Content Server Full-Text
Indexing System Installation
and Administration Guide

=M documentum

Version 5.3 SP5
May 2007

Copyright © 1994-2007 EMC Corporation

Table of Contents

Chapter 1

Chapter 2

Chapter 3

.. 11
Introduction to Full-Text IndeXingccccviiiiiiiiiiiiiiirirer e eeaees 13
Benefits of an iNdeX.......ccceviviiiiiiiiiiiiiiiiiiiiiiiiiiii 13
What is indexed.........cceeiiiiiiiiiiiiiiiiiiiii 14
Full-text indexing cOMPONENtSsccevvviiiiiiiiiiiiiiiiiiiiiiiiiiiieiieieeeeeeeeeeeeeeees 14
About the full-text indexing Processccccvveviiiiiviiiiiiieiiiiiiiiii e 16

Large file cONStraintcccveviiiiiiiiiiiiiiiiiiiiiiiiiiiiiee 17
What languages can be indexedeuuvviiiiimiiiiiiiiiiiiiiiiii, 17
How particular characters are handled.........ccccccevviiiiiiiiiiiiiiiiiii, 18
Configuration OPtioNS.......ceeeuviiiiieiieiieiiieeeee e 19

Grammatical normalization...........eeeveeeiiiiiiiiiiiiiiiiiiiiiiiiieiieeeeeeeeeeeeeeees 19

Rendition formats to indeX.......ccceuuuuuiiiiiiiiiiiiiiiiiii e, 20

Processing of batched returns............ccovvviiiiiiiiiiiiiiiiiiii 20

Thesaurus USAZE.......cuvvviiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieiieteieieeeeeeeeeee e 20
Pre-installation planning decisionsccceeeeeiiieiiciiiiiiiiiieceiieee e, 20
Full-Text Indexing Deployment Modelsc..ccoeiiiiiiiiiiiiiiiiiir e 23
Basic deployments........ccceviviiiiiiiiiiiiiiiiiiiiiiiiiiieieieieeeeeeeeeee e 24

Benefits .iicivruueiiiiiiiiiiiii s 24

Use consSiderations.........eeeeeeeeeeieieiiiiiiiiiiiiiiiiiiieieeeeeeeeeeeeeeeeeeeeeee e 25
Consolidated deployments..........coevviiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeee 25

Benefitscoovviiiiiiiiiiiiiiiiiiiiii 26

Use considerations..........eeeveveieiiiiiiiiiiiiiiiiieiiieiiiiieieeeceeeeeeere e 26
High-availability deploymentscccovviiiiiiiiiiiiiiiiiiiiiiiiii, 26

Benefitsuuvuvuiuiiiiiiiiiiiiiiiiii 28

Use considerations...........eevvevieiiiiiiiiiiiiiiiiiiiiiiiiiiieieieieieieeeeececeeeceeeeeee e 29
Multinode deployments...........eeeeeeeririiiiiiiiiiiiiiiiiiiiiiieiieeeeeeeeeeeeeeeeeeee e 29

Benefits ...uuvvevuiiiiiiiiiiiiiiiiiiiii 30

Use considerations..........cuevviviiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieieneeeieeeeeeeeeseeeeeeenes 30

Supported multinode deployments.............cceevviviiiiiiiiiiiiiiiiiiiiiiiiieiiienenen, 31

Basic multinode model............cooviiiiiiiiiiiiiiiiiiiiiiiii 31
Multinode configuration with index routing..............ccccccie. 32
High-availability multinodeeeevviiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieiieeeeenn, 34

Unsupported multinode configurationscceceveueeeiiniinininiiinininnn. 34
If these models do not meet your requirementscccceeeeeeeeeencinnineeeeeeennnn. 34
Planning considerationsc.....cooiiiiiiiiiiiiiiii e, 37
Planning OVEIVIEW.......cciiiviiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieiiiiieieieieieeeeeceeeeeeeeeee e 37
Determining the configurationccccoviiiiiiiiiniiiiiiiiie e 38

Purpose of the TePOSItOIY «..uuvvveeiiiiiiiiiiiiiiiiiicccciie s 38

On-going content management repository........cceeeeeieiiiiiiiiiiniininiiennennnn, 39
Archival 1epOSItOTies.....cccvviiiiiiiiiiiiiiiiiiiiiiiiiiiiii 39

Content Server Full-Text Indexing System Installation and Administration Guide 3

Table of Contents

Chapter 4

Chapter 5

Chapter 6

Considerations for an archival repositorycccccvvvviiiiiiiiiiiiiiiiiiiinn 39
Choosing CPU size and capacity.......ccccccvvveiviiiiiiiiiiiiiiiiiiiiiiiiiinnnn. 40
Multinode considerations.........ceeeeieeieeeiiiniieeieiiiiiiiiiiieeeeeceeens 40

Number of documents to be indexedceoeiieeeiiiiiiiiiiiiiinniiiiiii, 41
Size of documents and amount of indexable contentcoevvrerirenenninn. 41
Content file formats to be indexedcoevvieiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiininnn, 42
Quantity of metadata to be indexedcccoevviiiiiiiiiiiiiiiiiiiiiiiiii, 42
Indexing latency reqUirementscoevvvviiiiiiiiiiiiiiiiiiiiiiiiiii 43
Whether to use grammatical normalizationcccccooiiiiiiiinnnii, 43
Preparing to Install Full-Text Indexingcccooeiiiiiniiiiiiniiiiiininninnnn. 45
SYSTEIM SIZINE wuvvreiiiiiiiiiiiieeiiieeee 45
Memory requirements fOr iNdeX SEIVETcevvvrerriiiiiiiiiiiiiiiiiiieiiieieeeeeeenes 46
Disk space requirements for indexing and installation 46
Full-text indexing in a distributed content environmentcevveeeenens 46
Device types on which the full-text index and content files may
De StOTed .evviiiiiiiiiiiii e 46
Constraint on SAN devices.........eeiiviieiiiiinieeiiiieiiniinieeeeccceinneeee 47
Host requirementsuuuiieiiiiiiiiiiiiienecececree e 47
HOSt NAMES cevtiiieiieeeeceiicce e 47
Which ports to use for the index agenteeeeeeieiniiiiiiiiiiiiiiine, 47
Which ports to use for the index Servercccccuveeeiemmininiiiniiiiiiinnnne, 48
Index server operating system and hostccooeeiiieiiiiiiinniiiiniininn, 48
VMWL cettiiieiiiiiiiiiiiiie et e e e e e e e e e e es 48
Third-party software on the index server hostoevveviviiiiiiiiiiininininnnn, 48
Windows host requirements for the index servercccocecuuuinininnnnnnnnnne. 49
Host time SettingS......uuviiiriiiiiiiiiiiiiiiiiiinciii e, 49
Ensuring correct network configurationceevviviiiiiiiiiiiiiiiiiiiiiiiniinninn 49
Index agent and index server installation accountcoeeevvvieeieeiinnnn. 50
Environment variables on UNIX and Linux hostscoevviiiiiiiiiiiininnnnn, 50
Ensuring that the index server environment is correct on UNIX
and LiNUX hostS ...uuveiiiiiiiiiiiiiiii s 51
The deprecated DFC_DATA environment variable on UNIX hosts............. 51
Installing the index server on Windows hostscccovveiiiiiiiiiiiiiiiiiiiiinnn, 52
Installing the index server on HP-UX.........ccooiiiiiniiiiiiiiiiiiinniiiiiieeeceen, 52
Directory constraint.........eeeeeeiiiiiiiiiiiiiiiiiiii 52
Required parameterseeveereeieiiiiiiiiiiiiiiiiieiiieieieeeeeeeeeeeeeee e, 52
Deciding whether to share the drives where content files are located 52
Upgrading Full-Text Indexing Componentsccccceeeevriieriinereinerennnnnns 55
Adding the full-text indexing system to a 5.3 repository that has none 55
Upgrading an existing full-text system on a repositoryccccceveeeeviiiiieennnns 56
Upgrading from the December 2006 Full-text Hotfix or 5.3 SP4...................... 57
Upgrading a pre-5.3 rePoSItOry......cevviiiiriiiiiiiiiiiiiiiiiiiiiiiiieieeeeeeeeeeeeeeeeeeeeeeeees 59
Migrating the full-text indexing system.........ccccoeeeeiiiiiiiiiinnniiiii, 59
Migrating Verity customizations.......ccceeeeieeieiiiiiieiniieiiiiiiiiiieneeeeeeeeeiiaane, 62
Installing Full-text Indexing Componentsccceeiiiiiiiiiiiiiieiiiinennnen. 63
Installing a basic deploymentcooeeveimriiiiiiiiiiniiiiiiiieeecceeneee e 63
Installing a consolidated deployment..........cccovviiiiiiiiiiiiiiiiiiiiiiiiiiiiii, 64
Installing a high-availability deploymentccoceeviiiiiiiiiiiinniiiiineinenennnn. 64
Installing a multinode deploymentcccceviiiiiiiiiiiiiiiiiiiii, 66

Installing the index server and the index agent configuration
003 = o o R PPRs 67

Content Server Full-Text Indexing System Installation and Administration Guide

Table of Contents

Chapter 7

Chapter 8

Configuring the indexX agent..........ccceviiiiiiiiiiiiiiiiiiiiiiiiiiiiee 69
Modifying the indexagent.xml file to map file storesccevvvrreririririiinnnnn. 71
Reviewing the installation log files............ccccviviiiiiiiiiiiiiiiiiiiii, 73
Creating and Managing the Full-Text Indexccccccceiiiiiiiiiriiiiniinnnnenn. 75
Creating the full-text indeX.......cccceeiiiiiiiiii 75
Submitting objects for indexingcevveiriiiiiiiiiiiiiiiiiiiiiiii 76
Stopping full-text iNdeXing........cccevviiiiiiiiiiiiiiiiiiiiiiiii 77
Checking the status of the index agentcccevvviiiiiiiiiiiiiiiiiiiiiiiiii, 78
Managing the indeX qUEUEcevvviiriiiiiiiiiiiiiiiiiiiiiereeeeeeeeeeeeeeeeee e 78
Resubmitting individual objectseeevvviiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeee, 79
Resubmitting all failed quete itemsevveeeeiiiiiiiiiiiiiiiiiiiiiiiieees 80
Removing queue items by statuscccccuveeeeiiiiiiiiiniieeiiiiiiiiieee, 80
Removing queue itemS.......cevviiiiiiiiiiiiiiiiiiiiiiiii e, 81
Viewing queue items associated with an object..........ccccueeeiiiiiinnnninnnnl. 81
Creating a new indexing queue item...........ecevvveeriiiiiiiiiieiiiiiiiiieiiiiieieeeeens 81
Limitations of full-text indexing in high-availability configurations 82
The Prune API and missing Destroy eventscccccevevveeiriireieereereneennnnn. 82
Save events not generated during load operationscccceevuuvnreennn.. 82
Verifying index completeness and accuracy........c.ccceeeeeuvviieieeeieecciiiiieieeeeeenn, 83
Modifying the parameter file...........eeeverrriiriiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeee 84
Running the index verification tool.........ccccccvviiiiiiiiiiiiiiiiiiiiii 85
Accuracy testing confidence and failures.........ccccccvvviiiiiiiiiiiiiiiiiiiiiiii, 87
Resubmitting objects to the index agentcocevvvviiiiiiiiiiiiiiiiiiiiiiiiiii 87
The State of the INdeX JODcevvviviiiiiiiiiiiiiiiiiiiiiiiiiieeeees 89
ATGUMENES ..evvviiiiiiiiiiiiii s 89
Job report and generated files........ccceevuinnnnnnniiiiii 91
Creating indexing events for new content in a repositoryccccueeeeeeennnn. 92
Turning indexing on and off ... 92
Turning off all INdeXingcceevviiiiiiiiiiiiiiiiiiiiiiiii 93
Turning off content indeXingceevvveiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeees 93
Suspending and resuming iNndeXing...........cceevvviiiiiiiiiiiiiiiiiiiiiiiiii, 93
Suspending and resuming an index server in a single-node
CONFAIGUIAtION. ..ciiiiiiiiiiiiiiiiiiiiiiiiiiiiic 94
Suspending and resuming an index server in a multinode
CONFIGUIAtIONeuiiiiiiiieiieiie e 94
Configuring the indexing behaviorccccccvvviiiiiiiiiiiiiii 95
Disabling indexing of specific object types..........ccvvvviiiiiiiiiiiiiiiiiiiiiiiiininnnn, 95
Configuring format objects to specify which renditions are
5T (=T UL 96
Supported formats and mime_typesceevererrriiiiiiiiiiiiiiiiiieieeeeeeeeee 97
Reindexing a rePOSItOIYcccvvvviiiiiiiiiiiiiiiiiiiiiiiiiiiiieieieieceeeceee e 97
Troubleshooting indexing timeouts.............evvvveiiiiiiiiiiiiiiiiiiiiiiieieiieeeeeeeeeeee, 97
Creating a New INAeXcccevviiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeee 99
Pointing a repository to a previously-created indeX.............ouvvereririnininiinnnnnn. 99
Configuring index routingccevevviiiiiiiiiiiiiiiiiiiiiiiiiiieeeee 100
Directing documents to particular storage areasceeevveevreeereeeeenennnns 100
Configuring the index Server........cccccoeeeiiiiiiiiiiiiiiecciiiccceee, 100
Configuring the index agent............eevveveiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeee, 101
Managing Full-Text Indexing Componentsccccoeviiiiiiiiiiiniiiienennnns 103
Administration t00IS.......coeeieuiiiiiiiiiiiii 103

Content Server Full-Text Indexing System Installation and Administration Guide 5

Table of Contents

Chapter 9

Appendix A

Starting and stopping the full-text indexing systemcccccccvvviiiiiiiiiiiiiinnn. 104
Starting and stopping the index agent........ccccccevvviiviiiiiiiiiiiiiiiiiiniiiiiiinn 105
The dm_FTIndexAgentBoot jobccevviiienen, 106
Starting and stopping the index serverccccccvvvviiiiiiiiiiiiiiiiiiiiiiiiienennn. 106
Enabling and disabling index agents............cccceeieeeiiiiiiiiininininn. 107

Viewing or modifying index agent properties.........cccccuurermrnrnnnnnnnnnnnnnnnnnnnnn. 108

Viewing index server propertiescccceeeeeueriieeeiiieeeiiiiiiiieeeeeeeeineeee. 109

Reviewing the index agent and index server log filesccccccvvviiiiiiiiiiiinn. 109

Administration OPerationseeeeeeciiiiiiiiiieiiecie e 110
Configuring batched returns for non-FITDQL queries.............cocveverirennnnne. 110
Configuring duplicate checking batch sizecccccvviiiiiiiiiiiiiiiiiiiiiii 111
Enabling thesaurus searchingcccovviiiiiiiiiiiiiiiiiiiiiiii, 111

Creating the synonym fileccoevviiiiiiiiiiiiiiiiiiiiiiieeee 112
Importing the synonym file.........ccccceeeiiiiiiiiiiiinniiiiie, 113
LOGZING weviiiiiiiiiiiiiiiiiieiee e 114
LOg SAMPIE .cvvvvriiiiiiiiiiiiiiiiiiiiiiiiereeeeeeere e 115
Obtaining a list of indexable formats........ccccccevviiiiiiiiiiiiiiiiiiiiiiiiiiii. 117
Tracing full-text query operationsccccccvvvvviiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiinnnn. 117
Enabling tracing for the index agent.........cccccvvvvviiiiiiiiiiiiiiiiiiiiiiiiiiienennn, 117
If a node fails in a high-availability configuration............ccccceeeeeunnnnnnn... 118
Cleaning up old 10g filescccceeeiiiiieiiiiiii e, 118

