.client.IDfService;
import com.documentum.fc.client.IDfSysObject;
import com.documentum.fc.common.DfException;

public interface ITutorialSBO extends IDfService
{
// This is our empty setFlavor method.

public void setFlavorSBO (IDfSysObject myObj, String flavor)
throws DfException;

}

160 EMC Documentum Foundation Classes Version 6 Development Guide



Using the Business Object Framework (BOF)

TutorialSBO

The TutorialSBO class extends the DfService class, which provides fields and methods to provide
common functionality for all services.

Example 72. TutorialSBO.java

package com.documentum.tutorial

import com.documentum.fc.client.DfService;
import com.documentum.fc.client.IDfSysObject;
import com.documentum.fc.common.DfException;

public class TutorialSBO extends DfService implements ITutorialSBO {

// Overrides to standard methods.

public String getVendorString() {
return "Copyright (c) Documentum, Inc., 2007";

}

public static final String strVersion = "1.0";

public String getVersion() {
return strVersion;

}

public boolean isCompatible(String str) {
int i = str.compareTo( getVersion() );
if(i <= 0 )
return true;

else
return false;

}

// Custom method. This method sets a string value on the system object.
// You can set any number of values of any type (for example, int, double,
// boolean) using similar methods.

public void setFlavorSBO(IDfSysObject myObj, String myFlavor)
throws DfException

{
myObj.setString("flavor",myFlavor);

}
}

ITutorialTBO

The interface for the TBO is trivial — its only function is to extend the IDfBusinessObject interface,
a requirement for all TBOs.

EMC Documentum Foundation Classes Version 6 Development Guide 161



Using the Business Object Framework (BOF)

Example 73. ITutorialTBO.java

package com.documentum.tutorial

import com.documentum.fc.client.IDfBusinessObject;

public interface ITutorialTBO extends IDfBusinessObject
{

/**
* No code required (just extends IDfBusinessObject)
*/

}

TutorialTBO

The TutorialTBO is the class that pulls the entire example together. This class overrides the doSave(),
doSaveEx() and doCheckin() methods of DfSystemObject and uses the setFlavorSBO() method of
TutorialSBO to add a string value to objects of our custom type.

Example 74. TutorialTBO.java

package com.documentum.tutorial

import com.documentum.com.DfClientX;
import com.documentum.com.IDfClientX;

import com.documentum.fc.client.DfDocument;
import com.documentum.fc.client.IDfClient;
import com.documentum.fc.client.IDfSession;
import com.documentum.fc.client.IDfSessionManager;

import com.documentum.fc.common.DfException;
import com.documentum.fc.common.IDfId;

/**
* simple TBO that overrides the behavior of save(), saveLock() and checkinEx()
*/

public class TutorialTBO extends DfDocument implements ITutorialTBO {

private static final String strCOPYRIGHT =
"Copyright (c) Documentum, Inc., 2007";

private static final String strVERSION = "1.0";

// Instantiate a null client.
IDfClientX clientx = new DfClientX();
IDfClient client = null;

// Override standard methods.
public String getVersion() {
return strVERSION;

}

162 EMC Documentum Foundation Classes Version 6 Development Guide



Using the Business Object Framework (BOF)

public String getVendorString() {
return strCOPYRIGHT;

}

public boolean isCompatible( String s ) {
return s.equals("1.0");

}

public boolean supportsFeature( String s ) {
String strFeatures = "createhtmlfile";

if( strFeatures.indexOf( s ) == 1 )
return false;

return true;
}

/*
* Overridden IDfSysObject methods. These methods intercept the save(),
* saveLock(), and checkinEx() methods, use the local setFlavor method
* to attach a String value to the current system object, then pass
* control to the parent class to complete the operation.
*/

public void doSave() throws DfException {
setFlavor("Pistachio");
super.save();

}//end save()

public void doSaveEx() throws DfException
{
setFlavor("Banana Fudge");
super.saveLock();

}

public IDfId doCheckin(boolean b, String s, String s1,
String s2, String s3, String s4) throws DfException

{
setFlavor("Strawberry Ripple");
return super.checkinEx(b, s, s1, s2, s3, s4);

}

// The setFlavor gets a session, session manager, and local client
// instance, then uses them to access an instance of the custom
// servicebased object ITutorialSBO. Once instantiated, we can use
// the setFlavorSBO method to attach the value to the current system
// object.

private void setFlavor(String myFlavor) throws DfException {
IDfSession session = getSession();
IDfSessionManager sMgr = session.getSessionManager();
client = clientx.getLocalClient();
ITutorialSBO tutSBOObj =
(ITutorialSBO)client.newService(ITutorialSBO.class.getName(),sMgr);

tutSBOObj.setFlavorSBO(this, myFlavor);

EMC Documentum Foundation Classes Version 6 Development Guide 163



Using the Business Object Framework (BOF)

}
} //end class

Deploying the SBO and TBO

You use Documentum Application Builder (DAB) to package your BOF modules. The following
procedures walk you through the steps of deploying your Java classes and defining your custom
modules in DAB.

1. Compile your SBO and TBO Java classes.

2. Create a separate JAR file for interface and implementation for each TBO and SBO (in this
example, four JAR files in total).

3. Create a new type to be used with your TBO.

a. Open Documentum Application Builder and create a new DocApp.

b. Choose Insert>Object Type

c. Double‑click the new type to bring up the editor.

d. Name the type tutorial_flavor.

e. For the label, enter Tutorial Flavor.

f. Set the SuperType to dm_document.

g. Close the type editor.

h. Choose Insert>Attribute.

i. Double click the new attribute to bring up the editor.

j. Change the Attribute name to flavor.

k. Set the label to Flavor.

l. Set the Data type to String.

m. Close the attribute editor.

n. Check in the new Object Type by right‑clicking on it and selecting Check in selected object(s).

o. Click OK.

4. Insert a new module for ITutorialSBO business object.

a. Choose Insert > Module.

b. Double‑click Module1 to display the module editor.

c. Change the name of the module to com.documentum.tutorial.ITutorialSBO.

164 EMC Documentum Foundation Classes Version 6 Development Guide



Using the Business Object Framework (BOF)

d. Choose SBO from the Module type drop‑down box. Leave the Check in... field as Minor
Version.

e. Click Add, next to Interface JAR(s).

f. Navigate to your ITutorialSBO.jar file and add it.

g. Click Add, next to Implementation JAR(s) and add TutorialSBO.jar.

h. From the Class Name drop‑down, choose com.documentum.tutorial.TutorialSBO.

i. Check in the module by right‑clicking ITutorialSBO under the modules forlder and selecting
Check in selected object(s). Then click OK.

5. Insert a new module for ITutorialTBO

a. Choose Insert>Module.

b. Double‑click the new module to edit it.

c. Name the module tutorial_flavor.

d. Select TBO as the module type.

e. Click Add, next to Interface JAR(s).

f. Navigate to your ITutorialTBO.jar file and add it.

g. Click Add, next to Implementation JAR(s).

h. Navigate to your TutorialsTBO.jar file and add it.

i. From the Class Name drop‑down, choose com.documentum.tutorial.TutorialTBO.

j. Click the Dependencies tab.

k. Click the Add button below Required Modules.

l. Enter com.documentum.tutorial.IMySBO as the name.

m. Click Add and select Copy from Docbase.

n. Navigate into the /System/Modules/SBO folder and double‑click ITutorialSBO.

o. Select ITutorialSBO.jar and click Insert.

p. Click OK.

6. Check in the DocApp and close Application Builder.
To see your modules in action, use Webtop to create an object of the tutorial_flavor type. Check
the item out and save it, then look at the complete document properties to see the flavor property
update. Check in the file to update the value again.

EMC Documentum Foundation Classes Version 6 Development Guide 165



Using the Business Object Framework (BOF)

Aspects
Aspects are a mechanism for adding behavior and/or attributes to a Documentum object instance
without changing its type definition. They are similar to TBOs, but they are not associated with any
one document type. Aspects also are late‑bound rather than early‑bound objects, so they can be added
to an object or removed as needed.

Aspects are a BOF type (dmc_aspect_type). Like other BOF types, they have these characteristics:
• Aspects are installed into a repository.
• Aspects are downloaded on demand and cached on the local file system.
• When the code changes in the repository, aspects are automatically detected and new code is

“hot deployed” to the DFC runtime.

Examples of usage

One use for aspects would be to attach behavior and attributes to objects at a particular time in their
lifecycle. For example, you might have objects that represent customer contact records. When a
contact becomes a customer, you could attach an aspect that encapsulates the additional information
required to provide customer support. This way, the system won’t be burdened with maintenance
of empty fields for the much larger set of prospective customers.

If you defined levels of support, you might have an additional level of support for “gold” customers.
You could define another aspect reflecting the additional behavior and fields for the higher level of
support, and attach them as needed.

Another scenario might center around document retention. For example, your company might have
requirements for retaining certain legal documents (contracts, invoices, schematics) for a specific
period of time. You can attach an aspect that will record the date the document was created and the
length of time the document will have to be retained. This way, you are able to attach the retention
aspect to documents regardless of object type, and only to those documents that have retention
requirements.

You will want to use aspects any time you are introducing cross‑type functionality. You can use them
when you are creating elements of a common application infrastructure. You can use them when
upgrading an existing data model and you want to avoid performing a database upgrade. You can use
them any time you are introducing functionality on a per‑instance basis.

166 EMC Documentum Foundation Classes Version 6 Development Guide



Using the Business Object Framework (BOF)

General characteristics of aspects

Applications attach aspects to an object instance. They are not a “per application” customization — an
aspect attached by one application will customize the instance across all applications. They have an
affinity for the object instance, not for any particular application.

A persistent object instance may have multiple uniquely named aspects with or without attributes.
Different object instances of the same persistent type may have different sets of aspects attached.

Aspects define attributes and set custom values that can be attached to a persistent object. There are
no restrictions on the attributes that an aspect can define: they can be single or repeating, and of any
supported data type. An aspect with an attribute definition can be attached to objects of any type —
they provide a natural extension to the base type. Aspect attributes should be fully qualified as
aspect_name.attribute_name in all setters and getters.