Large file rejection eITOTccevvviiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieieieeeeeeeeeeeeeeee 118

Increasing Capacity ..cceeeeeeeeeeieiiiiiiiiiiiiieieieree e 119
Increasing indexing capacityeuveeiiiiiiiiiiiiiiiiiiiii e, 119
Increasing the number of exporter threads in the index agent.................. 119

Full-Text Indexing Components in Detailccccoeviiiiiiiiiiiiiniiiienennnns 121

The index server in detailcevvvveiiiiiiiiiiiiiiiiiiiiiiiiiiii 121
INAEX SEIVEr PTOCESSES ..ccvvrrrrrrrrrrrririiiiieiiriiererereeeeererereeeeeeeeeereeeereereeeeeeee, 121
Index server MOodes........ccovvvurriiiiiiiiiiiiiiiiii 122

The index agentceevviiiiiiiiiiiiiiiiiiiiiiiiiie s 123
Index agent ProCeSSeScceecuurriiiiieieeieiiiiiiee e 124
Index agent MOdesceevvieiiiiiiiiiiiiiiiiiiiiiiiiiiiereeeee 125

Normal MOdevvvveriiiiiiiiiiiiiii 125
Migration MOdecocvviiiiiiiiiiiiiiiiiiiiiiiiiiiii 125
File MOde....coiviiiiriiiiiiiiiiiieie 126

The full-text iNdeXeevvveviiiiiiiiiiiiiiiiiii 126
Partitions .euuuuueeeeiieiieiiie e 126
Q0] 1=l o) o - U 127

Directed TOUING ...ccvvvriiiiiiiiiiiiiiiiiiiiiiiiiiiiiieececceeeeeeee e 127

Repository objects and properties supporting full-text indexing................... 128
Fulltext index obJect......cccvviiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeee, 130
FT index agent config objectcccvvviiiiiiiiiiiiiiiiiiiiiiiiiiiiiiien 130
FT engine config ObjJectcccevvviiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieieieieeeeeeeceeeeeeeee 130
J IFQTW7: Ua To3 a o) o) 1=Tt = 130
Supporting properties of other objects...........ceeiiiieiiiiiiiiiiiiiiii 130

The a_full_text property.....cccccveeeeeeeiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeees 131

The fulltext_location Propertycccccvvvveiviiiiiiiiiiiiiiiiiiiiiiiiiiiiii 131
Initialization files.........iiiviviniiiiiiiiiiiii 131
Full-text entries in the server.ini filec.coovvviiiiiiiiiiiiiiiiiii 131

The dmfulltext.ini filecccoviiiiiiiiiiiiiiiiiii, 132
Pre-installation Checklistcccccoiii, 133
Full-text indexing checklist..........cccoiiiiiiiiiiiiiiiiiiiiiiiiii 133

Content Server Full-Text Indexing System Installation and Administration Guide

Table of Contents

Appendix B

Appendix C
Appendix D

Appendix E

Uninstalling the Index Agent and Index Serverccccoovviiiiiiiiiinniennnns 137
Order of uninstallingcccovuviiiiiiiiiiniiiiiiii e 137
Deleting an indexX agenteeueieieiiiiiiiiiiiiiiiii, 138
Deleting the index agent configuration program...........ccccceeeeeeeinrreeeeeeenennn. 139
Deleting an indeX SETVETuuuuiuiuiuiiiiiiiiiiiiiiiiiia, 139
Deleting a full-text IndeX........c.uueiiiiiiiniiiiiiiiiiiiiie 140
Sample Output of ftintegrity Utilitycccoeiiiiiiiiiiiiiiiiieriee 141
Supported and Unsupported Formats for Full-Text Indexing 145
Supported Languages for Full-Text Indexingcccooevvieiiiiiiiierennnen. 153

Content Server Full-Text Indexing System Installation and Administration Guide 7

Table of Contents

Figure 1-1.
Figure 2-1.
Figure 2-2.
Figure 2-3.
Figure 24.
Figure 3-1.
Figure 9-1.

List of Figures

Full-text indexing cOMPONENtScceevviiiiiiiiiiiiiiiiiiiiiiiiiiiiieieeeeeeeeeeeee e 16
Full-text high-availability configurationccccccevviiiiiiiiiiiiiiiiiiiii, 27
Multinode configuration with three nodes............cocovvviviiiiiiiiiiiiiiiiiiiiiii 30
Basic multinode configurationueueeeieieiiiiiiiiiiiiii s 31
Multinode configuration with index routing...........coeevvviiviiiiiiiiiiiiiiiiiiiiiii, 33
Activity on archived documents over timeccccoovviiiiiiiiiiiiiiiiiiiiiiiiene, 40
Full-text indexing object relationships..........cceeevviiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeennn, 129

Content Server Full-Text Indexing System Installation and Administration Guide

Table of Contents

Table 3-1.
Table 4-1.
Table 7-1.
Table 8-1.

Table A-1.
Table D-1.
Table D-2.
Table E-1.

List of Tables

Data characteristics of FIXML and index for 10 million documents 42
Required environment variablesccooiiiiiiiiiiiiiiiiiiiiiiii 50
State of the Index job arguments............ccceevvviiiiiiiiiiiiiiiiiiiiiiiiieee 90
Syntax of ImportDictionary.py SCriptcccuviviiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii 113
Checklist for Full-Text INndeXing..........ccceeerviiiiiiiiiiiiiiiiiiiiiiiiiiiiieieiiieieieieeeeeeeees 133
Supported document fOormats.........ccevviiiiiiiiiiiiiiiiiiiiiiii 145
Unsupported document formats..........eeeeeveeeieiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieieeeeeeeeeeenes 152
Supported languUaGESeeiiiiiiiiiiiiii 153

Content Server Full-Text Indexing System Installation and Administration Guide 9

Table of Contents

10 Content Server Full-Text Indexing System Installation and Administration Guide

Preface

Purpose of the manual

This manual contains information and instructions you need to install, upgrade, and
maintain the full-text indexing system used with EMC Documentum Content Server. It
describes decisions you must make and requirements that must be met before you install
the full-text indexing software. It also provides step-by-step instructions for installing
and upgrading the software in several different configurations.

Intended audience

This manual is intended for the person installing Content Server and the full-text
indexing software. Typically, a system administrator installs the software.

Revision history

The following revisions have been made to this document:

Revision history

Date Description

May 2007 Initial publication

Acknowledgements

This product includes software developed by the Apache Software Foundation
(www.apache.org). It installs Apache Tomcat.

Content Server Full-Text Indexing System Installation and Administration Guide 11

Preface

12 Content Server Full-Text Indexing System Installation and Administration Guide

Chapter 1

Introduction to Full-Text Indexing

This chapter presents a high-level overview of full-text indexing in Documentum deployments. It
describes the components involved in indexing and provides a summary of the indexing process.
The topics in this chapter are:

Benefits of an index, page 13

What is indexed, page 14

Full-text indexing components, page 14

About the full-text indexing process, page 16
What languages can be indexed , page 17

How particular characters are handled, page 18
Configuration options, page 19

Pre-installation planning decisions, page 20

Benefits of an index

A Documentum repository can contain millions of objects. Locating objects containing
particular values is a major challenge, whether you are trying to find a phrase, a date, or
aname. Carefully structuring the folders in the repository can make the task somewhat
easier by storing related objects together. DQL queries can rapidly locate objects
whose metadata contains the values for which you are searching. Finding important
information in a repository can still be like finding a single fish in a huge ocean.

A full-text index is one solution to the problem of rapidly locating the information you
need in a repository. Full-text indexing is a process that indexes all content files and
properties in a repository, creating an index that can be searched rapidly to retrieve
objects whose properties or associated content files contain the values for which you
are searching.

DQL, the Content Server query language, supports querying against the index. Queries
can be executed against the index only or against the index and the metadata tables. For

Content Server Full-Text Indexing System Installation and Administration Guide 13

Introduction to Full-Text Indexing

information about the types of queries supported by DQL, refer to the Search Development
Guide.

Content Server supports full-text indexing by default. However, Content Server itself
does not create or maintain the full-text index. You must install the full-text indexing
software components, which create and maintain the index. Full-text indexing
components, page 14, contains a description of these components. This manual (Content
Server Full-Text Indexing System Installation and Administration Guide) contains instructions
for installing or upgrading the full-text indexing software.

What is indexed

A full-text index is an index on the properties and content files associated with objects of
SysObjects and SysObject subtypes and, optionally, lightweight objects. Searching the
index allows the rapid retrieval of objects whose properties or associated content files
contain the values for which you are searching.

All properties of SysObject and SysObject subtype objects are indexed automatically.
That cannot be turned off unless you turn off all indexing.

If any indexed object has an associated content file, the content file is also indexed if
the a_full_text property of the object is set to TRUE and the format of the content file
is indexable. If the a_full_text property is set to FALSE, the content file is not indexed.
Content files in all storage areas are indexed.

If you install the full-text system with grammatical normalization enabled, then

the index will contain normalized entries for terms within the documents also. For
information about grammatical normalization and how it affects searches, refer to the
Search Development Guide.

Phonetic searching is not supported.

Full-text indexing components

Full-text indexing in a Documentum repository is controlled by three software
components:

* Content Server, which manages the objects in a repository, generates the events
that trigger full-text indexing operations, queries the full-text indexes, and returns
query results to client applications

* The index agent, which exports documents from a repository and prepares them
for indexing

14 Content Server Full-Text Indexing System Installation and Administration Guide

Introduction to Full-Text Indexing

e The index server, which is a third-party server product that creates and maintains the
full-text index for a repository. The index server also receives full-text queries from
Content Server and responds to those queries.

The index server’s operations are processor- and memory-intensive, and it is
therefore recommended that you install the index server on a host other than the
Content Server host. Multiple index servers may be installed on a single UNIX or
Linux host, provided the directories, ports, and environment variables for each
index server are configured properly. Only one index server can be installed on
a Windows host.

Figure 1-1, page 16, illustrates the relationships among the Content Server, index agent,
and index server. For indexing, the Content Server sends metadata and content for
indexing to the index agent, which in turn packages that information as DFTXML and
sends it to the index server. The index server processes the information and updates
the index. For queries, Content Server sends the query to the index server, and the
index server returns the results to Content Server. (The staging area is not a software
component, but the directory used by the index agent and the index server. The index
agent places content there for the index server to pick up to indexing.)

Content Server Full-Text Indexing System Installation and Administration Guide 15

Introduction to Full-Text Indexing

Figure 1-1. Full-text indexing components

Index Dftxrml

Agent msg [

3 Index

e Server
Staging
Area /
Meta data
& content Sl
results Index

Z

Content
Server

4

About the full-text indexing process

The full-text index is updated on a continuous basis, provided that all of the software
components are running. No special administrative tasks must be performed to ensure
that the index is updated and current.

The indexing process begins when an object is added to the repository, removed from
the repository, or updated in a way that might affect the full-text index. The process in
response to the changed object is:

16 Content Server Full-Text Indexing System Installation and Administration Guide

Introduction to Full-Text Indexing

1. Content Server generates a queue item and adds it to the work queue for the index
agent.

2. The index agent acquires the queue item from its work queue.

3. The index agent retrieves the object associated with the queue item from the
repository and creates a DFTXML representation of the object. DFTXML is an XML
format that contains the object’s properties and the location of the object’s content
file, if any.

If you are using distributed content and a content file is located at a remote
component of the distributed store, the content file is copied to the distributed store
component located at the primary site.

4. The index agent sends the DFTXML representation of the object to the index server.

5. The index server retrieves the content file associated with the object from the
repository, if it has one, and creates its own representation of the content in the file
and properties of the object. This internal representation is called FIXML.

6. The index server notifies the index agent that the FIXML is created and the object
will be indexed, and the index agent destroys the queue item for the object.

7. The index server indexes the content file and its properties, adding its information to
the full-text index.

The object is now searchable, but note that the index server does not provide any
indication that an object is searchable.

The indexing process is not destructive to existing content or attributes in the repository.
The content files and object attributes are read, but not modified, during the indexing
process.

Large file constraint

The full-text indexing system rejects for indexing any FIXML file larger than 10MB If that
file is 10MB or larger, neither the content nor the properties of the object represented
by the rejected FIXML file are indexed.

What languages can be indexed

Content files and properties in all supported languages are indexed by default. All
standard Unicode character sets are supported. No special configuration is necessary.

Content Server Full-Text Indexing System Installation and Administration Guide 17

Introduction to Full-Text Indexing

Two right-to-left languages are supported for full-text indexing with certain limitations:
Hebrew and Arabic. Other right-to-left languages cannot be indexed. For non-binary
formats, only logical text representation is supported; visual text representation is not
supported. For those binary formats listed below that support right-to-left text in the
native format, support is provided for indexing Hebrew and Arabic text, with the
exception that PDF files cannot be indexed.

Note: Grammatical normalization is available only for a subset of the supported
languages. Grammatical normalization, page 19 briefly describes grammatical
normalization. For a list of languages for which grammatical normalization may be used,
refer to Whether to use grammatical normalization , page 43. The Search Development
Guide describes the implementation of grammatical normalization in detail.

How particular characters are handled

18

The following Unicode characters are indexed and are searchable:

¢ Alphabetic characters

¢ Numeric characters

¢ Extender characters
Extender characters extend the value or shape of a preceding alphabetic character.
These are typically length and iteration marks.

® Custom characters enclosing Chinese, Japanese, and Korean letters and months

These are derived from a number of custom character ranges that have bidirectional
properties, falling in the 3200-32FF range. The specific character ranges are:

— 3200-3243
— 3260-327B
— 327F-32B0
— 32C0-32CB
— 32D0-32FE

Other characters, including punctuation, accent, and diacritical marks, and characters
such as | and #, are not indexed or searched. Such unsearchable characters are removed
from the indexed text and treated as if they are blank spaces. The index server treats
the following characters as white space:

LR#5%° , .65 () —+=<

When these characters appear in indexable content, they are replaced by white space.
For example, when the email address MyName@company.com is indexed, it appears as

Content Server Full-Text Indexing System Installation and Administration Guide

Introduction to Full-Text Indexing

“MyName company com” in the index. The text is treated as three words. Documents
returned by a search for MyName@company.com are treated as if they contain the words
“MyName company com.”

Note: Because the index treats that email address as three words, the document
containing MyName@company.com would also be returned if the user conducted a
phrase search on “MyName company com”,

If a special character is included in a query, it is removed. For example, querying on
Richard+Dodd would return a document containing the text Richard=Dodd because the
+ and = signs are both replaced by a blank space. If a search term includes an accent

or diacritical mark, the search returns all matching words with or without the accent
or diacritical mark.

Configuration options

There are several configuration options for the full-text system that provide enhanced
control of the indexing or searching capabilities. You can configure:

* Whether or not to use grammatical normalization
® Specific rendition formats to index
® Processing of batched returns for non-FTDQL queries

* A thesaurus, to implement thesaurus searching

Grammatical normalization

Grammatical normalization ensures that all forms of a word are indexed and that a search
for objects that have one form of a word also returns objects with other forms of the word.

When the full-text components are installed, you are offered the choice of enabling
grammatical normalization. If you choose to enable it, grammatical normalization

is enabled by default for English, Japanese, and Korean. You can choose additional
languages and what combination of terms you wish to normalize. The default term
choice is “nouns”, meaning that the system will normalize all nouns found while
indexing and specified in search queries. Using the default of normalizing nouns only is
recommended.

For a full list of languages for which grammatical normalization may be enabled, refer
to Whether to use grammatical normalization , page 43. The Search Development Guide
describes the implementation of grammatical normalization in detail.

Content Server Full-Text Indexing System Installation and Administration Guide 19

Introduction to Full-Text Indexing

Rendition formats to index

Documents have content files in many formats. Some documents have primary content
that is not indexable, but also have indexable renditions of that content. Other documents
have indexable primary content and indexable renditions. By setting properties within
the format objects for the various formats, you can direct Content Server to index all
indexable renditions of a document or only preferred renditions. For instructions on
setting format object properties to configure which renditions are indexed, refer to
Configuring format objects to specify which renditions are indexed, page 96.

Processing of batched returns

When a query is run against both the full-text index and the database, the results,
with certain exceptions, are processed by Content Server in batches. The processing is
performed to remove duplicates if needed and to filter the results for security purposes.
You can configure the size of these batches. For more information about the batches,
their use and configuration, refer to Configuring batched returns for non-FTDQL
queries, page 110.

Thesaurus usage

Adding a thesaurus to a full-text indexing system allows you to define which words
are returned by a particular search. For example, suppose the thesaurus provides the
following synonyms for “cat”: feline, polecat, cougar, and bobcat. When a user searches
on the term ’cat’, the full-text engine will return documents containing feline, polecat,
cougar, or bobcat also.

The thesaurus is implemented by adding a synonym file to the full-text installation. For
instructions, refer toEnabling thesaurus searching, page 111.

Pre-installation planning decisions

Before you create a new repository in which full-text indexing is enabled, there are
several decisions that you must make. For example, you must determine the appropriate
deployment configuration for the index, including which hardware to use for the index
agent and index server, and whether you want to use grammatical normalization and if
so, which terms do you want to normalize.

20 Content Server Full-Text Indexing System Installation and Administration Guide

Introduction to Full-Text Indexing

For a detailed discussion of the indexing deployment models and guidelines for the
choices you must make, refer to Chapter 2, Full-Text Indexing Deployment Models

Content Server Full-Text Indexing System Installation and Administration Guide 21

Introduction to Full-Text Indexing

22

Content Server Full-Text Indexing System Installation and Administration Guide

Chapter 2
Full-Text Indexing Deployment Models

Full-text indexing is a resource-intensive process. The configuration of the major components of the
indexing system (Content Server, index agent, and index server) has a significant impact on the
performance of full-text searching. EMC Documentum supports different types of deployment
models, each having different hardware and configuration requirements, and each providing a
distinct set of benefits. Your business needs determine which full-text indexing deployment model
is best suited to your implementation, as you make appropriate trade-offs between cost, system
complexity, performance, and reliability.

This chapter discusses these full-text indexing deployment models and describes the considerations
that help you determine which model is appropriate to your needs.

The models discussed in this chapter are:

* Basic deployments, page 24

In this model, all three indexing components run on the same host or with a single index server
serving a single repository

¢ Consolidated deployments, page 25

In this model, a single index server serves multiple repositories.

¢ High-availability deployments, page 26

This model has multiple index servers redundantly indexing a single repository to guard against
system downtime.

* Multinode deployments, page 29

In this model, subprocesses within the index server are installed across multiple machines
to provide improved performance.

Note: This model requires assistance from Documentum Professional Services to install.

Content Server Full-Text Indexing System Installation and Administration Guide 23

Full-Text Indexing Deployment Models

Basic deployments

The basic indexing model consists of a single index agent and index server supporting
a single repository. The index agent and index server may be installed on the Content
Server host or on a different host. This model is also called a single-node deployment,
because the index server is installed on one host computer.

Documentum supports the following two configurations for the full-text indexing
components:

e Content Server, repository, index agent, and index server on a single host

* Content Server and repository on one host with the index agent and index server
on a separate host

Each repository requires its own index agent. Consequently, if you have multiple
repositories in a single Content Server installation, you must install a separate index
agent for each repository. However, a single index server can serve multiple repositories.
Deployments in which a single index server services multiple repositories are called
consolidated deployment and are described in Consolidated deployments, page 25.

You can also install redundant indexing systems to support a single repository, in
a high-availability configuration. For more information, refer to High-availability
deployments, page 26.

Benefits

Basic deployments are easily installed and require little or no manual configuration. The
installation procedure is fully supported.

The basic deployment is suitable for a development environment or a production
repository with a low-to-medium volume of content created or modified.

A basic deployment may be more easily backed up and restored than a consolidated
deployment, in which multiple repositories are indexed by a single index server, because
the index data for different repositories cannot be separated out in a consolidated
deployment.

In a generic content-management environment, it is expected that the ingestion rate is
low. Therefore, a low latency requirement can be met by a basic deployment. However,
note that the larger the index, the greater the save-to-search latency period.

If the index agent and index server are not on the Content Server host, indexing
performance is improved by sharing the drive containing the repository’s file stores with
the indexing system host. Instructions for the manual configuration required are in
Deciding whether to share the drives where content files are located, page 52.

24 Content Server Full-Text Indexing System Installation and Administration Guide

Full-Text Indexing Deployment Models

Use considerations

Using a basic full-text indexing deployment is not recommended if:

You have more than 20 million distinct objects that must be full-text indexed.

Note: Having less than 20 million objects to index does not guarantee that a
basic deployment is the correct configuration for your enterprise. Other data
characteristics, such as the index size, affects the deployment decision also.

The ingestion rate is expected to be high.
The estimated size of the final full-text index is expected to be greater than 500 GB.

Note: The hardware hosting the index must be sufficiently powered in relation to
the size of the index. For example, an index of 500GB may not be successful on a
basic deployment if its host is underpowered —indexing may take a long time, and
querying may time out.

The target repository is an archival repository.

For more information on archival environments, refer to Archival repositories,
page 39.

If you have multiple repositories configured in an installation on a single host, and
you want each repository to have its own index server, each repository will require a
separate host machine for its index agent and index server. This requirement derives
from the constraint that only one index server may reside on any particular host.

An alternative in such cases is to use a consolidated deployment, in which all
repositories use a single index server. Consolidated deployments are described
in Consolidated deployments, page 25.

Consolidated deployments

In a consolidated deployment, a single index server provides search and indexing
services to multiple repositories. The repositories may be in the same Content Server
installation, in different installations on UNIX hosts or on different hosts. However, all
repositories must be the same Content Server version

Consolidated deployments are easily installed, by configuring an index agent for each
repository, each of which directs data to a single index server.

Content Server Full-Text Indexing System Installation and Administration Guide 25

Full-Text Indexing Deployment Models

Benefits

Consolidated deployments require little or no manual configuration. Consolidated
deployments reduce overhead by serving multiple repositories.

Consolidated deployments are suitable for a development environment or for production
repositories with a low to medium volume of content created or modified.

Consolidated deployments are supported in a high-availability configuration.

If the index agent and index server are not on the Content Server host, indexing
performance is improved by sharing the drive containing the repositories’ file stores
with the indexing system host. Instructions for the manual configuration required to
share drives are in Deciding whether to share the drives where content files are located,
page 52.

Use considerations

The index data for each repository in a consolidated deployment cannot be separated
and cannot be discretely backed up or restored. If there is a business or capacity need to
separately index or reindex one or more of the repositories, the index must be deleted
and each repository reindexed.

If the total amount of indexed data begins to exceed the capacity of the host, migrating to
one or more larger systems may be required.

A consolidated system that is configured as a single-node system has the same total
volume and size constraints as a basic deployment configuration.

A consolidated system that is configured as a multinode system has the same total
volume and size constraints as a single-repository on a multinode system.

High-availability deployments

A high-availability deployment is a deployment in which two separate, fully-redundant
indexes are created by running two or more indexing systems against a particular
repository. If one of the indexing systems fails and the others continue to run, all search
and indexing operations continue on the surviving systems.

High-availability deployments are supported in combination with consolidated
deployments and multinode deployments.

In a high-availability configuration, separate instances of the indexing software are
installed on two hosts (for example, host A and host B). Duplicate queue items

26 Content Server Full-Text Indexing System Installation and Administration Guide

Full-Text Indexing Deployment Models

are generated for each indexable event. One queue item per event is queued to
dm_fulltext_index_user and processed by the index agent on host A. The other queue
item for each event is queued to dm_fulltext_index_user_01 (shown as dm_fulltext_user2
in the figure) and processed by the index agent on host B. The index servers host A

and host B maintain separate, redundant indexes. Figure 2-1, page 27, illustrates this
configuration.

Figure 2-1. Full-text high-availability configuration

Host A

Index Agent A and Index
Server A, Index Agent
picks up events from

/ dm_fulltext_user.

- ~, eﬁ@;ﬂ“ Is_standby=Falsa
AN
/ umja}i T
|
Single Repository and Content]
S M ————— Full-Text QUEMY —— —— ——— —
Servers for the Repository S wik TRt e
\’“er‘ Host B
Texy g
\. - *Ehgn Is_standby=Tre

Index Agent B and Indax
Server B. Index Agent
picks up events from
dim_fulltext_user2.

The index on host A is considered the default index and the index on host B is considered
the standby index. All full-text queries are directed to the index server on Host A.

If the indexing software on host A or host B fails, or if one of the hosts fails, the indexing
software on the other host continues to process queue items and update the index.
Indexing operations for the repository continue automatically on the remaining system.
When the host or software that failed is again running, the index agent on that host
acquires and processes any queue items that accumulated while the system was down.

If host A fails or if the indexing software on host A fails, querying must be manually
switched to the index server and index on host B by making the standby index the default
index. Refer to If a node fails in a high-availability configuration, page 118, for full details.

Note:

Content Server Full-Text Indexing System Installation and Administration Guide 27

Full-Text Indexing Deployment Models

On the high-availability configuration and the load balancer — If a load balancer is
used, there is no need to designate one index as a standby index. Additionally, with

a load balancer, queries are directed automatically to either repository. For more
information about the load balancer, refer to the whitepaper called Full-Text High
Availability Deployment.

In a high-availability configuration, there is no guarantee that the indexes on each

host are identical at a particular point in time. The index agents serving each index
may acquire queue items at different rates, or network traffic may affect the speed of
processing by an index agent or index server. Therefore, a query may return different
results depending on the state of the index and which index server responds to the query.

High-availability configuration is supported with a consolidated configuration.

High-availability configuration is not supported with Microsoft Windows Cluster

Services or in other clustering environments.

To create a high-availability deployment, several actions are required:

* An additional index queue user, dm_fulltext_index_userN is created for each Nth
index agent/index server pair.
For example, when two indexing systems are running, the two queue users are
dm_fulltext_index_user and dm_fulltext_index_user2

* The queue_user element in the indexagent.xml file in the additional index agent
installation is modified to find the additional queue user.

Benefits

A high-availability deployment:
* Increases query availability, because some support is provided for failover.

* Provides redundancy if a host fails.

Installing a standalone high-availability deployment or a high-availability deployment
with a consolidated deployment is supported. Documentum Administrator 5.3 SP2 or
later provides tools for managing multiple index queues and for stopping and starting
multiple index agents and index servers.

Installing a high-availability deployment in conjunction with a multinode deployment
requires Documentum Professional Services for the multinode installation.

28 Content Server Full-Text Indexing System Installation and Administration Guide

Full-Text Indexing Deployment Models

Use considerations

High-availability configurations are not supported on Microsoft Cluster Services. Some
manual configuration is presently required to fail over querying if one of the hosts or one
of the indexing installations in a high-availability deployment fails.

A high-availability deployment also requires multiple computers.

Multinode deployments

A multinode deployment is a full-text indexing configuration in which the index server
is installed across multiple hosts and all of its subprocesses work together.

Typically, the index server’s administrative processes are installed on one node, while
document processors, indexers, and search servers are installed on as many nodes as are
required by the anticipated size of the repository and index and the required throughput.
The index data is spread out over the nodes in the installation. (In other words, each
node contains unique index data.)

A complete multinode deployment is referred to as an index server instance. Each node
on which a document processor, indexer, and search server is installed is referred to

as a search instance. The Content Distributor on the administrative node determines
on which node each document will be indexed and routes the documents to the
correct document processor. The document processors, which each have the ability to
communicate with all indexers in the installation, then route the FIXML representation
of the document to the correct indexer.

Queries are processed in parallel by the index server instance, increasing querying
efficiency. The QR Server on the administrative node issues queries to all search servers,
then collects results and returns them to the Content Server. Additional nodes can easily
be added to a multinode deployment, increasing both indexing and querying capacity.

While multinode deployments are supported at runtime, you must use EMC
Documentum Professional Services to design and install any multinode configuration.

Figure 2-2, page 30, illustrates a three-node indexing deployment. Node 1 hosts the
administrative processes, including the content distributor and query and results server
(QR server). Each node hosts a document processor, indexer, and search server as well as
an index column.

The index agent passes DFTXML to the content distributor, which communicates with all
document processors. The content distributor routes the document for processing. Each
document processor communicates with all indexers. When the document processor
concludes its work on the document, it passes the document to the correct indexer. The
indexer updates the index on the indexer’s node.

Content Server Full-Text Indexing System Installation and Administration Guide 29

Full-Text Indexing Deployment Models

When Content Server sends a query to the QR server, the QR server routes the query to
the search servers on all nodes. The search servers send query results to the QR server,
which combines the results and returns the results to the Content Server.

Figure 2-2. Multinode configuration with three nodes

4) (Index Server (Node 1) Query B
| | and

Recults [
I. Server
Content Y

Server

Inden Content Diocument
Agent Distributor Processor
““—;r")
h
Content | Document
Store *| Processar
r
o | Document
"l Processor
\ p,
Benefits

Multinode deployments are best used where large volumes of data must be indexed and
searched, high performance is required, and the index is expected to be 250-500GB

or greater. Use the guidelines and information in the Sizing Documentum 5.3 Full Text
whitepaper to determine whether you require a multinode configuration.

Use considerations

A multinode deployment requires substantially more advance planning and analysis
than other deployment configurations. Installing a multinode configuration requires
Documentum Professional Services. The proposed configuration must be submitted

30 Content Server Full-Text Indexing System Installation and Administration Guide

Full-Text Indexing Deployment Models

to EMC Documentum for approval. Implementation cycles are longer and resource
requirements are greater, in terms of the number of computers, disk space, and memory.

Supported multinode deployments

Documentum supports two models of multinode deployment. They are described in the

following sections.

Basic multinode model

In this configuration, the administrative node includes a content distributor process

that determines where incoming objects will be placed among the nodes. The content
distributor routes documents to the docprocessors on each node in a predetermined
order. Objects are typically directed sequentially across all nodes. For example, if there
are four nodes, the first object is directed to the first node, the second to the second node,
and so on, with the fifth object directed to the first node. The docprocessors route FIXML
to the correct indexer process. All nodes taken together constitute the index server
instance, while the nodes running only a document processor, indexer, and search server
are search instances. Figure 2-3, page 31, illustrates this configuration.

Figure 2-3. Basic multinode configuration

Administrative
Services

Query &
Results Servers

Document
Processors

Indexer
Search Servers

Document
Processors

Indexer
Search Servers

Document
Processors

Indexer
Search Servers

Content Server Full-Text Indexing System Installation and Administration Guide

Document
Processors

Indexer

Search Servers

31

Full-Text Indexing Deployment Models

This model is comparatively easy to deploy, with full installer support and the XML
configuration files already set up. (Entries must be added to the XML configuration
files for each node.) The model provides increased indexing throughput and a shorter
latency period than a basic installation.