Attributes defined by one aspect can be accessed by other aspects. All methods work on aspect
attributes transparently: fetching an object retrieves both the basic object attributes and any aspect
attributes; destroying an object deletes any attached aspect attributes.

Creating an aspect

Aspects are created in a similar fashion to other BOF modules.

1. Decide what your aspect will provide: behavior, attributes, or both.

2. Create the interface and implementation classes. Write any new behavior, override existing
behavior, and provide getters and setters to your aspect attributes.

3. Deploy the aspect module using the Composer tool. For details, see the Composer User Guide.

As an example, we’ll walk through the steps of implementing a simple aspect. Our aspect is designed
to be attached to a document that stores contact information. The aspect identifies the contact as a
customer and indicates the level of service (three possible values — customer, silver, gold). It will also
track the expiration date of the customer’s subscription.

Creating the aspect interface

Define the new behavior for your aspect in an interface. In this case, we’ll add getters and setters for
two attributes: service_level and expiration_date.

Example 75. ICustomerServiceAspect.java

package dfctestenvironment;

import com.documentum.fc.common.DfException;

EMC Documentum Foundation Classes Version 6 Development Guide 167



Using the Business Object Framework (BOF)

import com.documentum.fc.common.IDfTime;

public interface ICustomerServiceAspect {

// Behavior for extending the expiration date by <i>n</i> months.
public String extendExpirationDate(int months)
throws DfException;

// Getters and setters for custom attributes.
public abstract IDfTime getExpirationDate()
throws DfException;

public abstract String getServiceLevel()
throws DfException;

public abstract void setExpirationDate(IDfTime expirationDate)
throws DfException;

public abstract void setServiceLevel(String level)
throws DfException;

}

Creating the aspect class

Now that we have our interface, we can implement it with a custom class.

Example 76. CustomerServiceAspect.java

package dfctutorialenvironment;

import com.documentum.fc.client.DfDocument;
import com.documentum.fc.common.DfException;
import com.documentum.fc.common.DfTime;
import com.documentum.fc.common.IDfTime;
import dfctestenvironment.ICustomerServiceAspect;

import java.util.GregorianCalendar;

public class CustomerServiceAspect
extends DfDocument
implements ICustomerServiceAspect

{
public String extendExpirationDate(int months) {

try {

// Get the current expiration date.
IDfTime startDate = getExpirationDate();

// Convert the expiration date to a calendar object.
GregorianCalendar cal = new GregorianCalendar(

startDate.getYear(),
startDate.getMonth(),
startDate.getDay()

);

// Add the number of months 1 (months start counting from 0).
cal.add(GregorianCalendar.MONTH,months1);

168 EMC Documentum Foundation Classes Version 6 Development Guide



Using the Business Object Framework (BOF)

// Convert the recalculated date to a DfTime object.
IDfTime endDate = new DfTime (cal.getTime());

// Set the expiration date and return results.
setExpirationDate(endDate);
return "New expiration date is " + endDate.toString();

}
catch (Exception ex) {

ex.printStackTrace();
return "Exception thrown: " + ex.toString();

}
}

// Getters and setters for the expiration_date and service_level custom attributes.
public IDfTime getExpirationDate() throws DfException
{

return getTime("customer_service_aspect.expiration_date");
}
public String getServiceLevel() throws DfException
{

return getString("customer_service_aspect.service_level");
}
public void setExpirationDate(IDfTime expirationDate) throws DfException {

setTime("customer_service_aspect.expiration_date", expirationDate);
}
public void setServiceLevel (String serviceLevel) throws DfException {

setString("customer_service_aspect.service_level", serviceLevel);
}

}

Deploy the customer service aspect

For details on deploying aspect modules, please see the Documentum Foundation Classes Release Notes
Version 6

TestCustomerServiceAspect

Once you have compiled and deployed your aspect classes and defined the aspect on the server, you
can use the class to set and get values in the custom aspect, and to test the behavior for adjusting the
expiration date by month. This example is compatible with the sample environment described in
Chapter Chapter 4, Creating a Test Application.

Example 77. TestCustomerServiceAspect.java

package dfctestenvironment;

import com.documentum.com.DfClientX;
import com.documentum.com.IDfClientX;

EMC Documentum Foundation Classes Version 6 Development Guide 169



Using the Business Object Framework (BOF)

import com.documentum.fc.client.IDfDocument;
import com.documentum.fc.client.IDfSession;
import com.documentum.fc.client.aspect.IDfAspects;

import com.documentum.fc.common.DfId;
import com.documentum.fc.common.DfTime;
import com.documentum.fc.common.IDfTime;

public class TestCustomerServletAspect {
public TestCustomerServletAspect() {
}

public String attachCustomerServiceAspect(
IDfSession mySession,
String docId,
String serviceLevel,
String expirationDate

)
{

// Instantiate a client.
IDfClientX clientx = new DfClientX();

try {
String result = "";

// Get the document instance using the document ID.
IDfDocument doc =
(IDfDocument) mySession.getObject(new DfId(docId));

// Convert the expirationDate string to an IDfTime object.
// DF_TIME_PATTERN1 is "mm/dd/yy"

IDfTime ed =
clientx.getTime(expirationDate,DfTime.DF_TIME_PATTERN1);

// Attach the aspect.
((IDfAspects)doc).attachAspect("customer_service_aspect",null);

// Save the document.
doc.save();

// Get the document with its newly attached aspect.
doc = (IDfDocument)mySession.getObject(doc.getObjectId());

// Set the aspect values.
doc.setString("customer_service_aspect.service_level",
serviceLevel);

doc.setTime("customer_service_aspect.expiration_date", ed);

// Save the document.
doc.save();

result = "Document " + doc.getObjectName() +
" set to service level " +
doc.getString("customer_service_aspect.service_level") +
" and will expire " +
doc.getTime("customer_service_aspect.expiration_date").toString()

170 EMC Documentum Foundation Classes Version 6 Development Guide



Using the Business Object Framework (BOF)

+".";
return result;

}
catch (Exception ex) {
ex.printStackTrace();
return "Exception thrown:" + ex.toString();

}
}

public String extendExpirationDate(
IDfSession mySession,
String docId,
int months)

{
// Instantiate a client.

IDfClientX clientx = new DfClientX();
try {
String result = "";

// Get the document instance using the document ID.
IDfDocument doc =
(IDfDocument) mySession.getObject(new DfId(docId));

// Call the extendExpirationDate method
result = ((ICustomerServiceAspect)doc).extendExpirationDate(months);

// Save the document.
doc.save();

return result;
}
catch (Exception ex) {
ex.printStackTrace();
return "Exception thrown.";

}
}
public String setExpirationDate(
IDfSession mySession,
String docId,
String expDate)

{
// Instantiate a client.
IDfClientX clientx = new DfClientX();

try {
String result = "";
IDfTime expirationDate = clientx.getTime(
expDate,
IDfTime.DF_TIME_PATTERN1

);
// Get the document instance using the document ID.

IDfDocument doc =
(IDfDocument) mySession.getObject(new DfId(docId));

// Set the date using the time object.
doc.setTime("customer_service_aspect.expiration_date",
expirationDate);

EMC Documentum Foundation Classes Version 6 Development Guide 171



Using the Business Object Framework (BOF)

// Save the document and return the result.
doc.save();
result = "Expiration date set to " +
doc.getTime("customer_service_aspect.expiration_date").toString();
return result;

}
catch (Exception ex) {
ex.printStackTrace();
return "Exception thrown.";

}
}

public String setServiceLevel(
IDfSession mySession,
String docId,
String serviceLevel

)
{
String result = "";

// Instantiate a client.
IDfClientX clientx = new DfClientX();

try {

// Get the document instance using the document ID.
IDfDocument doc =

(IDfDocument) mySession.getObject(new DfId(docId));

// Set the date using the time object.
doc.setString("customer_service_aspect.service_level",
serviceLevel);

// Save the document.
doc.save();
result = "Service Level set to " +
doc.getString("customer_service_aspect.service_level")
+ ".";

return result;
}
catch (Exception ex) {
ex.printStackTrace();
return "Exception thrown.";

}
}

}

172 EMC Documentum Foundation Classes Version 6 Development Guide



Using the Business Object Framework (BOF)

Using aspects in a TBO

Attaching and detaching aspects from within a TBO or aspect requires the use of callbacks to execute
aspect methods or access an aspect’s attributes. The attach/detach is encapsulated within the object
instance. Aspect behavior and attributes are not available until the object has been fully initialized.

To use aspects within a TBO or aspect, you must
• Create a class that implements IDfAttachAspectCallback or IDfDetachAspectCallback.
• Implement the doPostAttach() or doPostDetach() method of the callback interface.
In the following examples, the attachAspect() method is called inside the overridden version of the
doSave() method, but only if it is not already attached. Attempting to attach an aspect more than
once will result in an exception. The MyAttachCallback callback implementation sets the attributes
retained_since and years_to_retain in the new aspect.

Example 78. Code snippet from MySopTBO.java

...
//Override doSave()
protected synchronized void doSave(
boolean saveLock,
String v,
Object[] args)

{
if (this.getAspects().findString("my_retention_aspect") < 0) {
MyAttachCallback myCallback = new MyAttachCallback();
this.attachAspect("my_retention_aspect", myCallback);

}
super.doSave(saveLock, v, args);

}

Example 79. MyAttachCallback.java

public class MyAttachCallback implements IDfAttachAspectCallback
{
public void doPostAttach(IDfPersistentObject obj) throws Exception
{
obj.setTime("my retention_aspect.retained_since", Datevalue);
obj.setInt("my_retention_aspect.years_to_retain", Years);
obj.save();

}
}

EMC Documentum Foundation Classes Version 6 Development Guide 173



Using the Business Object Framework (BOF)

Using DQL with aspects

Once an aspect has been defined in the repository, you can use DQL (Documentum Query Language)
instructions to add, modify, or drop attributes. Aspects can be modified using the following
commands:
ALTER ASPECT aspect_name_ ADD attribute_def[,attribute_def][OPTIMIZEFETCH|
NO OPTIMIZEFETCH] [PUBLISH]

ALTER ASPECT aspect_name MODIFY attribute_modifier_clause[, attribute_modifier_clause]
[PUBLISH]

ALTER ASPECT aspect_name DROP attribute_name[, attribute_name] [PUBLISH]

ALTER ASPECT aspect_name DROP ALL [PUBLISH]

The syntax for the attribute_def and attribute_modifier_clause is the same as the syntax for the ALTER
TYPE statement.