However, the basic multinode model has some considerations to keep in mind:
¢ Allnodes are live and all backups must be full backups.
e To add a node after the initial deployment, the index must be rebuilt from the

intermediate FIXML format in order to ensure that the data is balanced across nodes.

Rebuilding the index also ensures that a document updated after the addition is
stored in the same node as its previous version. Otherwise, if the document is routed
to a different node, it is treated as a new document and a query may return duplicate
rows for that document.

Multinode configuration with index routing

Index routing is a means of directing index data to specific nodes based on parameters
you define in the repository and on the index server host.

Setting up a multinode configuration to include index routing provides several
advantages:
¢ Control of where index data is stored.
¢ Easier to add additional nodes
e Allows older parts of an index to be less resource-intensive than current parts
* Nodes may be closed off by suspending indexing.
Such nodes are backed up when they are closed off, but not after, because they
are not updated.
¢ Only live nodes need to be backed up.
Note: If you change the routing, you must rebuild the index. If you do not, any
documents that are updated after the routing change may be stored in a different column

and treated as a new document. This can lead to duplicate rows returned for those
documents by a query.

In archiving and other high-volume indexing scenarios, it can be beneficial to direct
particular types of documents or documents produced during a discrete time period to a
particular storage area, then map that storage area to a particular index collection and
column in a multinode configuration. This routes documents to the particular index
collection and column.

For example, a business may elect to store PDF documents in filestore_01, Word
documents in filestore_02, and Excel documents in filestore_03. (File stores are the
most common type of storage area in a Documentum repository.) To accomplish this,

32 Content Server Full-Text Indexing System Installation and Administration Guide

Full-Text Indexing Deployment Models

the a_storage_type attribute of the SysObject is set on checkin for documents in each
format. Documents are then stored in the correct file store by format. Another common
archiving scenario is to direct documents to a particular storage area based on the time
period during which the document enters the repository. File stores and index nodes are
added as needed. For example, filestore_01 might contain documents checked in from
January 1, 2006 through June 30, 2006 and filestore_02 might contain documents checked
in from July 1 through December 31, 2006. A particular node can become inactive for
indexing purposes once the end date is passed and documents begin to be routed to a
new file store.

The index agent is then configured in the indexagent.xml file to direct objects to a
particular logical collection at index time. Multiple file stores may be directed to the same
collection. The index server is configured with the routing.cfg file to map a particular
logical collection to one or more columns on one or more hosts. The routing.cfg file maps
a collection to a column. An entry in the NodeConf.xml file on the administrative node
notifies the status server of the requested physical partition of the logical collection.

Figure 2—4, page 33, illustrates the functioning of multinode configurations with index
routing.

Figure 2-4. Multinode configuration with index routing

Map ‘collection_foo’ to

a_storage type = ‘fon’ colunmn #2 Coal 1
Dcld - 0$0bE32a200C 5229
Lozl — (5 bE 3205000 lia Index Adrinistraliva
Servites
- Agent
Cuocarmsal
Processarns
Inceer L
Eazreh Eorvars -
Map: a_starage_tpe = Toa’
to ‘collectdon_foo' In ditanl e S e Cal 2

For instructions on configuring index routing, refer to Configuring index routing, page
100.

Content Server Full-Text Indexing System Installation and Administration Guide 33

Full-Text Indexing Deployment Models

High-availability multinode

A basic high-availability deployment is described in High-availability deployments,
page 26. High-availability deployment may be combined with multinode deployments
to provide redundancy. In such a deployment, two index agents process duplicate queue
items. If you are using a load balancer, it can interpret and respond to error messages
from the index servers, to ensure that index information is not passed to a multinode
installation that has failed. For information about the load balancer feature, refer to the
whitepaper Full-Text High Availability Deployment.

Unsupported multinode configurations

The following multinode configurations are not supported:

e Multiple index server search instances on the same host, also known as multiple
columns on the same host

® Multiple search rows
Multiple rows have limited utility for high availability. The index server’s
administrative services cannot be made highly available within a single instance of

the index server. If a particular search row indexer fails, the duplicate indexer also
fails.

The configurations described in Supported multinode deployments, page 31 are the only
configurations supported by EMC Documentum.

If these models do not meet your requirements

If the full-text indexing models described in this chapter do not meet the requirements
of your installation, EMC Documentum Reporting Services may meet your needs.
EMC Documentum Reporting Services is a product designed for particular types of
installations, characterized by the following:

® Suitable for managing fixed content reports
These are reports generated by other computer systems, usually in formats such as

PDF, TIFF, and text. The content files are opened, and data is pulled from fixed
format fields. This data is then loaded into a relational database.

¢ Not suitable for non-archival environments
e Content files contain data in fixed fields
¢ High ingestion volume

* Low query rates

34 Content Server Full-Text Indexing System Installation and Administration Guide

Full-Text Indexing Deployment Models

e Highly selective queries, such as lookups on customer IDs

¢ Content not modified after intake

Content Server Full-Text Indexing System Installation and Administration Guide 35

Full-Text Indexing Deployment Models

36 Content Server Full-Text Indexing System Installation and Administration Guide

Chapter 3

Planning considerations

This chapter discusses the considerations that determine which of the deployment models you will
choose to use for the full-text indexing system. The topics in this chapter are:

* Planning overview, page 37
* Determining the configuration, page 38
* Whether to use grammatical normalization , page 43

For information about the deployment configurations supported for full-text indexing installations,
refer to Chapter 2, Full-Text Indexing Deployment Models

Planning overview

The following questions must be answered before you install a full-text indexing system
for a repository:

¢ Which deployment model to use

The deployment model you choose will depend on the answers to the following
questions:

— What is the purpose of the repository
Purpose of the repository, page 38, discusses this consideration.
— How many documents will be indexed
— Number of documents to be indexed, page 41 discusses this consideration.

How large are the documents to be indexed and how much indexable content do
they contain

Size of documents and amount of indexable content, page 41, discusses this
consideration.

— What file formats are to be indexed

Content file formats to be indexed, page 42, discusses this consideration.

Content Server Full-Text Indexing System Installation and Administration Guide 37

Planning considerations

— What quantity of metadata (property values) will be indexed
Quantity of metadata to be indexed, page 42, discusses this consideration.
— What are the business requirements regarding latency

Indexing latency requirements, page 43, discusses this consideration.

¢ Which hardware to use for the index agent and index server

Sizing the full-text indexing installation appropriately, based on the estimated size of
the index and the chosen deployment model, is very important. An installation that
is installed on underpowered machines or not appropriately configured can result
in poor performance or query timeouts for users. System sizing, page 45, provides
some guidance. Additionally, EMC Documentum provides a sizing spreadsheet that
can help you determine the appropriate machines and sizing for your installation.
This spreadsheet is available for downloading through Powerlink.

It is recommended that you use a host other than the Content Server host for the
index server.

The index agent and the index server may be installed on a different supported
operating system from the operating system on which Content Server is installed.
The index agent and index server must be installed on the same host.

e Whether to mount or share the drives where the content files are located with the
index server

Refer to Deciding whether to share the drives where content files are located, page
52, for more information.

e Whether to use grammatical normalization

Whether to use grammatical normalization , page 43, discusses grammatical
normalization.

Determining the configuration

Use the guidelines in this section to choose a deployment configuration.

Purpose of the repository

Typically, a repository is either used for storing documents that are accessed regularly, to
support on-going daily business processes or for storing archived documents that are
not accessed on a daily basis. This section discusses how these two types of uses affect
decisions about the full-text indexing system.

38 Content Server Full-Text Indexing System Installation and Administration Guide

Planning considerations

On-going content management repository

An on-going content management deployment is used to support on-going business
functions. The repository generally contains a small to moderate number of documents
(less than 10 million) that change over time. These documents enter the repository at

a fairly slow rate of speed and may be updated from time to time. The documents are
created, edited, and deleted by individuals within the organization. The content files are
in the mix of formats required by the organization’s business needs, and may include
such formats as Word, Excel, PDF, Visio, JPEG, and other graphic formats, AutoCad, text,
XML, and other commonly-used formats.

In such a repository, the content files and metadata are updated and versioned on a
regular basis. Individuals query the repository in order to locate particular documents
on an ad-hoc basis.

The full-text indexing needs of such a repository may be met by a variety of
configurations, depending on the size of the repository, the volume of new material in
the repository, the latency requirements, and the volume of queries issued by users.

Archival repositories

An archival repository is used to store large volumes of unchanging data. Such
repositories typically contain up to 100 million documents and require high throughput.
The content files are in a limited number of formats (for example, TIFF, PDF, and text) and
are typically generated by computers, scanners, and software applications rather than
individuals. The data may consist of email, bank statements, credit card statements, and
other fixed-format or fixed-field documents. The content files are rarely, if ever, modified.

An archival repository requires a full-text indexing solution that has the capacity to index
large quantities of data at high speeds. The requirements for querying capacity is driven
by particular applications. For example, legal discovery and data-mining applications
may require a high capacity for full-text querying. Other applications may search
metadata values only, not the content files.

Considerations for an archival repository

Use the following information to help size and configure an archiving deployment.

Content Server Full-Text Indexing System Installation and Administration Guide 39

Planning considerations

Choosing CPU size and capacity

The data stored in an archival repository may be ingested rapidly or at a moderate rate.
The quantity of data increases over time and the indexing system may need to maintain
hundreds of millions (or even billions) of documents. But all cases, the data is stored
for a long period of time, due to specific business needs or in response to regulatory or
compliance requirements, and is most likely to be changed closer in time to when it is
added to the repository than later, long after it was added. Older data may be purged
from the system when the legally-mandated retention period has been exceeded. Figure
3-1, page 40, illustrates this principle.

Figure 3-1. Activity on archived documents over time

Multinode

40

Wanipulation
activity naturally
L+ occurs for the

M/ recent most
| % days/menths _ _
| Mam_pulahon to clder
Amount of data is rare and of
activity [y very small valums
| until *disposition”
| |I .,"'
J L ¥
Mozt recent Oldest data
time

Define computer system resources (CPU, memory, I/O capacity) according to the
required indexing throughput rather than according to the size of the index itself. The
anticipated size of the index will determine the required disk space, however.

considerations

In planning the indexing configuration for an archival repository, another issue must
be taken into consideration. When a multinode configuration is used, the index data is
directed to different nodes, so that each node contains a mixture of old and new data.
The mix changes over time, so that after four years, some three-quarters of the data will
be more than one year old and thus least likely to change or be needed for searching.

Adding documents is a comparatively expensive process, and it is therefore
advantageous to isolate older data. This can be done by using directed routing to route
documents to specific collections and columns, localizing data by age to the collections.
Directed routing, page 127, contains full details. Configuring directed routing is a

Content Server Full-Text Indexing System Installation and Administration Guide

Planning considerations

manual process requiring Documentum Professional Services. The process is described
in Configuring index routing, page 100.

Number of documents to be indexed

The number of documents to be indexed in a particular period must be taken into
consideration in deciding on both the index server configuration and the hardware
you use.

The total number of documents to be indexed impacts the software in several ways.
The most important is the potential to run into the per-process memory limits of the
search processes that work on the largest of the partitions. These processes perform
complex caching operations, and one of the caches grows in proportion to the size of the
partition. At 10 million documents, this cache reaches 1/2 GB. At 20 million documents,
the cache grows to 1 GB. The search server process is limited to 2 GB of virtual memory,
which needs to be used for thread stacks and other caches, as well. Consequently, if the
document load projections are between 10 and 20 million documents, then you should
consider using a multinode configuration.

Document throughput may also make a multinode deployment desirable. Throughput
is the rate at which new objects are added to the system or submitted for indexing.
Higher throughput requirements result in higher processing costs. When installed on a
dual-processor host, the index server is able to index about 60,000 documents per hour in
a basic deployment (depending on the size of the documents and the hardware on which
the system is installed). In a multinode configuration, the index server’s throughput

can be increased significantly. However, when a second node is added to the index
server, the speed and capacity of the machine hosting the RDBMS database may need

to be increased. For additional guidelines and information, refer to the Full-Text Agent
Throughput whitepaper.

Size of documents and amount of indexable content

The size of an index is determined by the size of the largest documents indexed and
the amount of indexable content in the documents. A very large file can contain a
small amount of indexable content — text and date information — and a large amount
of unindexable content, such as graphics.

Table 3-1, page 42, lists a sample of the figures used to size an index. The example is
based on documents of a custom type in which most of the documents were associated
with very small content files. More than 10 million documents are indexed, but 85% of
the size of the index results from the 20 largest files, and very likely the index itself

Content Server Full-Text Indexing System Installation and Administration Guide 41

Planning considerations

would be significantly larger, up to twice the size, if the documents were typical sizes
rather than artificially small sizes.

Table 3-1. Data characteristics of FIXML and index for 10 million documents

Characteristic Sample value
Number of documents 10,000,000—plus
Number of files in the FIXML area 100,000

Total size of FIXML area 5.68 GB
Largest file in FIXML area 50 MB

Number of files in the index area 3,178

Total size of index area 60 GB

Largest file in the index area 14 GB

Total index size occupied by 20 largest 51 GB, or 85% of the total index

files
If the documents to be indexed are very large, we recommend a multinode deployment
so that the index itself is spread out over multiple hosts.

Content file formats to be indexed

Because the amount of indexable content in different file formats varies, the mix of
content files in a particular repository influences the size of the resulting index. For
example, graphic files generally do not contain indexable content, so that only the
document metadata is indexed. XML files are essentially text files and contain a high
percentage of indexable content. The index for a repository containing a high percentage
of XML, text, or word processing files will typically be larger than the index for a
repository of similar size containing primarily graphic files.

Quantity of metadata to be indexed

If the metadata associated with documents to be indexed includes large quantities of
string data or a large number of custom attributes, the size of the index increases.

42 Content Server Full-Text Indexing System Installation and Administration Guide

Planning considerations

Indexing latency requirements

Indexing latency describes the period of time from when an object is saved in the
repository to when the object is searchable. Your business may require a low-latency
environment, in which an object becomes searchable as fast as possible. Typically, this is
a requirement for production systems in which many searches are performed and many
objects are created and edited. In an archiving scenario, large quantities of unchanging
business data are stored, but rarely or never modified. In such an environment, a longer
latency period may be acceptable.

Certain indexing configurations may reduce save-to-search latency. However, some
strategies increase the resource requirements and risk in an indexing deployment.

If a business requires the shortest possible latency period and the content to be indexed
is generic business formats, a multinode deployment provides a faster save-to-search
time than a single-node deployment. If the content to be searched contains fixed fields
rather than free text, a solution other than multinode full-text indexing may be more
appropriate.

If a high-latency indexing environment is acceptable, some performance advantages
may be gained by using batch processing. Indexing may be suspended, so that FIXML
continues to be produced but new objects are not added to the index. When indexing is
resumed, the new FIXML is processed and the new objects are added to the index.

Whether to use grammatical normalization

Grammatical normalization is a process that the full-text indexing system performs when
indexing and when processing a query if the feature is enabled. The process ensures
that queries return not only exact matches for terms, but also grammatical matches.

For example, a query on ’cat’ would return objects containing not only ’cat’ also those
containing cats’. (The Search Development Guide contains a full description of how
grammatical normalization behaves during indexing and querying.)

Grammatical normalization is enabled during index server installation. Enabling
grammatical normalization loads special dictionaries into the index server host’s
memory. By default, grammatical normalization is enabled and the dictionaries for
Japanese, Korean, and English are loaded. You can choose to load additional dictionaries
to support other languages. However, the memory requirements for the additional
dictionaries may result in lower search and indexing performance. The additional
supported languages for grammatical normalization are:

¢ German
e English
¢ Spanish

Content Server Full-Text Indexing System Installation and Administration Guide 43

Planning considerations

44

French
Hungarian
Italian
Swedish
Norwegian
Polish
Portuguese

Russian

There is no dictionary for Chinese because that language is not an inflected language
and therefore grammatical normalization is not an operation that can be performed on
Chinese text.

You can also choose the combinations of parts of speech you want to be normalized.
The following combinations are offered:

Nouns

Nouns and adjectives

Nouns, adjectives, and verbs

Nouns and verbs

The default, and recommended choice, is to normalize only nouns.

Enabling grammatical normalization increases memory use by the indexing process. You
cannot change the grammatical normalization option after installation. To change the
grammatical normalization option, you must uninstall the indexing software and delete
the index, then reinstall the software and index the entire repository again.

Content Server Full-Text Indexing System Installation and Administration Guide

Chapter 4

Preparing to Install Full-Text Indexing

Use the information in this chapter to prepare your installation for the full-text indexing component
installation. This chapter contains the following information:

* System sizing, page 45
¢ Host requirements, page 47

* Deciding whether to share the drives where content files are located, page 52

System sizing

System sizing is the process of determining what hardware, software, and network
configurations will provide the best performance for users at the lowest cost to the
enterprise. Another term for system sizing is capacity planning.

Full-text indexing is both CPU- and disk-intensive. Indexing a repository may require
disk space ranging from 3 to 10 times the size of the finished index. For this reason, it is
critical that your system have sufficient CPU and disk space capacity.

EMC Documentum provides tools and guides for system sizing. The tools include
information on full-text indexing configurations, including determining the appropriate
number of nodes for the capacity you require. Documentum Professional Services can
assist you in reviewing your needs and completing the spreadsheet.

A whitepaper, called Sizing Documentum 5.3 Full Text, is available that contains
information to use in estimating the system resources required for the hardware on
which the full-text indexing software will be installed. The whitepaper is available on
the Technical Support Web site on Powerlink. The following general considerations
must be taken into account:

® The number of CPUs on the host chosen for the indexing software

* The type of disk system chosen:
— NAS devices are not supported for storing the indexes or FIXML.

Content Server Full-Text Indexing System Installation and Administration Guide 45

Preparing to Install Full-Text Indexing

— SAN devices and disk arrays are recommended for storing the indexes and
FIXML.

— Allows use of a variety of disk systems

— It is strongly recommended that you use a disk array in production
environments, rather than a single disk.

A single disk creates a bottleneck for indexing.
* Use gigabit Ethernet, not 100BaseT, in production environments

¢ [tis recommended that you use high-capacity SAN fibre interconnects to the disk
arrays.

Memory requirements for index server

The index server requires 2 GB of RAM available after taking into consideration all other
RAM utilization requirements on the index server host.

Disk space requirements for indexing and installation

For information and guidelines about determining the disk space requirements for an
indexing installation, refer to the Sizing Documentum 5.3 Full Text whitepaper.

Full-text indexing in a distributed content environment

If you are using distributed content, all content is copied to the primary content store for
full-text indexing. Ensure that there is sufficient space in the primary store for all content
that may be copied for full-text indexing.

Device types on which the full-text index and content
files may be stored

Documentum content files may reside on a variety of storage devices, including (but not
limited to) Centera stores, direct-attached disks, NAS, and SAN devices, provided that
the storage device functions as a file-system directory and does not require a password
for Content Server or indexing software access. NFS mounts are fully supported and

46 Content Server Full-Text Indexing System Installation and Administration Guide

Preparing to Install Full-Text Indexing

encouraged for access to original content files. However, they are not supported for
storage of the FIXML files or the index.

Documentum recommends that you store the full-text index on direct-attached disks or
SAN devices. Storing the index on an NFS-mounted device affects document processing
performance and the amount of time it takes for a document to be present in the index
and available for querying. It is strongly recommended that you do not store the index
on an NFS-mounted device.

On Windows hosts, do not store the index on a mapped drive. Use a UNC path only.

Storing the indexes, log files, and FIXML on a NAS device is not supported.

Constraint on SAN devices

When SAN remote mirrors are used, only one index server can be running on the data
(both indexing and querying at the same time). Running two instances of the index server
from two different sites, one local and one remote, on the same index is not supported.

Host requirements

The following sections contain host requirements for installing the full-text indexing
software.

Host names

The host where the index server and index agent are installed must be identified by a
fully-qualified domain name. For example, the host name isolde.documentum.com is
acceptable, but an IP address (for example, 172.04.8.275) is not acceptable.

ports to use for the index agent

The index agent runs in the Apache Tomcat servlet container. When an index agent
instance is configured, you must designate two ports for the index agent and Tomcat to
use. The default ports for the first index agent on a host are 9081 and 9008. If the index
agent is on the Content Server host, ensure that the ports are not the ports used for the
Tomcat instance in which the Java method server and ACS server run.

Content Server Full-Text Indexing System Installation and Administration Guide 47

Preparing to Install Full-Text Indexing

Which ports to use for the index server

The index server requires a contiguous range of 4000 (four thousand) free ports. You
must designate which ports to use during installation. The default range is from 13000
to 17000.

Index server operating system and host

The index server must be installed on a supported operating system. It is strongly
recommended that you use a host on which a clean installation of the operating system
has been performed.

Install the index server on a disk partition separate from the system partition and larger
than the system partition.

VMware

Do not install the index server on VMware.

Third-party software on the index server host

The following restrictions apply to the index server host:

¢ Do not run network security scanning software on a host where the index server is
installed.
Network security scanners may lock index server processes, which can create
intermittent search and indexing failures.

¢ Do not run backup utilities while the index server is running.

Backup utilities may lock indexing processes.

* Do not run antivirus software on the %FASTSEARCH% directory, where the index
server and indexes are stored.
Antivirus software interferes with index server startup and proper functioning.
Antivirus software may quarantine log and other frequently-changed files.

It is strongly recommended that you test any third-party monitoring tools on a
development system before the tools are deployed to a production system where the
index server is installed.

48 Content Server Full-Text Indexing System Installation and Administration Guide

Preparing to Install Full-Text Indexing

Windows host requirements for the index server

The following restrictions apply to Windows hosts:

Do not run the Windows Index System on the index server host.
On 32-bit Windows hosts, do not set the /3GB option in the boot.ini file.
Disable automatic Windows updates on index server hosts.

Do not install the index server on a domain controller.

Note: If a 5.2.x repository is running on a Windows host and you are performing a
pre-upgrade index migration, you must install the index agent and index server on a
host other than the Content Server host. For more information, refer to Migrating the
full-text indexing system, page 59.

Host time settings

Set the time zone on the host where the index server runs to GMT or UTC. On Windows
hosts, uncheck Automatically adjust clock for daylight saving changes.

Ensuring correct network configuration

If you are installing the indexing software on a host other than the Content Server host,
ensure that the DNS entries for the two machines are correct so that they are able to
locate each other on the network.

To verify the DNS entries:

1.

On the index server machine, look up the Content Server machine:

nslookup FQODN of Content Server host
where FQDN_of_Content_Server_host is the fully-qualified domain name (FQDN) of
the Content Server host.

This returns one or more IP addresses for the Content Server host.
Use the first IP address returned in step 1 for a reverse lookup:
nslookup IP address returned

The correct return value is the same FQDN you entered in step 1.

If the two nslookup commands do not return the correct values, update the DNS
servers used by the two hosts to reflect the correct FQDNS.

If necessary, on Windows with more than one network card, update the host files to
ensure that the correct IP address for each host is listed first.

Content Server Full-Text Indexing System Installation and Administration Guide 49

Preparing to Install Full-Text Indexing

5. If the nslookup commands succeeded and return the correct values, ping the index
server host from the Content Server host to ensure it responds to the pin and to
ensure that the IP address that responds to the ping is the IP address defined in the
ftengine config object.

Index agent and index server installation account

The index agent and index server must be installed as the same user who installed
Content Server (the Content Server installation owner). If you are installing the index
agent and index server on a host other than the Content Server host, ensure that the user
exists on that host. Refer to “Installation Owner Account” in the correct section for
your operating system, in Chapter 3, “Preparing for Installation,” of the Content Server
Installation Guide, for more information on the installation owner account.

Environment variables on UNIX and Linux hosts

You must set the following environment variables in the installation owner’s environment
on UNIX and Linux hosts before installing the index agent and index server:

Table 4-1. Required environment variables

Environment Variable

Description

Required Values

DOCUMENTUM

DOCUMENTUM_

SHARED

LD_LIBRARY_PATH,

The directory in which
the indexing software is
installed

The directory in which
DEC is installed

The index server library

SHLIB_PATH, or LIBPATH location

50

Any directory in the
installation owner’s
environment

Any directory in the
installation owner’s
environment

$DOCUMENTUM/fulltext/
IndexServer/lib

$DOCUMENTUM/fulltext/
fast40

$DOCUMENTUM _
SHARED/dfc

$DOCUMENTUM._
SHARED/IndexAgents/
ftintegrity

Content Server Full-Text Indexing System Installation and Administration Guide

Preparing to Install Full-Text Indexing

Environment Variable Description Required Values

FASTSEARCH Location of the index server $DOCUMENTUM/fulltext/
IndexServer

DISPLAY Controls the display localhost:0.0

LC_ALL C

JAVA_HOME The home directory for the Any directory in the

Java installation on the host installation owner’s

environment

Ensuring that the index server environment is correct
on UNIX and Linux hosts

The index server installation includes a script that sets required environment variables
for running the index server. The script is setupenv.sh or setupenv.csh, depending on
the shell from which you run, and it is located in the indexserver_install_dir/bin directory.
You can source this script to ensure that the environment variables are correct.

The deprecated DFC_DATA environment variable on
UNIX hosts

The DFC_DATA environment variable was deprecated after the 5.1 Documentum
release, but it is still used by Documentum installers for backward compatibility. If

you are installing the indexing software on a UNIX host where older Documentum
software required setting DFC_DATA, the installer uses the value of DFC_DATA to
create the /config directory ($DFC_DATA/config). However, the startupIndexAgent.sh
script expects to find the SDOCUMENTUM_SHARED variable set and expect the /config
directory to be SDOCUMENTUM_SHARED/config.

If the /config directory is not sDOCUMENTUM_SHARED/config, edit the
startupIndexAgent.sh script so that it points to the valid /config directory path on the
index agent host. Replace these lines:

CLASSPATH=$ DOCUMENTUM_SHARED/dCtm .jar: $DOCUMENTUM_SHARED/Config:
$DOCUMENTUM SHARED/dfc/dfc.jar:$SDOCUMENTUM SHARED/dfc/dfcbase.jar:
$DOCUMENTUM SHARED/dfc/log4j.jar

with:

CLASSPATH=$DOCUMENTUM_SHARED/dctm.jar: $DOCUMENTUM/config:
$DOCUMENTUM SHARED/dfc/dfc.jar:$DOCUMENTUM SHARED/dfc/dfcbase.jar:
$DOCUMENTUM SHARED/dfc/log4j.jar

Content Server Full-Text Indexing System Installation and Administration Guide 51

Preparing to Install Full-Text Indexing

Installing the index server on Windows hosts

The Windows file cscript.exe is required for running the index server installer. Do not
delete cscript.exe from a Windows host on which you are installing the index server.

Installing the index server on HP-UX

This section documents requirements specific to installation on the HP-UX platform.

Directory constraint

You cannot install the Index Server on HP-UX (B.11.23 U 9000/800) in a directory that
contains an “_d” in the directory path.

Required parameters

The following parameter values are required for installing the index server on HP-UX
systems:

* Set maxdsiz or data seg size at 2 GB (0x80000000)
* Enable Largefiles

* Set maxusers to 256 or higher

® Set max_thread_proc to 256 or higher

¢ Set maxfiles to 1024 or higher

Deciding whether to share the drives where
content files are located

The index server requires access to the content files in a repository.

If the index server is installed on the Content Server host, it has direct access to the file
store storage areas and you do not need to take any additional action.

52 Content Server Full-Text Indexing System Installation and Administration Guide

Preparing to Install Full-Text Indexing

If the index server is not installed on the Content Server host, the default behavior of the
index agent is to retrieve a temporary copy of the file, store it in a temporary location,
and pass that location to the index server. After indexing the file, the index server deletes
the temporary copy.

For performance reasons it is recommended, but not required, that you mount or share
the drive or drives where the repository’s file store storage ares are located with the host
where the index server is located. When the drives are shared or mounted, the index
agent passes to the index server the direct path to a file that must be indexed. No staging
area is required, and fewer I/O operations are required. You can share or mount the drive
or drives so that the content files are read-only.

Note: Even when the file store storage area drives are mounted, XML content is retrieved
using the temporary file method rather than the direct access method. In addition,
content located in Centera stores, external stores, and encrypted file stores must be
retrieved for indexing using the temporary file method.

Mount or share the drives before you install the indexing software. After installation,
edit the indexagent.xml file to properly map the file stores for the index agent and use
the index agent’s administrative interface to indicate that the file stores are mapped.
Modifying the indexagent.xml file to map file stores, page 71 contains instructions for
editing the file.

In a distributed configuration, all content located in distributed stores is moved to the
primary site, using the Surrogate Get method, and indexed at the primary site. You
cannot map the remote components of a distributed store. Similarly, you cannot map
an encrypted store or an external store.

You can share or mount the drive or drives so that the content files are read-only.

When you mount or share the drives, it is strongly recommended that you mount or
share them so that the paths are logically identical on the Content Server host and on
the index server host. On Windows hosts, use UNC paths. On UNIX, use NFS and, if
necessary, symbolic links. If you must mount from a Windows platform to a UNIX

or Linux platform, use third-party utilities for mounting or sharing the drives. The
instructions for modifying the indexagent.xml file are different, depending on whether
the paths are logically identical or not.

In a multinode configuration, if you do not mount or share the file store locations, it is
recommended that you mount or share the temporary location where the index agent
stores indexable content. The docprocessor processes, which open content files and
extract indexable content, need access to the temporary location; share the location with
all index server nodes that run docprocessor processes.

Refer to the documentation for your operating system for instructions on sharing or
mounting drives.

In summary, here are the recommendations:

Content Server Full-Text Indexing System Installation and Administration Guide 53

54

Preparing to Install Full-Text Indexing

If the indexable content includes XML content, or if some content is located in

Centera (content-addressed stores), external stores, or encrypted file stores, mount or
share the index agent’s temporary content storage area.

If the temporary file method is used, mount or share the index agent’s temporary
content storage area.

If the direct access method is used, share or mount the public file store directories.

Content Server Full-Text Indexing System Installation and Administration Guide

Chapter 5

Upgrading Full-Text Indexing
Components

This chapter provides the instructions for upgrading the full-text indexing components.

Note: In a consolidated deployment, a single index server provides indexing services to multiple
repositories. In any indexing configuration, the indexing software and Content Server(s) must have
the same version number. Therefore, to upgrade a consolidated deployment, the indexing software
and all repositories must be upgraded simultaneously.

This chapter contains the following topics:
* Adding the full-text indexing system to a 5.3 repository that has none, page 55
* Upgrading an existing full-text system on a repository , page 56

* Upgrading a pre-5.3 repository, page 59

Adding the full-text indexing system to a 5.3
repository that has none

Use the instructions in this section if you want to add the full-text indexing system to a
5.3 repository that currently does not have full-text indexing installed.

To add a full-text indexing system to a 5.3 repository:

1. Upgrade the repository from 5.3 to the current release.
2. Install the full-text indexing software.

3. Configure an index agent in migration mode.

4. Create the full-text index.
5

Use the Index Agent Admin Tool to change the index agent from migration mode
to normal mode.