The OPTIMIZEFETCH keyword in the ALTER ASPECT statement causes the aspect attribute values
to be stored alongside the object to which the aspect is attached. This results in reduced database
queries and can improve performance. The aspect attributes are duplicated into the object’s property
bag (a new Documentum 6 feature). The trade off is the increased storage cost of maintaining more
than one instance of the attribute value.

There are some limitations when using the DQL SELECT statement. If you are selecting a repeating
aspect attribute, r_object_id should be included in the selected list. Repeating aspect attributes
cannot be in the select list of a sub_query. Repeating aspect attributes from different aspects cannot
be referenced in an expression. If the select list contains an aggregate function on a repeating aspect
attribute, then the ’GROUP BY’ clause, if any, must be on r_object_id.

Data Dictionary‑specific clauses are available in the ALTER ASPECT statement, but the semantics
(validations, display configuration, etc.) are not supported in the Documentum 6 release.

Enabling aspects on object types

By default, dm_sysobject and its sub‑types are enabled for aspects. This includes any custom object
sub‑types. Any non‑sysobject application type can be enabled for use with aspects using the following
syntax.
ALTER TYPE type_name ALLOW ASPECTS

174 EMC Documentum Foundation Classes Version 6 Development Guide



Using the Business Object Framework (BOF)

Default aspects

Type definitions can include a default set of aspects. This allows you to modify the data model and
behavior for future instances. It also ensures that specific aspects are attached to all selected object
instances, no matter which application creates the object. The syntax is
ALTER TYPE type_name [SET | ADD | REMOVE] DEFAULT ASPECTS aspect_list

the aspect_list value is a comma‑separated list of dmc_aspect_type object_name values. No quotes are
necessary, but if you choose to use quotes they must be single quotes and surround the entire list. For
example, aspect_list could be a single value such as my_retention_aspect, or it could be multiple values
specified as ’my_aspect_name1, my_aspect_name2’ or my_aspect_name1, my_aspect_name2.

Referencing aspect attributes from DQL

All aspect attributes in a DQL statement must be fully qualified as aspect_name.attribute_name. For
example:
SELECT r_object_id, my_retention_aspect.retained_since
FROM my_sop WHERE my_retention_aspect.years_to_retain = 10

If more than one type is specified in the FROM clause of a DQL statement, aspect attributes should be
further qualified as type_name.aspect_name.attribute_name OR alias_name.aspect_name.attribute_name.

Aspect attributes specified in a DQL statement appear in a DQL statement like a normal attribute,
wherever legally permitted by the syntax.

Fulltext index

By default, full‑text indexing is turned off for aspects. You can control which aspect attributes have
full‑text indexing using the following DQL syntax.
ALTER ASPECT aspect_name FULLTEXT SUPPORT ADD | DROP a1, a2,...

ALTER ASPECT aspect_name FULLTEXT SUPPORT ADD | DROP ALL

EMC Documentum Foundation Classes Version 6 Development Guide 175



Using the Business Object Framework (BOF)

Object replication

Aspect attributes can be replicated in a second repository just as normal attributes are replicated
(“dump and load” procedures). However, the referenced aspects must be available on the target
repository.

176 EMC Documentum Foundation Classes Version 6 Development Guide



Chapter 8
Working with Virtual Documents

This chapter covers some of the basics of working programmatically with virtual documents. It
includes the following sections:
• Understanding virtual documents, page 177
• Setting version labels, page 178
• Getting version labels, page 182
• Creating a virtual document, page 183
• Traversing the virtual document structure, page 188
• Binding to a version label, page 190
• Clearing a version label binding, page 193
• Removing a virtual document child, page 194

Understanding virtual documents
A virtual document is a data‑driven construction that allows you to treat more than one system object
as a single document. The components, or nodes, of the document remain their individual identities,
but are related to one another using dmr_containment objects to link a parent node to child nodes
in a hierarchical structure.

Multiplicitas componatis res simplex (Complexity is composed of simple things). While the structure
of a virtual document can be quite complex taken as a whole, the relationship of any one node to its
parent is straightforward and easy to follow.

Virtual documents are commonly created in three ways. When you import a document with Microsoft
OLE links, it can be added as a parent, with the linked objects imported as child nodes. XML
documents can be automatically converted to virtual documents on import using an XML application.
When working with documents created automatically from OLE or XML documents, you are able to
check out and edit individual nodes of a virtual document. When you check out the parent document,
the document is reassembled into one cohesive unit.

EMC Documentum Foundation Classes Version 6 Development Guide 177



Working with Virtual Documents

The third way is to “manually” convert a document to a virtual document (programmatically or
through an interface) and add arbitrary repository objects as children. The virtual document imposes
a hierarchical structure that can help to manage the components as a single unit (for example, you can
check out a parent document and all descendants in a single operation).

Virtual documents can be linked to what is always the CURRENT version of a child node, or they can
be linked to a specific version by its version label (either the system‑supplied version number or a
user‑supplied symbolic version label). For example, you could label a version of each document in a
publication August and create a virtual document linking to the versions of the nodes that have that
label. This way, regardless of the updates made to the document for September, the August virtual
document would point to the nodes used at the time of its publication.

Setting version labels
To link to a particular version of a document, you first need to set a version label. Setting a version
label requires that you check out the document, then check it in again with the version label you want
to use. You can set more than one label, using a single, comma‑delimited String value. If you want the
document to also be the CURRENT version, you must explicitly include that label, as well.

To add a Set Version Labels button to the DFC Base Tutorial Frame

1. Create a JTextField control named jTextField_versionLabel.

2. Create a JButton control named jButton_setVersionLabel.

3. Update the TutorialCheckIn class to set the version label on check in.

4. Create the class TutorialSetVersion.

5. Add a button handler method for Set Version Label.

Example 81. Updated TutorialCheckIn class

package com.emc.tutorial;

import com.documentum.com.DfClientX;
import com.documentum.com.IDfClientX;
import com.documentum.fc.client.IDfDocument;
import com.documentum.fc.client.IDfSession;
import com.documentum.fc.client.IDfSessionManager;
import com.documentum.fc.client.IDfSysObject;
import com.documentum.fc.common.DfId;
import com.documentum.fc.common.IDfId;
import com.documentum.operations.IDfCheckinNode;
import com.documentum.operations.IDfCheckinOperation;

public class TutorialCheckIn
{

public TutorialCheckIn()
{

178 EMC Documentum Foundation Classes Version 6 Development Guide



Working with Virtual Documents

}
public String checkinLabelExample(

IDfSessionManager sessionManager,
String repositoryName,
String docId,

// Add a variable for incoming version labels, entered as
// a single commadelimited string.

String versionLabels
)
{

IDfSession mySession = null;
try

{
mySession = sessionManager.getSession(repositoryName);

// Get the object ID based on the object ID string.
IDfId idObj =

mySession.getIdByQualification(
"dm_sysobject where r_object_id='" + docId + "'"

);

// Instantiate an object from the ID.

IDfSysObject sysObj = (IDfSysObject) mySession.getObject(idObj);

// Instantiate a client.
IDfClientX clientx = new DfClientX();

// Use the factory method to create an IDfCheckinOperation instance.
IDfCheckinOperation cio = clientx.getCheckinOperation();

// Set the version increment. In this case, the next major version
// ( version + 1)

cio.setCheckinVersion(IDfCheckinOperation.NEXT_MAJOR);

// Set one or more commadelimited labels for this version.
// When updating to the next major version, you need to explicitly
// set the version label for the new object to "CURRENT".

cio.setVersionLabels(versionLabels);

// Create a document object that represents the document being
// checked in.

IDfDocument doc =
(IDfDocument) mySession.getObject(new DfId(docId));

// Create a checkin node, adding it to the checkin operation.
IDfCheckinNode node = (IDfCheckinNode) cio.add(doc);

// Execute the checkin operation and return the result.
if (!cio.execute())

{
return "Checkin failed.";

}

// After the item is created, you can get it immediately using the
// getNewObjectId method.

EMC Documentum Foundation Classes Version 6 Development Guide 179



Working with Virtual Documents

IDfId newId = node.getNewObjectId();
return "Checkin succeeded  new object ID is: " + newId;

}
catch (Exception ex)

{
ex.printStackTrace();
return "Checkin failed.";

}
finally
{

sessionManager.release(mySession);
}

}
}

Example 82. The TutorialSetVersion class

package com.emc.tutorial;

import com.documentum.fc.client.IDfSession;
import com.documentum.fc.client.IDfSessionManager;

public class TutorialSetVersion
{

public TutorialSetVersion()
{
}

public String setVersion(
IDfSessionManager sessionManager,
String repositoryName,
String documentIdString,
String versionLabels

)
{

IDfSession mySession = null;
StringBuffer sb = new StringBuffer("");
try
{

mySession = sessionManager.getSession(repositoryName);

// Check out the document.
TutorialCheckOut tco = new TutorialCheckOut();
tco.checkoutExample(

sessionManager,
repositoryName,
documentIdString

);

// Check in the document, specifying the version labels.
TutorialCheckIn tci = new TutorialCheckIn();
sb.append( "\n" +

tci.checkinLabelExample(
sessionManager,
repositoryName,

180 EMC Documentum Foundation Classes Version 6 Development Guide



Working with Virtual Documents

documentIdString,
versionLabels

)
);
return "Success!\n********\n\n" + sb.toString();

}
catch (Exception ex)
{

ex.printStackTrace();
return ("Failure!\n********\n\n" + sb.toString());

}
finally
{

sessionManager.release(mySession);
}

}
}

Example 83. Handler for the Set Version Label button

private void jButton_setVersionLabel_actionPerformed(ActionEvent e)
{

if (m_parentId == null)
{

jLabel_messages.setText("Please reset the virtual document parent.");
}
else
{

String repositoryName = jTextField_repositoryName.getText();
String childIdString =

m_fileIDs.elementAt(list_id.getSelectedIndex()).toString();
String versionLabel = jTextField_versionLabel.getText();
TutorialSetVersion tsv =

new TutorialSetVersion();
jTextArea_results.setText(

tsv.setVersion(
m_sessionManager,
repositoryName,
childIdString,
versionLabel

)
);
initDirectory();
getDirectory();

}
}

EMC Documentum Foundation Classes Version 6 Development Guide 181



Working with Virtual Documents

Getting version labels
You can query to get the labels from a document in the system in preparation for linking to a specific
version of the document. There is, in fact, an IDfVersionLabels interface specially designed to let you
query and manipulate the labels on a system object.

To add a Get Version Labels button to the DFC Base Tutorial Frame

1. If you haven’t done so already, create a JTextField control named jTextField_versionLabel.

2. Create a JButton control named jButton_getVersionLabel.

3. Create the class TutorialGetVersion.

4. Add a button handler method for Get Version Label.

Example 84. The TutorialGetVersion class

package com.emc.tutorial;

import com.documentum.fc.client.IDfSession;
import com.documentum.fc.client.IDfSessionManager;
import com.documentum.fc.client.IDfSysObject;
import com.documentum.fc.client.IDfVersionLabels;
import com.documentum.fc.common.IDfId;

public class TutorialGetVersion
{

public TutorialGetVersion()
{
}
public String getVersion(

IDfSessionManager sessionManager,
String repositoryName,
String documentIdString

)
{

IDfSession mySession = null;
StringBuffer sb = new StringBuffer("");
try
{

mySession = sessionManager.getSession(repositoryName);

// Get the object ID based on the object ID string.
IDfId idObj =

mySession.getIdByQualification(
"dm_sysobject where r_object_id='" + documentIdString + "'"

);

// Instantiate an object from the ID.

IDfSysObject sysObj = (IDfSysObject) mySession.getObject(idObj);

IDfVersionLabels vl = sysObj.getVersionLabels();
for (int i=0; i<vl.getVersionLabelCount();i++)

182 EMC Documentum Foundation Classes Version 6 Development Guide



Working with Virtual Documents

{
if (i==0) {

sb.append(vl.getVersionLabel(i));
}
else
{

sb.append ("," + vl.getVersionLabel(i));
}

}
return sb.toString();

}
catch (Exception ex)
{

ex.printStackTrace();
return ("Failed to get version labels for selected object.");

}
finally
{

sessionManager.release(mySession);
}

}
}

Example 85. Handler for the Get Version Label button

private void jButton_getVersionLabel_actionPerformed(ActionEvent e)
{

String repositoryName = jTextField_repositoryName.getText();
String documentIdString =

m_fileIDs.elementAt(list_id.getSelectedIndex()).toString();
TutorialGetVersion tgv = new TutorialGetVersion();
jTextField_versionLabel.setText(

tgv.getVersion(
m_sessionManager,
repositoryName,
documentIdString

)
);
initDirectory();
getDirectory();

}

Creating a virtual document
Creating a virtual document is a fairly straightforward exercise. If you select any system object (with
the exception of folders and cabinets), you can get use the DfClient.asVirtualDocument() method to
indicate that you want to convert the object into a virtual document. It is not persisted as a virtual
document in the repository, though, until you add one or more child nodes and save the document.
You can, and should, set the r_is_virtual_document property on the file to TRUE as a signal to other

EMC Documentum Foundation Classes Version 6 Development Guide 183



Working with Virtual Documents

applications that the document should be treated as a virtual document, then set the value to FALSE if
the children are subsequently removed.

In this example, we will add a field for the parent name, and a button that populates the field and
captures the ID of the selected item in a global variable. You can then select another document to
add it as a child node.

By default, the child node is added as the first node of the virtual document. If you add another
child node it becomes the first node, and the existing node moves down to become the second child
node. If you want to control the placement of the node in the virtual document hierarchy, you have
the option of passing a sibling node as an argument to the addNode() method. The new node is
placed after the sibling node in the virtual document hierarchy. We will add a field to capture the
name of an optional virtual document sibling.

The only new class created for this example is the TutorialAddVirtualDocumentNode class. The
remaining button handlers (Set Virtual Document Parent, Set Preceding Sibling, Clear Preceding
Sibling) capture supporting information and set member variables for use by the Add Virtual
Document Node button handler.

To add an Add Virtual Document Node button to the DFC Base Tutorial Frame

1. Create a JTextField control named jTextField_virtualDocumentParent.

2. Create a JButton control named jButton_setVirtualDocumentParent.

3. Create a JTextField control named jTextField_precedingSibling.

4. Create a JButton control named jButton_setPrecedingSibling.

5. Create a JButton control named jButton_clearSibling.

6. Create the class TutorialAddVirtualDocumentNode.

7. Add a button handler method for Set Virtual Document Parent.
.

8. Add a button handler method for Set Preceding Sibling.

9. Add a button handler method for Clear Sibling.

10. Add a button handler method for Add Virtual Document Node.

Example 86. Handler for the Set Virtual Document Parent button

private void setVirtualDocumentParent()
{
// Store the parent ID in a global variable for use by other operations.

m_parentId = m_fileIDs.elementAt(list_id.getSelectedIndex()).toString();
jTextField_virtualDocumentParent.setText(

jTextField_cwd.getText()+ "/" + list_id.getSelectedItem()
);
jTextArea_results.setText(m_parentId + "\n" + list_id.getSelectedItem());

}

184 EMC Documentum Foundation Classes Version 6 Development Guide



Working with Virtual Documents

Example 87. Handler for the Set Preceding Sibling button

private void jButton_setPrecedingSibling_actionPerformed(ActionEvent e)
{

m_siblingId = m_fileIDs.elementAt(list_id.getSelectedIndex()).toString();
jTextField_precedingSibling.setText(

list_id.getSelectedItem()
);
jTextArea_results.setText(m_siblingId + "\n" + list_id.getSelectedItem());

}

Example 88. Handler for the Clear Sibling button

private void jButton_clearSibling_actionPerformed(ActionEvent e)
{

m_siblingId = "";
jTextField_precedingSibling.setText("");

}

Example 89. Handler for the Add Virtual Document Node button

private void jButton_addVirtualDocumentNode_actionPerformed(ActionEvent e)
{

if (m_parentId == null)
{

jLabel_messages.setText("Please reset the virtual document parent.");
}
else
{

String repositoryName = jTextField_repositoryName.getText();
String childIdString =

m_fileIDs.elementAt(list_id.getSelectedIndex()).toString();
String bindingLabel = jTextField_versionLabel.getText();
TutorialAddVirtualDocumentNode tavdn =

new TutorialAddVirtualDocumentNode();
jTextArea_results.setText(

tavdn.addNode(
m_sessionManager,
repositoryName,
m_parentId,
childIdString,
m_siblingId,
bindingLabel

)
);
initDirectory();
getDirectory();
m_parentId = null;

}
}

Example 810. The TutorialAddVirtualDocumentNode class

package com.emc.tutorial;

EMC Documentum Foundation Classes Version 6 Development Guide 185



Working with Virtual Documents

import com.documentum.com.DfClientX;
import com.documentum.com.IDfClientX;
import com.documentum.fc.client.IDfSession;
import com.documentum.fc.client.IDfSessionManager;
import com.documentum.fc.client.IDfSysObject;
import com.documentum.fc.client.IDfVirtualDocument;
import com.documentum.fc.client.IDfVirtualDocumentNode;
import com.documentum.fc.common.IDfId;

public class TutorialAddVirtualDocumentNode
{

public TutorialAddVirtualDocumentNode()
{
}
public String addNode(

IDfSessionManager sessionManager,
String repositoryName,
String parentIdString,
String childIdString,
String siblingIdString,
String versionLabel

)
{

IDfSession mySession = null;
StringBuffer sb = new StringBuffer("");
try
{

mySession = sessionManager.getSession(repositoryName);

// Check out the parent object
TutorialCheckOut tco = new TutorialCheckOut();
tco.checkoutExample(

sessionManager,
repositoryName,
parentIdString

);

IDfClientX clientx = new DfClientX();

//Instantiate the parent object.
IDfVirtualDocument vDoc = null;
IDfId parentIdObject = clientx.getId(parentIdString);
IDfSysObject sysObj =

(IDfSysObject) mySession.getObject(parentIdObject);
if (versionLabel.equals("")) versionLabel = null;
if (sysObj != null)
{

// Instantiate the parent as a virtual document.
vDoc = sysObj.asVirtualDocument(null,false);

// Instantiate the root node of the virtual document.
IDfVirtualDocumentNode root = vDoc.getRootNode();

// Create an ID object for the child node.
IDfId childId = mySession.getIdByQualification(

186 EMC Documentum Foundation Classes Version 6 Development Guide



Working with Virtual Documents

"dm_sysobject where r_object_id='" + childIdString + "'"
);

//Instantiate the child as a sysobject.
IDfSysObject childObj =

(IDfSysObject) mySession.getObject(childId);

// Instantiate the sibling object (if not null) as a virtual document node.
IDfVirtualDocumentNode siblingNode = null;
if (!siblingIdString.equals(null) & !siblingIdString.equals("")){

IDfId siblingId = mySession.getIdByQualification(
"dm_sysobject where r_object_id='" + siblingIdString + "'"

);
IDfSysObject siblingObj =

(IDfSysObject) mySession.getObject(siblingId);
String siblingChronId = siblingObj.getChronicleId().toString();
siblingNode = vDoc.find(root,siblingChronId,"i_chronicle_id",0);

}

// Add the child to the virtual document.
IDfVirtualDocumentNode childVDNode = vDoc.addNode(

root,
siblingNode,
childObj.getChronicleId(),
versionLabel,
false,
false

);
}

// Check in the parent document.
TutorialCheckIn tci = new TutorialCheckIn();
sb.append( "\n" +

tci.checkinExample(
sessionManager,
repositoryName,
parentIdString

)
);
return "Success!\n********\n\n" + sb.toString();

}
catch (Exception ex)
{

ex.printStackTrace();
return ("Failure!\n********\n\n" + sb.toString());

}
finally
{

sessionManager.release(mySession);
}

}
}

EMC Documentum Foundation Classes Version 6 Development Guide 187



Working with Virtual Documents

Traversing the virtual document structure
Once you have created a virtual document, you can use a recursive routine to traverse the hierarchical
structure and display information about each node.