Content Server Full-Text Indexing System Installation and Administration Guide 55

Upgrading Full-Text Indexing Components

Upgrading an existing full-text system on a
repository

56

Use the instructions in this section if you are upgrading from a 5.3 SP2 or 5.3 SP3 release
that has not had the Full-text Hotfix of December 2006 installed.

If you previously installed the 5.3 SP2 or 5.3 SP3 Full-text Hotfix or previously upgraded
to 5.3 SP4,, use the instructions in Upgrading from the December 2006 Full-text Hotfix or
5.3 SP4, page 57. If you are unsure whether the earlier Hotfix release has been installed,
check the Content Server version number:

¢ On Windows, navigate to C:\ Documentum \ product\5.3\bin and enter:
documentum.exe -version
* On UNIX, navigate to $DM_HOME/bin and enter:
documentum -version
If you have installed the December 2006 Full-Text Hotfix, the version numbers will be:
e On 5.3 SP2: 5.3.0.229
e On 5.3 SP3: 5.3.0325

Caution: Do not use this procedure if the deployment is a multinode deployment.
Contact Professional Services for instructions on upgrading a multinode deployment.

To upgrade the full-text indexing components:
1. Log in as the Content Server installation owner.

Note: On Windows, this means that you must log in as the same user, in the same
domain, as the user who installed Content Server and the full-text indexing software.
2. Stop the index agents and index server.
If you did not stop these processes when you upgraded Content Server, stop them
now. Make sure all index server processes are stopped.
3. Delete all index agent instances.
Use the Index Agent Configuration Program to delete the index agents. Refer to
Deleting an index agent, page 138, for instructions.
4. Uninstall the Index Agent Configuration Program.

Refer to Deleting the index agent configuration program, page 139, for instructions

5. Uninstall the index server while preserving the index itself.

The uninstaller will present a panel that asks if you wish to delete the existing index.
The default is “no”, which preserves the index. Accept the default.

6. Manually delete the IndexServer directory.

Content Server Full-Text Indexing System Installation and Administration Guide

Upgrading Full-Text Indexing Components

Note: This step is only necessary if the index server is on a different host than
Content Server. If the index server is on the same host as Content Server, uninstalling
the index server will also remove the IndexServer directory.

This directory is found in the following location:
e On Windows: C:\Documentum \ fulltext\IndexServer
e On UNIX: $DOCUMENTUM/fulltext/IndexServer

7. Manually delete the following directory:
e On Windows: C:\Documentum\data\ fulltext\index
e On UNIX: $DOCUMENTUM/data/fulltext/index

'i Caution: Do NOT delete the fixml directory.
L]

8. Install the index agent and index server.

Follow the instructions in Installing the index server and the index agent
configuration program, page 67 . Using the fulltextWinSuiteSetup.exe
(fulltextoperatingsystemSuiteSetup.bin) from the 5.3 SP4 release.

9. Shutdown and restart Content Server.

10. Start the index server.

After you start the index server, it will recreate the index using the fixml files found
in C:\Documentum \ data\ fulltext\ index ($DOCUMENTUM/fulltext/IndexServer).
To determine the status of the index server, check the all.log file for the entry: fnet:
engine up. When that entry is present, the server has completed reindexing. Note
that on a moderately powered machine and assuming there is fixml representing
approximately 1 million documents to reindex, the process can take up to 10 hours.

The all.log file is found in C:\ Documentum \ fulltext\ IndexServer\ var\log\all.log
(Windows) or $DOCUMENTUM/fulltext/IndexServer/var/log/all.log (UNIX).
11. After the reindexing is complete, configure the index agents.

Use the instructions in the Configuring the index agent, page 69.

Upgrading from the December 2006 Full-text
Hotfix or 5.3 SP4

Use this procedure if you previously installed the December 2006 Full-text Hotfix release
or 5.3 SP4. If you are unsure whether the December Hotfix release has been installed,
check the Content Server version number:

¢ On Windows, navigate to C:\ Documentum \ product\5.3\bin and enter:

Content Server Full-Text Indexing System Installation and Administration Guide 57

Upgrading Full-Text Indexing Components

58

documentum.exe -version

On UNIX, navigate to $DM_HOME/bin and enter:

documentum -version

If you have installed the December 2006 Full-Text Hotfix, the version numbers will be:

On 5.3 SP2: 5.3.0.229
On 5.3 SP3: 5.3.0325

Caution: Do not use this procedure if the deployment is a multinode deployment.
Contact Professional Services for instructions on upgrading a multinode deployment.

To upgrade the full-text indexing components:

1.

Log in as the Content Server installation owner.

Note: On Windows, this means that you must log in as the same user, in the same
domain, as the user who installed Content Server and the full-text indexing software.
Stop the index agents and index server.

If you did not stop these processes when you upgraded Content Server, stop them
now. Make sure all index server processes are stopped.

Delete all index agent instances.

Use the Index Agent Configuration Program to delete the index agents. Refer to
Deleting an index agent, page 138, for instructions.

Uninstall the Index Agent Configuration Program.

Refer to Deleting the index agent configuration program, page 139, for instructions

Uninstall the index server while preserving the index itself.

The uninstaller will present a panel that asks if you wish to delete the existing index.
The default is “no”, which preserves the index. Accept the default.

Manually delete the IndexServer directory.

Note: This step is only necessary if the index server is on a different host than
Content Server. If the index server is on the same host as Content Server, uninstalling
the index server will also remove the IndexServer directory.

This directory is found in the following location:

* On Windows: C:\Documentum \ fulltext\ IndexServer
¢ On UNIX: $DOCUMENTUM/fulltext/IndexServer
Install the index agent and index server.

Follow the instructions in Installing the index server and the index agent
configuration program, page 67 . Using the fulltextWinSuiteSetup.exe
(fulltextoperatingsystemSuiteSetup.bin) from the 5.3 SP4 release.

Shutdown and restart Content Server.

Content Server Full-Text Indexing System Installation and Administration Guide

Upgrading Full-Text Indexing Components

9. Start the index server.

10. Configure the index agents.

Use the instructions in the Configuring the index agent, page 69.

Upgrading a pre-5.3 repository

Content Server releases before 5.3 used the Verity full-text engine for full-text indexing.
Content Server releases 5.3 and later use the index agent and index server for full-text
indexing. Migrating to Content Server 5.3 or later requires that you make some decisions
before migrating to the new implementation.

Note: Do not run the 5.3 SP2 or higher indexing software against a 5.2.5x or 5.3 repository
except for migration purposes.

Migrating the full-text indexing system

Two paths are supported for migrating to the new full-text implementation:

® In a pre-upgrade migration, you install the new versions of the index agent and
index server before upgrading Content Server. You use the new index agent and
index server to create a new full-text index on the pre-5.3 repository (or a copy of the
pre-5.3 repository). After the new index is created, you upgrade Content Server and
the repository and use the new index. The full-text index is completely available and
up-to-date after Content Server is upgraded.

¢ In a post-upgrade migration, you upgrade Content Server and the repository first,
before installing the new index agent and index server. You create the new index by
running the index agent and index server on the upgraded repository.

Pre-upgrade migration is recommended for very large repositories (100,000 documents
or more) or for any repository where it is a business requirement that the full-text system
is available in a consistent state immediately after the upgrade. For more information
about planning for a pre-upgrade migration, refer to Migrating the full-text indexing
system, page 59.

Post-upgrade migration is recommended for small repositories (fewer than 100,000
documents) or for any repository where it is acceptable for the full-text system to be

in an inconsistent state immediately following the repository upgrade. The full-text
system is in an inconsistent state until the new index is created. For more information on
post-upgrade migration, refer to Migrating the full-text indexing system, page 59.

Content Server Full-Text Indexing System Installation and Administration Guide 59

Upgrading Full-Text Indexing Components

To perform a pre-upgrade migration of the full-text index:

1.

60

Decide whether to index the production repository or a copy.

To test a Content Server upgrade, it is recommended that you create a copy of the
repository and test the server and repository upgrade on the copy. You can create
the new full-text index by indexing either the copy or the production repository.

If the repository is extremely large, creating new indexes takes a significant period of
time. You may prefer to test the time and space required for creating new indexes
on a copy or on the production repository. If you decide to index a copy of the
repository, create the copy using the instructions in Chapter 4, in the section Creating
a Repository Copy to Test an Upgrade.

You are not required to create a copy of the content files, even if you create a
repository copy. Instead, the file stores can be shared with the repository copy. The
content can be made available to the index agent and index server in read-only mode.

If you create the new index on the repository copy, you use the index with the
production repository. When you create an index agent in normal mode, you point
it to the existing index server and the production repository, and the production
repository then uses the index.

Choose hardware for the index agent and index server.

It is recommended that you use a host other than the Content Server host for the
index agent and index server and it is strongly recommended that the hardware
you choose is the hardware that will host the index and indexing software for the
production repository. If you index the production repository rather than a copy,
this is strongly recommended because creating new indexes is processor-intensive.

The index agent and the index server must be installed on an operating system
that is supported for 5.3 SP2. If the production repository is installed on an older
operating system that is not supported for the index agent and the index server, you
must install the index agent and the index server a remote host.

The index agent and the index server may be installed on a different supported
operating system from the Content Server. The index agent and index server are
required to be installed on the same host.

On Windows systems, you cannot install more than one version of DFC. The index
agent requires DFC 5.3 SP2. To create the new index for the older repository, you
must therefore install the index agent and index server on a host other than the
Content Server host.

On UNIX and Linux systems, you can install the index agent and index server on the
Content Server host, provided the operating system is supported. You must ensure

that the environment variables are set so that the existing Content Server continues to
use the older DFC with which it was installed and the index agent uses DFC 5.3 SP2.

If you are indexing a repository copy, create the copy.

Use the instructions in the section Creating a Repository Copy to Test an Upgrade
in the Content Server Installation Guide.

Content Server Full-Text Indexing System Installation and Administration Guide

Upgrading Full-Text Indexing Components

4. Install the index server and configuration program.

Use the instructions in Chapter 5, Installing the Full-Text Indexing Components.
5. Configure an index agent in migration mode.

6. Create the full-text indexes.

Use the instructions in the section Creating the Full-Text Index.

7. Run the ftintegrity tool.

Use the instructions in the section Verifying the Full-Text Indexes.

8. If any documents were not indexed, resubmit those documents for indexing.

Use the instructions in the section Resubmitting Objects to the Index Agent.

9. Upgrade the repository.

Use the instructions in the Content Server Installation Guide in the chapter Upgrading
Content Server.

10. Shut down the migration-mode index agent change it to a normal-mode index agent.
Use the Index Agent Admin Tool to switch the index agent to normal mode.

Use the following procedure to perform post-upgrade migrations of the full-text index.

To perform a post-upgrade migration of the full-text index:

1. Choose hardware for the index agent and index server.

It is recommended that you use a host other than the Content Server host for the
index agent and index server and it is strongly recommended that the hardware
you choose is the hardware that will host the index and indexing software for the
production repository. If you index the production repository rather than a copy,
this is strongly recommended because creating new indexes is processor-intensive.

The index agent and the index server must be installed on an operating system
that is supported for 5.3 SP2. If the production repository is installed on an older
operating system that is not supported for the index agent and the index server, you
must install the index agent and the index server a remote host.

The index agent and the index server may be installed on a different supported
operating system from the Content Server. The index agent and index server are
required to be installed on the same host.

On Windows systems, you cannot install more than one version of DFC. The index
agent requires DFC 5.3 SP2. To create the new index for the older repository, you
must therefore install the index agent and index server on a host other than the
Content Server host.

On UNIX and Linux systems, you can install the index agent and index server on the
Content Server host, provided the operating system is supported. You must ensure

that the environment variables are set so that the existing Content Server continues to
use the older DFC with which it was installed and the index agent uses DFC 5.3 SP2.

Content Server Full-Text Indexing System Installation and Administration Guide 61

Upgrading Full-Text Indexing Components

2. Upgrade the repository.

Use the instructions in the Content Server Installation Guide.
3. Install the index server and index agent configuration program.

Use the instructions in Chapter 5, Installing the Full-Text Indexing Components.
4. Configure an index agent in migration mode.

Use the instructions in Chapter 5, Installing the Full-Text Indexing Components.
5. Create the full-text index.

Use the instructions in Chapter 5 in the section Creating the Full-Text Index.

6. Run the ftintegrity tool.

Use the instructions in Chapter 5 in the section Verifying the Full-Text Indexes.

7. If any documents were not indexed, resubmit those documents for indexing.
Use the instructions in Chapter 5 in the section Resubmitting Objects to the Index
Agent.

8. Shut down the migration-mode index agent change it to a normal-mode index agent.

Use the Index Agent Admin Tool to switch the index agent to normal mode.

Migrating Verity customizations

62

Existing Verity thesaurus and lex files can be migrated to the new full-text indexing
implementation. Refer to Importing the synonym file, page 113 for instructions on
migrating a thesaurus file. Migrating a lex file requires Documentum Professional
Services.

The new implementation does not use stop words. All words are indexed in order to
support searching by phrase. The new implementation does not use topic trees. Existing
stop files and topic trees do not need to be migrated.

Content Server Full-Text Indexing System Installation and Administration Guide

Chapter 6

Installing Full-text Indexing
Components

This chapter contains instructions for installing the full-text indexing software and creating
full-text indexes, whether you are upgrading from an earlier Documentum release or creating new
repositories. It contains the following sections:

Installing a basic deployment, page 63

Installing a consolidated deployment, page 64

Installing a high-availability deployment, page 64

Review this section before you install a high-availability configuration or if you are converting
an existing installation to high availability.

Installing a multinode deployment, page 66

Installing the index server and the index agent configuration program, page 67

Configuring the index agent, page 69

Modifying the indexagent.xml file to map file stores, page 71

Reviewing the installation log files, page 73

Use the information in Chapter 3, Planning considerations, to decide on the final the index server and
index agent configuration. Ensure that you have completed the tasks outlined in Chapter 4, Preparing
to Install Full-Text Indexing, before installing the software.

Installing a basic deployment

This is the high-level procedure for installing the server and full-text indexing
components for a new installation:

1. Choose hardware.

2. Install Content Server and configure a repository.

Use the instructions in the Content Server Installation Guide.

Content Server Full-Text Indexing System Installation and Administration Guide 63

Installing Full-text Indexing Components

Install the index server and index agent configuration program.

Use the instructions in Chapter 5, Installing the Full-Text Indexing Components.
Start the full-text indexing process.

Use the instructions in Chapter 5 in the section Creating the Full-Text Index.
Configure an index agent instance in normal mode.

Use the instructions in Chapter 5, Installing the Full-Text Indexing Components.

Installing a consolidated deployment

To install a consolidated deployment, install the index agent and configure an index
agent for each repository, then index each repository as described in Chapter 7, Creating
and Managing the Full-Text Index.

Installing a high-availability deployment

64

The following instructions are for installing full-text indexing in a high-availability
configuration, whether you are installing a new indexing system or converting an
existing basic configuration to high availability.

In a new configuration, you must install the indexing software on the first host, perform
steps on the Content Server host, install the indexing software on the second host, and
perform additional steps on the Content Server host.

To convert an existing basic configuration, start with Step 2.

High-availability indexing is supported with consolidated configurations.

1.

Install the full-text indexing software on the first indexing host computer and
configure an index agent.

Note: On Windows, you must log in as the same user, in the same domain, as the
user who installed the Content Server installation.