One side note: in the past, there have been other methods requiring several statements in order
to get the underlying system object represented by a virtual document node. Going forward, you
should use the method IDfVirtualDocumentChild.getSelectedObject() to get the object represented
by a virtual document node.

To add a Traverse Virtual Document button to the DFC Base Tutorial Frame

1. Create a jButton control named jButton_traverseVirtualDocument.

2. Create the TutorialTraverseVirtualDocument class.

3. Create the handler for the Traverse Virtual Document button.

Example 811. The TutorialTraverseVirtualDocument class

package com.emc.tutorial;

import com.documentum.fc.client.IDfSession;
import com.documentum.fc.client.IDfSessionManager;
import com.documentum.fc.client.IDfSysObject;
import com.documentum.fc.client.IDfVirtualDocument;
import com.documentum.fc.client.IDfVirtualDocumentNode;
import com.documentum.fc.common.IDfId;

public class TutorialTraverseVirtualDocument
{

public TutorialTraverseVirtualDocument()
{
}
public String traverseVirtualDocument(

IDfSessionManager sessionManager,
String repositoryName,
String docId

)
{

IDfSession mySession = null;
StringBuffer results = new StringBuffer("");
try

{
mySession = sessionManager.getSession(repositoryName);

// Get the object ID based on the object ID string.
IDfId idObj =

mySession.getIdByQualification(
"dm_sysobject where r_object_id='" + docId + "'"

);

// Instantiate an object from the ID.

188 EMC Documentum Foundation Classes Version 6 Development Guide



Working with Virtual Documents

IDfSysObject sysObj = (IDfSysObject) mySession.getObject(idObj);
IDfVirtualDocument parent = sysObj.asVirtualDocument(null,false);
IDfVirtualDocumentNode node = parent.getRootNode();

// Capture useful information about the root node.
results.append( "\nNode Name: " + sysObj.getObjectName() +

"\nVersion: " + sysObj.getVersionLabel(0) );

int childCount = node.getChildCount();
IDfVirtualDocumentNode child = null;
for( int i = 0; i < childCount; ++i )
{

child = node.getChild( i );

// If the child is also a virtual document, make a nested
// call to this method.

if( child.getSelectedObject().isVirtualDocument() )
{

sysObj = child.getSelectedObject();
results.append(

traverseVirtualDocument(
sessionManager,
repositoryName,
sysObj.getObjectId().toString()

)
);

}
else
{

// Otherwise, capture interesting information about the child node.
sysObj = child.getSelectedObject();
results.append( "\nNode Name: " + sysObj.getObjectName() +
"\n Version: " + sysObj.getVersionLabel(0) +
"\n VDM Number: " + child.getVDMNumber() +
"\n Binding Label: " + child.getBinding());

}
}
return results.toString();

}
catch (Exception ex)
{

ex.printStackTrace();
return ("Traversal failed.");

}
finally
{

sessionManager.release(mySession);
}

}
}

Example 812. Handler for the Traverse Virtual Document button

private void jButton_traverse_actionPerformed(ActionEvent e)
{

EMC Documentum Foundation Classes Version 6 Development Guide 189



Working with Virtual Documents

String repositoryName = jTextField_repositoryName.getText();
String docId =

m_fileIDs.elementAt(list_id.getSelectedIndex()).toString();

TutorialTraverseVirtualDocument ttvd =
new TutorialTraverseVirtualDocument();

jTextArea_results.setText(
ttvd.traverseVirtualDocument(

m_sessionManager,
repositoryName,
docId

)
);

}

Binding to a version label
In practical use, you may want to bind to a particular version label after the virtual document has been
created. To do this, you check out the parent node, instantiate the child node based on its chronicle
ID, use the IDfVirtualDocumentNode.setBinding(String bindingLabel) method to assign the binding
value, then check in the parent node.

To add a Set Binding button to the DFC Base Tutorial Frame

1. Create a jButton control named jButton_setBinding.

2. Create the TutorialSetBinding class.

3. Create the handler for the Set Binding button.

Example 813. The TutorialSetBinding class

package com.emc.tutorial;

import com.documentum.com.DfClientX;
import com.documentum.com.IDfClientX;
import com.documentum.fc.client.IDfSession;
import com.documentum.fc.client.IDfSessionManager;
import com.documentum.fc.client.IDfSysObject;
import com.documentum.fc.client.IDfVirtualDocument;
import com.documentum.fc.client.IDfVirtualDocumentNode;
import com.documentum.fc.common.IDfId;
import com.documentum.operations.IDfCheckinNode;

public class TutorialSetBinding
{

public TutorialSetBinding()
{
}
public String setBinding (

IDfSessionManager sessionManager,

190 EMC Documentum Foundation Classes Version 6 Development Guide



Working with Virtual Documents

String repositoryName,
String parentIdString,
String childIdString,
String bindingLabel // An existing label already assigned to the child node.

)
{

IDfSession mySession = null;
StringBuffer sb = new StringBuffer("");
try
{

// Start by checking out the parent document.
mySession = sessionManager.getSession(repositoryName);
TutorialCheckOut tco = new TutorialCheckOut();
tco.checkoutExample(

sessionManager,
repositoryName,
parentIdString

);

IDfClientX clientx = new DfClientX();

IDfVirtualDocument vDoc = null;

// Use the parent ID to instantiate a sysobject.
IDfId parentIdObject = clientx.getId(parentIdString);
IDfSysObject sysObj =

(IDfSysObject) mySession.getObject(parentIdObject);

if (sysObj != null)
{

// Get a virtual document instance of the parent.
vDoc = sysObj.asVirtualDocument(null,false);
IDfVirtualDocumentNode root = vDoc.getRootNode();

// Get an instance of the child document.
IDfId childId = mySession.getIdByQualification(

"dm_sysobject where r_object_id='" + childIdString + "'"
);
IDfSysObject childObj =

(IDfSysObject) mySession.getObject(childId);

// Use the current instance to get the chronicle ID of the child.
String childChronId = childObj.getChronicleId().toString();

// Instantiate a virtual document node based on the child's chronicle ID.
IDfVirtualDocumentNode childNode =

vDoc.find(root,childChronId,"i_chronicle_id",0);

// Set the child's binding to the label provided.
childNode.setBinding(bindingLabel);

}

// Check in the parent document.
TutorialCheckIn tci = new TutorialCheckIn();
sb.append( "\n" +

EMC Documentum Foundation Classes Version 6 Development Guide 191



Working with Virtual Documents

tci.checkinExample(
sessionManager,
repositoryName,
parentIdString

)
);
return "Success!\n********\n\n" + sb.toString();

}
catch (Exception ex)
{

ex.printStackTrace();
return ("Failure!\n********\n\n" + sb.toString());

}
finally
{

sessionManager.release(mySession);
}

}
}

Example 814. Handler for the Set Binding button

private void jButton_setBinding_actionPerformed(ActionEvent e)
{

if (m_parentId == null)
{

jLabel_messages.setText("Please reset the virtual document parent.");
}
else
{

String repositoryName = jTextField_repositoryName.getText();
String childIdString =

m_fileIDs.elementAt(list_id.getSelectedIndex()).toString();
String bindingLabel = jTextField_versionLabel.getText();
TutorialSetBinding tsb = new TutorialSetBinding();
jTextArea_results.setText(

tsb.setBinding(
m_sessionManager,
repositoryName,
m_parentId,
childIdString,
bindingLabel

)
);
initDirectory();
getDirectory();

// Nullify the parent ID global variable, as a new version of the
// parent document has been saved, and the existing value is no
// longer current.

m_parentId = null;
}

}

192 EMC Documentum Foundation Classes Version 6 Development Guide



Working with Virtual Documents

Clearing a version label binding
To clear a binding based on version label, you can set the binding to the value CURRENT, which
will restore the default behavior of always including the CURRENT version of the child object as a
virtual document node.

To add a Set Binding button to the DFC Base Tutorial Frame

1. Create a jButton control named jButton_clearBinding.

2. If you haven’t done so already, create the TutorialSetBinding class.

3. Create the handler for the Clear Binding button.

Example 815. Handler for the Clear Binding button

private void jButton_clearBinding_actionPerformed(ActionEvent e)
{

if (m_parentId == null)
{

jLabel_messages.setText("Please reset the virtual document parent.");
}
else
{

String repositoryName = jTextField_repositoryName.getText();
String childIdString =

m_fileIDs.elementAt(list_id.getSelectedIndex()).toString();
String bindingLabel = "CURRENT";
TutorialSetBinding tsb = new TutorialSetBinding();
jTextArea_results.setText(

tsb.setBinding(
m_sessionManager,
repositoryName,
m_parentId,
childIdString,
bindingLabel

)
);
initDirectory();
getDirectory();

// Nullify the parent ID global variable, as a new version of the
// parent document has been saved, and the existing value is no
// longer current.

m_parentId = null;
}

}

EMC Documentum Foundation Classes Version 6 Development Guide 193



Working with Virtual Documents

Removing a virtual document child
Removing a virtual document child is another operation that takes a little extra wangling, because
you need to remove the child node based on its chronicle ID. You code needs to check out the parent
document, instantiate it as a virtual document, locate the child node, get its ID, use that to find the
child node’s chronicle ID, instantiate the child virtual document node using the chronicle ID, pass
the node as an argument to the IDfVirtualDocument.remove(IDfVirtualDocumentNode childNode)
method, then check in the parent document.

You should also test to see if you are removing the last node from the virtual document (if the child
count is now 0). If so, use the method IDfSysObject.setIsVirtualDocument() to set the property
to FALSE.

To add a Remove Virtual Document Child button to the DFC Base Tutorial Frame

1. Create a jButton control named jButton_removeVirtualDocumentChild.

2. Create the TutorialRemoveVirtualDocumentNode class.

3. Create the handler for the Remove Virtual Document Child button.

Example 816. The TutorialRemoveVirtualDocumentNode class

package com.emc.tutorial;

import com.documentum.com.DfClientX;
import com.documentum.com.IDfClientX;
import com.documentum.fc.client.IDfSession;
import com.documentum.fc.client.IDfSessionManager;
import com.documentum.fc.client.IDfSysObject;
import com.documentum.fc.client.IDfVirtualDocument;
import com.documentum.fc.client.IDfVirtualDocumentNode;
import com.documentum.fc.common.IDfId;

public class TutorialRemoveVirtualDocumentNode
{

public TutorialRemoveVirtualDocumentNode()
{
}
public String removeNode(

IDfSessionManager sessionManager,
String repositoryName,
String parentIdString,
String childIdString

)
{

IDfSession mySession = null;
StringBuffer sb = new StringBuffer("");
try
{

mySession = sessionManager.getSession(repositoryName);

// Check out the parent document.

194 EMC Documentum Foundation Classes Version 6 Development Guide



Working with Virtual Documents

TutorialCheckOut tco = new TutorialCheckOut();
tco.checkoutExample(

sessionManager,
repositoryName,
parentIdString

);

IDfClientX clientx = new DfClientX();

// Create an empty virtual document object.
IDfVirtualDocument vDoc = null;

// Get the parent object
IDfId parentIdObject = clientx.getId(parentIdString);
IDfSysObject sysObj =

(IDfSysObject) mySession.getObject(parentIdObject);

if (sysObj != null)
{

// Get the parent document as a virtual document.
vDoc = sysObj.asVirtualDocument(null,false);

// Get the root node of the virtual document.
IDfVirtualDocumentNode root = vDoc.getRootNode();

// Create an ID object based on the child ID string.
IDfId childId = mySession.getIdByQualification(

"dm_sysobject where r_object_id='" + childIdString + "'"
);

// Instantiate the child object.
IDfSysObject childObj =

(IDfSysObject) mySession.getObject(childId);

// Get the child object's chronicle ID
String childChronId = childObj.getChronicleId().toString();

// Get the child object as a virtual document node.
IDfVirtualDocumentNode childNode =

vDoc.find(root,childChronId,"i_chronicle_id",0);
sb.append("Child ID: " + childId.toString());
sb.append("\nChild Chron ID: " + childChronId);
sb.append("\nChild Node: " + childNode.toString());

// And here is the actual command that removes the node.
vDoc.removeNode(childNode);

// If you have removed the last virtual document node,
// set the r_is_virtual_document property to FALSE.

if (root.getChildCount()==0)
{

sysObj.setIsVirtualDocument(false);
}

}

// Check in the parent virtual document to save the change.
TutorialCheckIn tci = new TutorialCheckIn();

EMC Documentum Foundation Classes Version 6 Development Guide 195



Working with Virtual Documents

sb.append( "\n" +
tci.checkinExample(

sessionManager,
repositoryName,
parentIdString

)
);
return "Success!\n********\n" + sb.toString();

}
catch (Exception ex)
{

ex.printStackTrace();
return ("Failure!\n********\n" + sb.toString());

}
finally
{

sessionManager.release(mySession);
}

}
}

Example 817. Handler for the Remove Virtual Document Child button

private void jButton_removeVirtualDocumentChild_actionPerformed(ActionEvent e)
{

if (m_parentId == null)
{

jLabel_messages.setText("Please reset the parent field.");
}
else
{

String repositoryName = jTextField_repositoryName.getText();
String childIdString =

m_fileIDs.elementAt(list_id.getSelectedIndex()).toString();
TutorialRemoveVirtualDocumentNode trvdn =

new TutorialRemoveVirtualDocumentNode();
jTextArea_results.setText(

trvdn.removeNode(
m_sessionManager,
repositoryName,
m_parentId,
childIdString

)
);
initDirectory();
getDirectory();

// Nullify the parent ID global variable, as a new version of the
// parent document has been saved, and the existing value is no
// longer current.

m_parentId = null;
}

}

196 EMC Documentum Foundation Classes Version 6 Development Guide



Working with Virtual Documents

197 EMC Documentum Foundation Classes Version 6 Development Guide



Working with Virtual Documents

198 EMC Documentum Foundation Classes Version 6 Development Guide



Chapter 9
Support for Other Documentum
Functionality

Because DFC is the principal low level interface to all Documentum functionality, there are many
DFC interfaces that this manual covers only superficially. They provide access to features that other
documentation covers in more detail. For example, the Server Fundamentalsmanual describes virtual
documents and access control. The DFC Javadocs provide the additional information necessary to
enable you to take advantage of those features. Similarly, the Enterprise Content Integration (ECI)
Services product includes extensive capabilities for searching Documentum repositories. The DFC
Javadocs provide information about how to use DFC to access that functionality.

This chapter introduces some of the Documentum functionality that you can use DFC to access. It
contains the following major sections:

• Security Services, page 199
• XML, page 200
• Virtual Documents, page 200
• Workflows, page 200
• Document Lifecycles, page 201
• Validation Expressions in Java, page 201
• Search Service, page 202

Security Services
Content Server provides a variety of security features. From the DFC standpoint, they fall into the
following categories:
• User authentication

Refer to for more information.

EMC Documentum Foundation Classes Version 6 Development Guide 199



Support for Other Documentum Functionality

• Object permissions

Refer to the Server Fundamentalsmanual and the DFC Javadocs for IDfACL, IDfPermit, and other
interfaces for more information.

DFC also provides a feature related to folder permissions. Users may have permission to view an object
but not have permission to view all of the folders to which it is linked. The IDfObjectPath interface and
the getObjectPaths method of IDfSession provide a powerful and flexible mechanism for finding paths
for which the given user has the necessary permissions. Refer to the Javadocs for more details.

XML
Chapter 6, Working with Document Operations provides some information about working with XML.
DFC provides substantial support for the Documentum XML capabilities. Refer to XML Application
Development Guide for details of how to use these capabilities.

Virtual Documents
Chapter 6, Working with Document Operations provides some information about working with
virtual documents. Refer to Server Fundamentals and the DFC Javadocs for the IDfVirtualDocument
interface for much more detail.

Workflows
The Server Fundamentalsmanual provides a thorough treatment of the concepts underlying workflows.
DFC provides interfaces to support the construction and use of workflows, but there is almost no
reason to use those interfaces directly. The workflow manager and business process manager software
packages handle all of those details.

Individual workflow tasks can have methods associated with them. You can program these methods
in Java and call DFC from them. These methods run on the method server, an application server that
resides on the Content Server machine and is dedicated to running Content Server methods. The
code for these methods resides in the repository’s registry as modules. Modules and registries, page
130 provides more information about registries and modules.

The com.documentum.fc.lifecycle package provides the following interfaces for use by modules that
implement lifecycle actions:
• IDfLifecycleUserEntryCriteria to implement userEntryCriteria.
• IDfLifecycleUserAction to implement userAction.
• IDfLifecycleUserPostProcessing to implement userPostProcessing

200 EMC Documentum Foundation Classes Version 6 Development Guide



Support for Other Documentum Functionality

There is no need to extend DfService, but you can do so. You need only implement IDfModule,
because lifecycles are modules, not SBOs.

Document Lifecycles
The Server Fundamentalsmanual provides information about lifecycles. There are no DFC interfaces
for constructing document lifecycles. Application Builder (DAB) includes a lifecycle editor for that
purpose. You can define actions to take place at various stages of a document’s lifecycle. You can code
these in Java to run on the Content Server’s method server. Such Java methods must implement
the appropriate interfaces from the following:
• IDfLifecycleAction.java
• IDfLifecycleUserAction.java
• IDfLifecycleUserEntryCriteria.java
• IDfLifecycleUserPostProcessing.java
• IDfLifecycleValidate.java
The code for these methods resides in the repository’s registry (see Modules and registries, page
130) as modules.

Validation Expressions in Java
When you create a repository type, you can associate constraints with it. Some of these constraints are
expressions involving either a single attribute or combinations of attributes of the type. These reside in
the repository’s data dictionary, where client programs can access them to enforce the constraints.
Content Server does not enforce constraints defined in the data dictionary.

In earlier versions of DFC these constraints were exclusively Docbasic expressions. Since DFC 5.3,
you can provide Java translations of the constraint expressions. If a Java version of a constraint exists,
DFC uses it in preference to the Docbasic version of the same constraint. This usually results in a
substantial performance improvement.

The key points about this feature are the following:
• You must take steps to use it.

If you do nothing, DFC continues to use the existing Docbasic expressions. A server script enables
the feature by creating the necessary types and the methods for creating Java translations.

• The migration is incremental and non‑destructive.

You can migrate all, none, or any portion in between of the Docbasic expression evaluation in a
Content Server repository to Java. The Docbasic versions remain in place. You can disable any
specific Java translations and revert to using Docbasic for that function or that object type.

EMC Documentum Foundation Classes Version 6 Development Guide 201



Support for Other Documentum Functionality

• Translations are available for all Docbasic functions that you are likely to use in validation
expressions.

We do not provide Java translations of operating system calls, file system access, COM and DDE
functions, print or user interface functions, and other similar functions. We do not provide Java
translations of financial functions.