Skip this step if you are converting an existing basic configuration to high availability.
Use the instructions in Installing the index server and the index agent configuration
program, page 67 and Configuring the index agent, page 69.

Log in to the Content Server host as the installation owner.
Ensure that no users are connected to the repository.

Copy the create_fulltext_objects.ebs script from the EMC Documentum download
site to the correct location on the Content Server host:

Content Server Full-Text Indexing System Installation and Administration Guide

Installing Full-text Indexing Components

* On Windows, the %DM_DOCUMENTUM% \ product\ 6.0\ install\ admin folder

* On UNIX or Linux, the $DM_DOCUMENTUM/product/6.0/install/admin
directory

This version of the create_fulltext_objects.ebs script is separate from the one
packaged with the Content Server distribution.
5. Shut down the first index agent.

6. Navigate to the directory where the create_fulltext_objects.ebs script is located:
* On Windows, the %DM_DOCUMENTUM% \ product\ 6.0\ install\ admin folder
e On UNIX or Linux, the $DM_DOCUMENTUM/product/6.0/install/admin
directory
7. If you are upgrading the system, run the following command:

dmbasic -fcreate fulltext objects.ebs -eHACleanupBeforeUpgradeStep

-- repository name Superuser name Superuser password

where repository_name is the name of the repository, Superuser_name is the user name
of a user with Superuser privileges in the repository, and Superuser_password is the
Superuser’s password

8. Run the create_fulltext_objects.ebs script using this syntax, where repository_name is
the name of the repository, Superuser_name is the user name of a user with Superuser
privileges in the repository, and Superuser_password is the Superuser’s password:

dmbasic -fcreate fulltext objects.ebs -e HAPreInstallStep --
repository name Superuser name Superuser password

9. Install the full-text indexing software on the second indexing host computer and
configure and index agent, using the instructions in Installing the index server and
the index agent configuration program, page 67 and Configuring the index agent,
page 69.

Do not start the new index agent. The repository now contains two fulltext index
objects, two ft index agent config objects, and two ft engine config objects.

10. Log in to the Content Server host as the Content Server installation owner.

11. Navigate to the directory where the create_fulltext_objects.ebs script is located:
* On Windows, the %DM_DOCUMENTUM?% \ product\ 6.0\ install\ admin folder

e On UNIX or Linux, the $DM_DOCUMENTUM/product/6.0/install/admin
directory

12. Run the create_fulltext_objects.ebs script using this syntax, where repository_name is
the name of the repository, Superuser_name is the user name of a user with Superuser
privileges in the repository, and Superuser_password is the Superuser’s password:

dmbasic -f create fulltext objects.ebs -e HAPostInstallStep --
repository name Superuser name Superuser password

Content Server Full-Text Indexing System Installation and Administration Guide 65

Installing Full-text Indexing Components

13. Restart the Content Server.

14. Using Documentum Administrator, confirm that the required objects have been
created and updated.

a.
b.

C.

lma)

S S

—

Connect to the repository as a user with Superuser privileges.
Click Indexing Management.
Click Index Agents and Index Servers.

Verify that there are two dm_ft_engine_config objects in the repository, each
representing one of the index servers.

Click the Info icon for the ft engine config object representing the second index
server.

Write down the object ID of the ft engine config object.

Click Cancel.

In the Starts with box, type dm_fulltext and click Go.

Verify that there are two fulltext index objects in the repository.

Verify that the value of the ft_engine_id attribute in the second fulltext index
object is the object ID of the ft engine config object for the second index server.

Write down the object name of the second fulltext index object.

Click Cancel.

In the Starts with box, type dm_ftindex and click Go.

Verify that an ft index agent config object exists for the second index agent.

Verify that the value of the index_name attribute in the second ft index agent
config object is object name of the fulltext index object for the second index and
that the value of the queue_user attribute is the name of the second queue user
(dm_fulltext_index_user_01).

15. Start the index agents on both hosts.

16. Create and verify the indexes on both hosts, using the instructions in Chapter 7,
Creating and Managing the Full-Text Index.

Installing a multinode deployment

66

You must use EMC Documentum Professional Services to install and configure a
multinode deployment. There are no instructions available for use without consulting
Professional Services.

Content Server Full-Text Indexing System Installation and Administration Guide

Installing Full-text Indexing Components

Installing the index server and the index agent
configuration program

Use these instructions to install the index agent or the index server software. The same
installation program is used for both components. You can install either or both of the
components on a particular host.

Note that the installer installs the index agent configuration program, which you use to
configure an index agent instance. If you do not configure the index agent immediately
after installing the configuration program, you can do so at a later time.

To install the index server and the index agent configuration program:

1. Ensure that the repository for which you are installing the index server and index
agent is running,.

2. Log in to the index server and index agent host as the Content Server installation
owner.

Note: On Windows, this means you must log in as the same user, in the same
domain, as the user who installed the Content Server installation.

3. Copy the installation files from the Documentum download site or distribution
CDs to a temporary location on the host.
The files are:
o dfcoperatingsystemSetup.jar
o fulltextoperatingsystemSuiteSetup.jar

o fulltextWinSuiteSetup.exe (Windows) or fulltextoperatingsystemSuiteSetup.bin
(UNIX and Linux)

e indexAgentoperatingsystemSetup.jar
¢ IndexServer.jar
e indexServerSetup.jar
* tomcatoperatingsystem4127Setup.jar
4. Start the installation program.
* On Windows, double-click fulltextWinSuiteSetup.exe.
* On UNIX and Linux, type

o)

% fulltextoperatingsystemSuiteSetup.bin

and press Enter, where operatingsystem is the operating system on which you
are installing.

A Welcome dialog box is displayed.
5. Click Next.

The license agreement dialog box is displayed.

Content Server Full-Text Indexing System Installation and Administration Guide 67

Installing Full-text Indexing Components

6. Click I accept the terms of the license agreement and click Next.

A dialog box is displayed that lists the products you can install.

7. Choose the products to install.

* To install the index agent, check Documentum Index Agent Configuration
Program.

e To install the index server, check Index Server.
8. Click Next.

9. Indicate whether to install the developer documentation and, on Windows, the
primary interop assembly installer, and click Next.

10. If required, install Documentum Foundation Classes (DFC).

a. On Windows, accept the default installation directory or type in a different
directory and click Next.

This is typically C:\Program Files\ Documentum. On UNIX and Linux, the DFC
directories are determined by environment variables set before installation.

b. On Windows, accept the default user directory or type in a different directory
and click Next.

This is typically C:\Documentum.
11. If a dmcl.ini file does not exist on the machine, provide connection information.
a. Type in the host name of the computer where a connection broker is running.
b. Type in the port used by the connection broker.
c. Click Next.
12. To install the index server, complete these steps.

a. Accept the default index server installation directory or type in a new directory,
then click Next.

b. On Windows, type in the password for the account you used to log in, then
click Next.

The installer verifies the password.

c. Type in the base port number for the index server, then click Next.

The index server requires 4,000 available ports in sequence; for example, if the
base port you designate is 3000, the index server uses ports 3000 through 7000.
Do not use a port in ephemeral range.

The default base port is 13000.

d. Check the checkbox to enable support for grammatical normalization and parts
of speech to be index.

68 Content Server Full-Text Indexing System Installation and Administration Guide

Installing Full-text Indexing Components

Choosing the parts of speech to be indexed can reduce the size of the indexes and
the disk space required for maintaining the indexes. Grammatical normalization
can be enabled only for the languages listed on the dialog box. If you enable
grammatical normalization, it is enabled by default for Japanese and Korean and
cannot be disabled. Content files in languages that are not chosen or that are not
available for normalization are still indexed.

e. Choose languages for grammatical normalization and the parts of speech to
be indexed.

f. Accept the default directory for the full-text indexes or type in a different
directory, then click Next.

The default on Windows is % DOCUMENTUM%. The default on UNIX or Linux
is SDOCUMENTUM. If you choose another directory, the name must not contain
any blank spaces. The installer creates the directory \data\ fulltext (/data/fulltext
on UNIX or Linux) under the location you designate.

A summary dialog box is displayed, listing the products that will be installed.
13. Click Next.

The products are installed and a panel is displayed indicating success when the
installation is completed.

14. Ensure that the index server starts.
¢ On Windows, select Yes, restart my computer., then click Next.

— If the computer does not restart automatically, click
Start . Shutdown - Restart and restart the computer manually.

— If the index server does not automatically start, click
Start — Programs — Administrative Tools - Services and start the
FAST InStream service.

— If the system restarts, the index server starts automatically as a Windows
service.

e On UNIX and Linux, navigate to the $DOCUMENTUM/fulltext/IndexServer/bin
directory (the installation location), type startup.sh, and press Enter.

The index server is started.

Configuring the index agent

The index agent configuration program configures the index agent to process documents
for a particular repository and to pass the documents to the correct index server instance
for indexing. Use these instructions to run the index agent configuration program.

Content Server Full-Text Indexing System Installation and Administration Guide 69

Installing Full-text Indexing Components

To configure the index agent:

1.
2.

70

Ensure that the index server associated with the index agent is running.

Start the index agent configuration program.

* On Windows, after the host reboots and you log in as the installation owner, click
Start - Programs — Documentum - Index Agent Configuration Program.

* On UNIX and Linux, navigate to (DOCUMENTUM_SHARED/IndexAgents and
start the configuration program for your operating system:
— On AIX, IndexAgent_Configuration_Program.aix
— On Solaris, IndexAgent_Configuration_Program.bin
— On HP-UX, IndexAgent_Configuration_Program.hp
— On HP Itanium, IndexAgent_Configuration_ProgramHPIA64.bin

— On Linux, IndexAgent_Configuration_Program.linux
A Welcome dialog box is displayed.
Click Next.
On Windows, type in the installation owner’s password, then click Next.
Type in the ports that the index agent uses for communicating with Tomcat and

for stopping Tomcat, then click Next.

The default ports are 9081 and 9008 for the first index agent on the host. If the index
agent is on the Content Server host, the port numbers must not be the port numbers
used by the Java method server or Site Caching Services.

Select the repository for which the index agent will prepare documents, then click
Next.

The drop-down list contains the repositories that project to the connection brokers
listed in the dmcl.ini file on the host. The dmcl.ini file was created during installation
if there was not already a dmcl.ini file present on the host.

Type in the user name and password for the Superuser account that the index agent
will use to connect to the repository.
Use this user name and password later to access the Index Agent Admin Tool.

If the index agent is running against a 5.3 SP1 or later repository, indicate whether to
configure it in normal mode or migration mode.

Type in the host where the index server for this index agent is running and the base
port number for the index server, then click Next.

If you are configuring the index agent for the second indexing installation in a
high-availability deployment, ensuring that you point the index agent to the second
index server host, not the first index server host. The installer defaults to the first
index server host.

Content Server Full-Text Indexing System Installation and Administration Guide

Installing Full-text Indexing Components

A summary dialog box is displayed.
10. Click Next.

On Windows, the index agent is created and Tomcat is started.
11. If you are on UNIX or Linux, navigate to SDOCUMENTUM_SHARED/IndexAgents/
IndexAgentN/, where N is the number corresponding to the new index agent

instance, and type startupIndexAgent.sh to start the index agent and its Tomcat
instance.

12. To create additional index agents, select the checkbox and click Next, then complete
steps 3-9 again.
13. To exit from the configuration program, click Finish.

14. To complete the installation process:

e If you are mapping the file stores, complete the instructions in Modifying the
indexagent.xml file to map file stores, page 71.

¢ If you are installing a high-availability configuration and you have installed the
index server and configured the index agent on the first host, return to Installing
a high-availability deployment, page 64 and continue from Step 2.

¢ If you are installing a high-availability configuration and you have installed
the index server and configured the index agent on the second host, return to
Installing a high-availability deployment, page 64 and continue from Step 9.

Do not start the index agent on the second host.

Modifying the indexagent.xml file to map file
stores

If you have shared or mounted the drives containing the repository’s file stores and
installed the indexing software, the index agent configuration file must be manually
edited to indicate that the drives are shared. The changes depend on whether the file
system paths to the content are identical on the Content Server host and index server host.

In a distributed configuration, all content located in distributed stores is moved to the
primary site, using the Surrogate Get method, and indexed at the primary site. You
cannot map the remote components of a distributed store. Similarly, you cannot map
an encrypted store or an external store.

To modify the indexagent.xml file and map the file stores:

1. On the index agent host, navigate to $DOCUMENTUM _
SHARED\ IndexAgents\ IndexAgentl \ webapps\IndexAgentl\ WEB-INF\ classes\.

2. Open the indexagent.xml file in a text editor.

Content Server Full-Text Indexing System Installation and Administration Guide 71

Installing Full-text Indexing Components

72

If the paths to the content files are identical on the Content Server host and index
server host, locate the <exporter></exporter> element and change the value of the
<all_filestores_local> element to true:

<all filestores local>true</all filestores local>

If the paths to the content files are different, do not modify the value of
<all_filestores_local>, but instead, create a file store map within the <exporter>
element.

For example, if Content Server is on a host called Dandelion where filestore_01
is physically located in the directory /Dandelion/Documentum/data/
repository_name/content_storage_01 and the index agent and index server
on a host from which the drive on the Content Server host is shared as
/mappingtoDandelion/repository_name/content_storage_01, create an alias as follows:
<local filestore map>

<local filestore>

<store name>filestore 0l</store name>

<local mount>/mappingtoDandelion/repository name

/content storage 01</local mount>
</local filestore>

<!-- and so on for each filestore --!>
</local filestore map>

If you are indexing content stored on a NAS device or a Windows 2003 Server host,
you may see the following error message in the dmi_queue_item’s message attribute:

DocumentRetriever :ERROR Retrieval error: Couldn't open
file <file path/name> ERROR Processor error status:
DataNotAvailable Not read permission

To resolve this error, edit the <local_mount> element or elements in the
IndexAgent.xml file that reference the storage area or areas on the NAS device.
Add two backslashes immediately after the opening <local_mount> element. For
example, assume the following references a storage are on an NAS device:

<local mount>\\100.2.4.32\share3\c\data for example
\content storage 1</local mount>

After editing, it is now:

<local mount>\\\\100.2.4.32\share3\c\data for example
\content storage 1</local mount>

Save the indexagent.xml file.

Restart the index agent.

Content Server Full-Text Indexing System Installation and Administration Guide

Installing Full-text Indexing Components

Reviewing the installation log files

On any host where you installed the full-text indexing components, an installer log is
generated. Navigate to the directory from which you ran the installation and examine
install.log for errors and warnings.

Content Server Full-Text Indexing System Installation and Administration Guide 73

Installing Full-text Indexing Components

74 Content Server Full-Text Indexing System Installation and Administration Guide

Chapter 7

Creating and Managing the Full-Text
Index

This chapter contains the information you need to create and verify the accuracy and completeness
of the full-text index. The chapter contains the following topics:

* Creating the full-text index, page 75

* Managing the index queue, page 78

* Veritying index completeness and accuracy, page 83

* The State of the Index job, page 89

* Creating indexing events for new content in a repository, page 92
* Turning indexing on and off, page 92

* Suspending and resuming indexing, page 93d

* Configuring the indexing behavior, page 95

* Reindexing a repository, page 97

* Troubleshooting indexing timeouts, page 97

* Creating a new index, page 99

* Pointing a repository to a previously-created index, page 99

If you are installing a high-availability configuration, create the and verify the index on both hosts.

Creating the full-text index

The operations of the index agent and index server are controlled through a Web
interface located at http://hostname:portno/IndexAgentN/login.jsp, where hostname is the
name of the host where the index agent is running, portno is the port where the index
agent is listening, and N is the number designating a particular index agent instance.
(The port number is the port you provided during index agent configuration.) You can
stop and start the index agent or index server, or view the status of the index agent or
index server from the Web page.