Search Service
The DFC search service replaces prior mechanisms for building and running queries. You can use
the IDfQuery interface, which is not part of the search service, for simple queries. The search service
provides the ability to run searches across multiple Documentum repositories and, in conjunction with
the Enterprise Content Integration (ECI) Services product, external repositories as well.

The Javadocs for the com.documentum.fc.client.search package provide a description of how to use
this capability.

202 EMC Documentum Foundation Classes Version 6 Development Guide



Index

A
abort method, 124, 126
abortTransaction method, 140
add method, see operations, add method
addNode method, 184
Application Builder (DAB), 131
aspects, 130
assemblies, see virtual documents,

assemblies
assembly objects, see virtual documents,

assembly objects
asVirtualDocument method, 85, 100, 114,

120, 183
<at least one index entry>, 39

B
beginTransaction method, 140
best practices

caching repository objects, 142
reusing SBOs, 141
SBO state information, 142

binding, see virtual documents, binding

C
caches, 142

See also persistent caching
casting, 89 to 90, 124 to 125, 159
children, see virtual documents,

terminology
chronicle ID, 190
chronicle IDs, 83
chunking rules, 85
class loaders, 132
ClassCastException class, 132
classes

extending, 24
instantiating, 24

classpaths, 21
collections

leaks, 18
COM (Microsoft component object

model), 21, 24
com package, 24
commitTransaction method, 140
config directory, 15, 22
containment objects, see virtual

documents, containment objects
copy_child attribute, 84
CURRENT, 193
CURRENT version, 178

D
DAB, see Application Builder
DAI, see DocApp Installer
datatypes, 66
DBOR (Documentum business object

registry), 131
dctm.jar, 21
Desktop client program, 20
destroyAllVersions method, 79
dfc.bof.cacheconsistency.interval

property, 18
dfc.bof.registry.connect.attempt.interval

property, 17
dfc.bof.registry.password property, 17
dfc.bof.registry.preload.enabled

property, 18
dfc.bof.registry.repository property, 17
dfc.bof.registry.username property, 17
dfc.config.timeout property, 20
dfc.data.dir, 19
dfc.housekeeping.cleanup.interval

property, 20
dfc.properties file, 16
dfc.registry.mode property, 20
dfc.resources.diagnostics.enabled, 18
dfcfull.properties file, 16
DfClientX class, 26
DfCollectionEx class, 138

EMC Documentum Foundation Classes Version 6 Development Guide 203



Index

DfDborNotFoundException class, 141
DfException class, 27, 124
DfNoTransactionAvailableException

class, 139
DfService class, 130, 135 to 137
DfServiceCriticalException class, 141
DfServiceException class, 141
DfServiceInstantiationException

class, 141
DfServiceNotFoundException class, 141
directories (file system), 106
dmc_jar type, 132
dmc_module type, 130, 132
DMCL process, 25
DocApp Installer (DAI), 131
docbroker, 18
document manipulation, see operations
DONT_RECORD_IN_REGISTRY

field, 108
DTDs (document type definitions), 120
dump method, 60

E
ECIS, 19
edges, see virtual documents, terminology
enableDeepDeleteVirtualDocumentsInFolders

method, 116
Enterprise Content Integration Services

(ECIS), 19
error handlers, 27, 124
execute method, see operations, execute

method
External applications

XML support, 85
External Interfaces folder, 132

F
factory methods, 23 to 24, 135
FileOutputStream class, 121

G
getCancelCheckoutOperation

method, 100
getCheckinOperation method, 97
getChildren method, 90
getDefaultDestinationDirectory

method, 110
getDeleteOperation method, 116

getDestinationDirectory method, 110
getDocbaseNameFromId method, 137
getErrors method, 90, 120, 124
getExportOperation method, 108
getFilePath method, 110
getId method, 90
getImportOperation method, 104
getLocalClient method, 25, 158
getMoveOperation method, 114
getNewObjects method, 99, 104, 106
getNodes method, 90
getObjectID method, 90
getResourceAsStream method, 131
getSelectedObject method, 188
getSessionmethod, 26, 137, 139 to 140, 159
getSessionManager method, 137, 159
getStatistics method, 138
getTransactionRollbackOnly method, 139
getValidationOperation method, 120
getVendorString method, 136
getVersion method, 136
getXMLTransformOperation

method, 121 to 123
getYesNoAnswer method, 126
global registry, 17

H
HTML (Hypertext Markup

Language), 122 to 123

I
IDfBusinessObject interface, 130
IDfCancelCheckoutNode interface, 100
IDfCancelCheckoutOperation

interface, 100
IDfCheckinNode interface, 97
IDfCheckinOperation interface, 97
IDfCheckoutOperation interface, 93
IDfClient interface, 23, 25
IDfClientX interface, 25, 86
IDfDeleteNode interface, 116
IDfDeleteOperation interface, 116
IDfDocument interface, 26, 91
IDfExportNode interface, 110
IDfExportOperation interface, 108
IDfFile interface, 106
IDfFolder interface, 54, 91
IDfImportNode interface, 104, 106

204 EMC Documentum Foundation Classes Version 6 Development Guide



Index

IDfImportOperation interface, 104, 122
IDfList interface, 124
IDfLoginInfo interface, 158
IDfModule interface, 130
IDfMoveOperation interface, 114
IDfOperation interface, 87
IDfOperationError interface, 90, 124
IDfOperationMonitor interface, 126
IDfOperationNode interface, 89 to 90
IDfPersistentObject interface, 25 to 26
IDfProperties interface, 122
IDfService interface, 130, 135 to 136
IDfSession interface, 23, 25
IDfSessionManagerStatistics

interface, 138
IDfSysObject interface, 24
IDfValidationOperation interface, 120
IDfVersionLabels, 182
IDfXMLTransformNode interface, 121 to

123
IDfXMLTransformOperation

interface, 121 to 123
ignore (to turn off XML processing), 106
interface inheritance, 24, 26
interfaces, 24
isCompatible method, 136
isTransactionActive method, 138 to 140

J
JAR files, see Java archive files
Java archive (JAR) files, 131 to 132
Java language, 21, 24

setup, 21
supported versions, 15

java.util.Properties class, 16
javac compiler, 21
Javadocs, see online reference

documentation

L
leaks, 18
local files, 99
log4j.properties, 21

M
manifests, 21
metadata, 53
modules, 130

Modules folder, 130

N
naming conventions, 23, 135, 141
.NET platform, 21, 129
newObject method, 26
newService method, 135, 158 to 159
newSessionManager method, 25, 158
NEXT_MAJOR field, 97
nodes, see virtual documents, terminology;

operations, nodes
null returns, 124

O
OLE (object linking and embedding)

links, 104
OLE (Object Linking and Embedding)

links, 20
online reference documentation, 16
operation monitors, 126
operations

aborting, 124
add method, 89, 124
cancel checkout, 100
checkin, 97
checkout, 93
delete, 116
errors, 124
execute method, 89, 124
export, 108
factory methods, 86
import, 104
move, 114
nodes, 89 to 90
parameters, 89
procedure for using, 87
steps, 89
transactions, 126
validate, 120

operations package, 24, 26, 85
orphan documents, 99

P
packages, 23
parents, see virtual documents,

terminology
Predictive caching, 119
progressReport method, 126

EMC Documentum Foundation Classes Version 6 Development Guide 205



Index

R
Reader class, 123
release method, 26
releaseSession method, 137, 159
renditions, 123
reportError method, 126
repositories, 130

S
sandboxing, 132
SBOs, see service based objects
schemas, see XML schemas
service based objects (SBOs), 135

architecture, 135
implementing, 136
instantiating, 141, 158
returning TBOs, 159
session manager, 159
specifying a repository, 137
threads, 158
transactions, 138

session leaks, 18
session managers, 23, 25, 135

internal statistics, 138
transactions, 139

setBinding, 190
setCheckinVersion method, 97
setDestination method, 121 to 123
setDestinationDirectory method, 120
setDestinationFolderId method, 104, 106,

122
setDomain method, 158
setFilePath method, 108
setIdentity method, 158
setKeepLocalFile method, 100
setOperationMonitor method, 126
setOutputFormat method, 122 to 123
setPassword method, 158
setRecordInRegistry method, 108, 110
setSession method, 104, 106, 121 to 123
setSessionManager method, 41, 159 to 160
setTransactionRollbackOnly method, 139
setTransformation method, 121 to 123
setUser method, 158

setXMLApplicationName method, 104,
106

simple modules, see modules
state information, 41, 135 to 136, 138

T
threads, 139 to 140
transactions

nested, 140
type based objects (TBOs)

returning from SBO, 159

U
URLs (universal resource locators), 123

V
version trees, 83
virtual documents, 84

assemblies, 84
assembly objects, 85
asVirtualDocument method, 85, 100,

114, 120, 183
binding, 84
cancelling checkout, 100, 102
containment objects, 85
copy behavior, 84
CURRENT version, 178
deleting, 116
exporting, 108
Microsoft OLE links, 177
terminology, 84
versioning, 84
XML applications, 177

X
Xalan transformation engine, 121
Xerces XML parser, 120
XML schemas, 120
XML support, 85, 120 to 121

See also ignore
XSLT stylesheets, 121 to 123

206 EMC Documentum Foundation Classes Version 6 Development Guide


	EMC Documentum Foundation Classes
	Preface
	Intended audience
	Revision History

	Getting Started with DFC
	What Is DFC?
	Where Is DFC?
	DFC programming resources
	DFC documentation set
	DFC developer support
	DFC online reference documentation

	Using dfc.properties to configure DFC
	BOF and global registry settings
	Connecting to the global registry
	Performance tradeoffs

	Diagnostic settings
	Diagnostic mode
	Configuring docbrokers
	dfc.data.dir
	Tracing options

	XML processing options
	Search options
	Storage policy options
	Performance tradeoffs
	Registry emulation
	Microsoft Object Linking and Embedding (OLE)

	Client file system locations

	Using DFC logging
	Using DFC from application programs
	Java


	DFC Programming Basics
	Client/Server model
	Packages
	Interfaces
	IDfPersistentObject

	Processing a repository object
	Example 2-1. Processing a repository object


	Sessions and Session Managers
	Sessions
	Sharable and Private Sessions

	Session Managers
	Getting session managers and sessions
	Instantiating a Session Manager
	Figure 1. Instantiating a session manager without identities

	Setting Session Manager Identities
	Getting and releasing sessions
	When you can and cannot release a managed session
	Sessions can be released only once
	Sessions cannot be used once released


	Objects disconnected from sessions
	Related sessions (subconnections)
	Original vs. object sessions
	Transactions
	Configuring sessions using IDfSessionManagerConfig
	Getting sessions using login tickets
	Methods for getting login tickets
	Generating a login ticket using a superuser account

	Principal authentication support
	Implementing principal support in your custom application
	Default classes for demonstrating principal support implementati

	Maintaining state in a session manager

	Creating a Test Application
	The DfcBaseTutorialFrame class
	Figure 2. Code listing — DfcTestFrame.java
	Example 4-1. DfcBaseTutorialFrame.java

	The DfcBaseTutorialApplication class
	Example 4-2. DfcBaseTutorialApplication.java

	Running the tutorial application
	Figure 3. The DFC Base Tutorial Frame


	Working with Objects
	Understanding repository objects
	The DFC Object Tutorial Frame
	Creating a cabinet
	Example 5-1. Make Cabinet button handler method
	Example 5-2. The TutorialMakeCabinet class

	Creating a folder
	Example 5-3. Make Folder button handler method
	Example 5-4. The TutorialMakeFolder class

	Creating a document object
	Example 5-5. The Make Document button handler
	Example 5-6. The TutorialMakeDocument class

	Accessing attributes
	Dumping Attributes
	Example 5-7. The Dump Attributes button handler
	Example 5-8. TutorialDumpAttributes class

	Getting a single attribute by name
	Example 5-9. Handler for the Get Attribute By Name button
	Example 5-10. The TutorialGetAttributeByName class

	Getting a single attribute by number
	Example 5-11. Handler for the Get Attribute By Number button
	Example 5-12. The TutorialGetAttributeByNumber class


	Setting attributes
	Setting a single attribute
	Example 5-13. Handler for the Set Attribute By Name button
	Example 5-14. The TutorialSetAttributeByName class

	Setting an attribute by number
	Example 5-15. Handler for the Set Attribute By Number button
	Example 5-16. The TutorialSetAttributeByNumber class

	Appending a repeating attribute
	Example 5-17. Handler for the Append Repeating Attribute button
	Example 5-18. The TutorialAppendRepeatingAttribute class


	Removing an attribute value
	Example 5-19. Hander for the Remove Attribute button
	Example 5-20. The TutorialRemoveAttribute class

	Getting object content
	Example 5-21. Handler for the Get Document Content button
	Example 5-22. The TutorialGetTextContent class

	Destroying an object
	Example 5-23. Handler for the Destroy button
	Example 5-24. The TutorialDestroyObject class


	Working with Document Operations
	Understanding documents
	Virtual documents
	XML Documents

	Understanding operations
	Types of operation
	Basic steps for manipulating documents
	Steps for manipulating documents
	Details of manipulating documents
	Obtaining the operation
	Setting parameters for the operation
	Adding documents to the operation
	Executing the Operation
	Processing the results
	Working with nodes


	Operations for manipulating documents
	Checking out
	Example 6-1. Handler for the Check Out button
	Example 6-2. TutorialCheckout.java
	Special considerations for checkout operations
	Checking out a virtual document
	Example 6-3. The TutorialCheckoutVdm class


	Checking in
	Example 6-4. Handler for the Check In button
	Example 6-5. The TutorialCheckIn class

	Special considerations for checkin operations
	Setting up the operation
	Processing the checked in documents


	Cancelling checkout
	Example 6-6. Handler for the Cancel Checkout button
	Example 6-7. TutorialCancelCheckout.java
	Special considerations for cancel checkout operations
	Cancel checkout for virtual document
	Example 6-8. The TutorialCancelCheckoutVdm class


	Importing
	Example 6-9. Handler for the Import button
	Example 6-10. TutorialImport.java
	Special Considerations for Import Operations
	Setting up the operation
	XML processing
	Processing the imported documents


	Exporting
	Example 6-11. Handler for the Export button
	Example 6-12. TutorialExport.java
	Special considerations for export operations

	Copying
	Example 6-13. Handler for the Copy button
	Example 6-14. TutorialCopy.java
	Special considerations for copy operations

	Moving
	Example 6-15. TutorialMove.java
	Special considerations for move operations

	Deleting
	Example 6-16. Handler for the Delete button
	Example 6-17. TutorialDelete.java
	Special considerations for delete operations

	Predictive caching
	Example 6-18. Predictive caching operation for a single document
	Special considerations for predictive caching operations

	Validating an XML document against a DTD or schema
	Example 6-19. Validating an XML document
	Special considerations for validation operations

	Performing an XSL transformation of an XML document
	Example 6-20. Transform to an HTML file
	Example 6-21. Transform to an HTML file, import result into repo
	Example 6-22. Transform an XML document into an HTML rendition
	Special considerations for XML transform operations


	Handling document manipulation errors
	The add Method Cannot Create a Node
	The execute Method Encounters Errors
	Examining Errors After Execution
	Example 6-23. Generate an Operation Exception
	Example 6-24. Obtain the Object ID of an Operation Node

	Using an Operation Monitor to Examine Errors


	Operations and transactions

	Using the Business Object Framework (BOF)
	Overview of BOF
	BOF infrastructure
	Modules and registries
	Packaging support
	Application Builder (DAB)
	JAR files
	Libraries and sandboxing
	Deploying module interfaces

	Dynamic delivery mechanism
	Global registry
	Global registry user
	Accessing the global registry


	Service-based Business Objects (SBOs)
	SBO introduction
	SBO architecture
	Implementing SBOs
	Stateful and stateless SBOs
	Managing Sessions for SBOs
	Overview
	Structuring Methods to Use Sessions
	Managing repository names
	Maintaining State Beyond the Life of the SBO
	Obtaining Session Manager State Information

	Using Transactions With SBOs

	SBO Error Handling
	SBO Best Practices
	Follow the Naming Convention
	Don't Reuse SBOs
	Make SBOs Stateless
	Rely on DFC to Cache Repository Data


	Type-based Business Objects (TBOs)
	Use of Type-based Business Objects
	Creating a TBO
	Create a custom repository type
	Create the TBO interface
	Define the TBO implementation class
	Figure 4. Basic TBO design
	Figure 5. TBO design with extended intervening class

	Implement methods of IDfBusinessObject
	getVersion method
	getVendorString method
	isCompatible method
	supportsFeature method

	Code the TBO business logic

	Using a TBO from a client application
	Using TBOs from SBOs
	Getting sessions inside TBOs
	Inheritance of TBO methods by repository subtypes without TBOs
	Figure 6. Inheritance by object subtype without associated TBO

	Dynamic inheritance
	Figure 7. Design-time dynamic inheritance hierarchies
	Figure 8. Runtime dynamic inheritance hierarchies
	Exploiting dynamic inheritance with TBO reuse
	Figure 9. Design-time dynamic inheritance with TBO reuse
	Figure 10. Runtime dynamic inheritance with TBO reuse


	Signatures of Methods to Override

	Calling TBOs and SBOs
	Calling SBOs
	Returning a TBO from an SBO
	Calling TBOs

	Sample SBO and TBO implementation
	ITutorialSBO
	Example 7-1. ITutorialSBO.java

	TutorialSBO
	Example 7-2. TutorialSBO.java

	ITutorialTBO
	Example 7-3. ITutorialTBO.java

	TutorialTBO
	Example 7-4. TutorialTBO.java

	Deploying the SBO and TBO

	Aspects
	Examples of usage
	General characteristics of aspects
	Creating an aspect
	Creating the aspect interface
	Example 7-5. ICustomerServiceAspect.java

	Creating the aspect class
	Example 7-6. CustomerServiceAspect.java

	Deploy the customer service aspect
	TestCustomerServiceAspect
	Example 7-7. TestCustomerServiceAspect.java


	Using aspects in a TBO
	Example 7-8. Code snippet from MySopTBO.java
	Example 7-9. MyAttachCallback.java

	Using DQL with aspects
	Enabling aspects on object types
	Default aspects
	Referencing aspect attributes from DQL

	Full-text index
	Object replication


	Working with Virtual Documents
	Understanding virtual documents
	Setting version labels
	Example 8-1. Updated TutorialCheckIn class
	Example 8-2. The TutorialSetVersion class
	Example 8-3. Handler for the Set Version Label button

	Getting version labels
	Example 8-4. The TutorialGetVersion class
	Example 8-5. Handler for the Get Version Label button

	Creating a virtual document
	Example 8-6. Handler for the Set Virtual Document Parent button
	Example 8-7. Handler for the Set Preceding Sibling button
	Example 8-8. Handler for the Clear Sibling button
	Example 8-9. Handler for the Add Virtual Document Node button
	Example 8-10. The TutorialAddVirtualDocumentNode class

	Traversing the virtual document structure
	Example 8-11. The TutorialTraverseVirtualDocument class
	Example 8-12. Handler for the Traverse Virtual Document button

	Binding to a version label
	Example 8-13. The TutorialSetBinding class
	Example 8-14. Handler for the Set Binding button

	Clearing a version label binding
	Example 8-15. Handler for the Clear Binding button

	Removing a virtual document child
	Example 8-16. The TutorialRemoveVirtualDocumentNode class
	Example 8-17. Handler for the Remove Virtual Document Child butt


	Support for Other Documentum Functionality
	Security Services
	XML
	Virtual Documents
	Workflows
	Document Lifecycles
	Validation Expressions in Java
	Search Service

	Index