Content Server Full-Text Indexing System Installation and Administration Guide 75

Creating and Managing the Full-Text Index

It is recommended that you put the index server into suspended mode while objects
from the repository are being processed. Suspended mode speeds that process; when it
is completed, you put the index server into indexing mode and the index is updated.

Updating an index may take a long period of time, depending on the number of objects
to be added to the index, the hardware on which the index server runs, and the size of
the objects submitted for indexing. The index server does not notify the index agent and
Content Server when the index becomes searchable. Thus, there is no way to know the
exact time at which an index can be searched or a particular document has been added
to the index. If a repository is being indexed for the first time, it can take hours before
the index is fully updated and searchable. If the ftintegrity tool is run while the index is
being updated, the tool reports many discrepancies. The index is not searchable until
the update is completed.

Submitting objects for indexing

Use these instructions to submit objects for indexing, which starts the process of creating
full-text indexes for the target repository. These instructions apply whether the index
agent is running in migration mode or normal mode. In normal mode, you must provide
the index agent instance name because the index agent is controlled by a configuration
object in the repository.

To submit objects for full-text indexing:

1. Ensure that you have performed the instructions in Modifying the indexagent.xml
file to map file stores, page 71.
2. Start a browser and point it to this URL:

http://hostname:portno/IndexAgentN/login. jsp

where hostname is the name of the host where the index agent is running and portno
is the port where the index agent is listening and N is the number assigned to the
index agent instance. If the browser is on the index agent host, replace hostname
with localhost.

3. Log in to the Index Agent Admin Tool using the credentials for the user who
connects to the repository for indexing operations.

4. To put the index server into suspended mode, which improves indexing
performance, click Switch Mode.

It is strongly recommended that you put the index server into suspended mode.
5. Click Ok.
6. In the index agent status line, click Start.

7. Click Ok.

76 Content Server Full-Text Indexing System Installation and Administration Guide

Creating and Managing the Full-Text Index

The indexing software begins the indexing process.

8. If you put the index server into suspended mode, when the objects in the repository
are processed, click Switch Mode and put the index server into indexing mode.

Caution: If a large set of documents is submitted for indexing, it may take hours

! E for indexing to complete and the index to be available for searching. If you run the
ftintegrity tool prematurely or attempt to search the index before indexing is complete,
the results are incorrect or misleading, and the index may appear corrupt when it is not
yet complete.

Stopping full-text indexing

Use these instructions to stop the process of creating full-text indexes. These instructions
apply whether you are running the index agent in migration mode or normal mode. If
the index agent and index server are running against a 5.3 SP2 repository, you can also
shut them down using Documentum Administrator.

To stop submitting objects for full-text indexing:

1. Start a browser and point it to this URL:

http://hostname:portno/IndexAgentN/login.jsp

where hostname is the name of the host where the index agent is running and portno
is the port where the index agent is listening and N is the number assigned to the
index agent instance. If the browser is on the index agent host, replace hostname
with localhost.

2. Log in to the Index Agent Admin Tool.

3. In the index agent status line, click Stop.
4. Click Ok.

5. In the index server status line, click Stop.
6. Click Ok.

7. Click Go.

Note that stopping the index agent and index server does not shut down the containers
in which the applications run. The index agent’s Tomcat instance and the index server’s
Apache Web server instance are still running.

Content Server Full-Text Indexing System Installation and Administration Guide 77

Creating and Managing the Full-Text Index

Checking the status of the index agent

Use these instructions to display status information about the index agent, including the
name of the repository with which the index agent is associated, the mode of operation
(migration or normal), the number of documents in each batch that the index agent
processes (agent_batch_size), the interval at which the index agent polls the repository
for new documents to be indexed, and the current status.

To check the status of the index agent:

1. Start a browser and point it to this URL:

http://hostname:portno/IndexAgentN/login. jsp

where hostname is the name of the host where the index agent is running and portno
is the port where the index agent is listening and N is the number assigned to the
index agent instance. If the browser is on the index agent host, replace hostname
with localhost.

2. Log in to the Index Agent Admin Tool.
3. Click Configure.

Information about the index agent is displayed.

Managing the index queue

In 5.3 and later repositories, creating, versioning, or deleting a SysObject or SysObject
subtype creates a queue item indicating that the full-text indexes must be updated to
account for the changes. The index agent reads items from the queue and ensures that
the required index updates take place.

If the repository’s indexing system runs in a high-availability configuration, with
multiple index agents and index servers, each index agent/index server pair supports its
own index. Creating, versioning, or deleting a SysObject or SysObject subtype creates a
queue item for each pair and each index is updated.

Documentum Administrator provides the interface for viewing the current index queue
and managing the items in the index queue.

The Indexing Management - Index Queue page lists index queue items for the current
repository. To sort the queue items, click the Object ID, Object Name, Object Type,
Task Status, Acquired by, or Creation Date links. The Object Name and Object ID
columns list the object name and object ID of the object to be indexed, not the index
queue item. If you click the Info icon for a queue item, the properties of the object to be
indexed are displayed, not the queue item’s properties.

78 Content Server Full-Text Indexing System Installation and Administration Guide

Creating and Managing the Full-Text Index

If the indexing system is in a high-availability configuration, the name of each index is
displayed at the top of this page and only the queue items for one index at a time are
displayed. To change which index’s queue items are displayed, click the name of index.

To change the number of queue items displayed, select a different number in the Show
Items drop-down list.

By default, the list page displays failed queue items. To filter the queue items by status,
choose the appropriate status on the drop-down list:

Indexing Failed, which is the default status displayed

If indexing failed, information about the error is displayed in red under the queue
item’s name and other properties.

All, which displays all current queue items in the repository

Indexing in Progress, which indicates that the object is being processed by the index
agent or index server

Awaiting Indexing, which indicates that the index agent has not yet acquired the
queue item and started the indexing process

Warning, which indicates that the index agent encountered a problem when it
attempted to start the indexing process for the object

If indexing generated a warning, information about the problem is displayed in red
under the queue item’s name and other properties.

Queue items that have failed indexing can be resubmitted individually, or all failed
queue items can be resubmitted with one command.

The procedures in this section cover the following topics:

Resubmitting individual objects, page 79

Resubmitting all failed queue items, page 80
Removing queue items by status, page 80

Removing queue items, page 81

Viewing queue items associated with an object, page 81

Creating a new indexing queue item, page 81

Resubmitting individual objects

You can resubmit individual objects for indexing.

To resubmit individual objects:

1.

Connect to the repository as user who has System Administrator or Superuser
privileges.

Content Server Full-Text Indexing System Installation and Administration Guide 79

Creating and Managing the Full-Text Index

Click Administration>Indexing Management>Index Queue.

If the repository’s indexing system is installed in a high-availability configuration,
ensure that the index queue for the correct index is selected.

Choose an object.

Click Tools>Resubmit Queue Item.

Resubmitting all failed queue items

You can resubmit for indexing all documents that failed indexing. This menu choice
executes the mark_for_retry administration method. If the indexing system is installed
in a high-availability configuration, all failed queue items for all indexes are resubmitted.

To resubmit all objects that failed indexing:

1.

Connect to the repository as user who has System Administrator or Superuser
privileges.

Click Administration>Indexing Management>Index Queue.

Click Tools>Resubmit all failed queue items.

Removing queue items by status

Use these instructions to remove index queue items by status.

To remove queue items by status:

1.

80

Connect to the repository as user who has System Administrator or Superuser
privileges.

Click Administration>Indexing Management>Index Queue.

If the repository’s indexing system is installed in a high-availability configuration,
ensure that the index queue for the correct index is selected.

Click Tools>Remove Queue Items by Status.

Select the correct status.

Content Server Full-Text Indexing System Installation and Administration Guide

Creating and Managing the Full-Text Index

Removing queue items

Use these instructions to remove queue items from the indexing queue. Note that if a
queue item has already been acquired by the index agent, it cannot be removed from
the indexing queue.

To remove queue items:

1. Connect to the repository as user who has System Administrator or Superuser
privileges.

2. Click Administration>Indexing Management>Index Queue.

3. If the repository’s indexing system is installed in a high-availability configuration,
ensure that the index queue for the correct index is selected.

4. Select the queue items.

5. Click Tools>Remove queue items.

Viewing queue items associated with an object

From a repository’s cabinets, you can view the index queue items associated with a
particular object.

To view the queue items associated with an object:

1. Connect to the repository as user who has System Administrator or Superuser
privileges.

2. Navigate to the object in the repository’s cabinets.
3. Select the object.

4. C(lick Tools>View Queue Items.

The queue items are displayed for the selected index queue.

5. If the repository’s indexing system is installed in a high-availability configuration,
optionally click the links for each index queue.

Creating a new indexing queue item

You can create a queue item to submit a particular SysObject for indexing.

Content Server Full-Text Indexing System Installation and Administration Guide 81

Creating and Managing the Full-Text Index

To create a queue item and submit and a particular object for indexing:

1.

Connect to the repository as user who has System Administrator or Superuser
privileges.

Navigate to the object in the repository’s cabinets.
Select the object.

Click File>New>Create queue item.

The index queue and new queue item are displayed.

If the repository’s indexing system is installed in a high-availability configuration,
optionally click the links for each index queue.

Limitations of full-text indexing in high-availability
configurations

The following sections describe current limitations in high-availability full-text indexing
configurations.

The Prune APl and missing Destroy events

The Prune APl is used to delete multiple object versions from a version tree. The Prune
API generates a Destroy event for each version that is deleted. Content Server can
only generate these Destroy events for the default full-text indexing queue users. The
events cannot be generated for the second indexing queue user in a high-availability
configuration.

This means that when the Prune API is used, the index entries for the objects destroyed
cannot be removed from the nondefault index. However, false positive hits on the index
for such objects are filtered from query results, and are not returned to end users or
applications generating the queries.

Save events not generated during load operations

82

Load operations do not generate save events for objects created during the load; special
events are generated instead. The events cannot be queued to the second full-text user.

Content Server Full-Text Indexing System Installation and Administration Guide

Creating and Managing the Full-Text Index

Verifying index completeness and accuracy

Use the ftintegrity utility to verify the completeness or accuracy or both of an index.
Using this tool after completing an index migration or adding an index to an existing
repository is recommended.
When run in completeness mode, the utility generates three reports:
® res-comp-common.txt
This file contains the object IDs of all documents that are found in both the index and
in the repository.
* res-comp-dctmonly.txt

This file contains the object IDs of all indexable documents that are found in the
repository but not in the index.

Note: The ftintegrity tool is not aware of object types that you have chosen not to
index, through either a custom filter or the specification of selective indexing in
Documentum Administrator. If you have chosen not to index one or more object
types, the object IDs of instances of those types will appear in this file.

* res-comp-fastonly.txt
This file contains the object IDs of documents found in the index, but not in the
repository.
When running in accuracy mode, you can check a subset of documents or all documents
in the index. For each document the utility performs the following operations:

1. Gets metadata from the repository
2. Chooses a random metadata item and generates a random test for that item.
For example, it might generate the query: subject like “%fo0”, r_content_szie>4000

3. Runs a test program named “iftdql’ to find that document.

The utility is installed when the index agent is configured. There is one instance of

the utility for each index agent. Each instance has an associated parameter file, called
ftintegrity.params.txt. This file identifies the repository on which the utility operates. It
also parameters, which you must complete before running the utility, that identify the
user name and password used to connect to that repository. The utility and its associated
parameter file are found in:

e On Windows

Drive:\Program
Files\Documentum\IndexAgents\IndexAgentN\webapps\IndexAgentN

e On UNIX and Linux

indexagentinstallationdir/IndexAgents/IndexAgentN/webapps/IndexAgentN

Content Server Full-Text Indexing System Installation and Administration Guide 83

Creating and Managing the Full-Text Index

Note: Each index agent you configure after the first is provided with a

numbered directory. For example, the second index agent found in \Program
Files\Documentum \ IndexAgents\ IndexAgentN\ webapps\IndexAgent2. You can
determine which repository each index agent is associated with by examining the
indexagent.xml file in those subdirectories or the agentinstances.xml file the IndexAgents
directory. That file records the repository name, associated index agent, and port
numbers.

The utility is run from the command line. Before running the utility, you must modify
its associated parameter file to add the user name and password. For instructions on
modifying the file, refer to Modifying the parameter file, page 84. For instructions on
running the utility, refer to Running the index verification tool, page 85.

After you run the utility, you may wish to resubmit documents for indexing if the utility
reports missing documents. For resubmission instructions, refer to Resubmitting objects
to the index agent, page 87.

Modifying the parameter file

A

84

Before running the index verification tool, modify the parameter file to include login
information for the repository for which you created the indexes.

Caution: The instruction below save a Superuser name and password to the file system
in a plain text parameter file. For security reasons, you may wish to remove that
information from the file after running the ftintegrity tool. It is recommended that you
save the parameter file in a location accessible only to the repository Superuser and
installation owner.

To modify the parameter file:

1. Navigate to the parameter file location.

* On Windows,Drive:\Program
Files\Documentum \ IndexAgents\ IndexAgentN\ webapps\IndexAgentN

* On UNIX and Linux, indexagentinstallationdir/IndexAgents/IndexAgentN/
webapps/IndexAgentN

2. Open the ftintegrity.params.txt file in a text editor.

The first line is

-D repositoryname

where repositoryname is the repository for which you created a new index.
3. Add the following two lines immediately after the first line

-U username
-P password

Content Server Full-Text Indexing System Installation and Administration Guide

Creating and Managing the Full-Text Index

where username is the user name of the Superuser whose account was used to install
the index agent and password is the Superuser’s password.

4. Save the ftintegrity.params.txt file to %Documentum% \ fulltext\IndexServer\bin
(Windows) or $Documentum/fulltext/IndexServer/bin (UNIX)..

Running the index verification tool

Use these instructions for running the index verification tool. If you are on
UNIX or Linux, the tool can be started by running a script that sets the required
environment variables. The script is called run_ftintegrity.sh, and it is located in
$DOCUMENTUM/fulltext/IndexServer/bin. You must pass the same arguments
regardless of whether you use the script or not.

To run the index verification tool:

1. Navigate to %Documentum% \ fulltext\ IndexServer\bin (Windows) or
$Documentum/fulltext/IndexServer/bin (UNIX).
2. To verify both completeness and accuracy, open a command prompt and type

cobra ftintegrity.py -i ftintegrity.params.txt -m b

then press Enter.

Note: The ftintegrity tool is not aware of object types that you have chosen not

to index, through either a custom filter or the specification of selective indexing
in Documentum Administrator. If you have chosen not to index one or more
object types, the object IDs of instances of those types will appear in the generated
res-comp-dctmonly.txt file.

3. To verify completeness only, open a command prompt and type

cobra ftintegrity.py -i ftintegrity.params.txt -m c

then press Enter.

Note: The ftintegrity tool is not aware of object types that you have chosen not

to index, through either a custom filter or the specification of selective indexing
in Documentum Administrator. If you have chosen not to index one or more
object types, the object IDs of instances of those types will appear in the generated
res-comp-dctmonly.txt file.

4. To verify accuracy only and query all indexed objects, open a command prompt
and type

cobra ftintegrity.py -i ftintegrity.params.txt -m a

then press Enter.

Content Server Full-Text Indexing System Installation and Administration Guide 85

Creating and Managing the Full-Text Index

To verify accuracy only and query a subset of indexed objects, open a command
prompt and type

cobra ftintegrity.py -i ftintegrity.params.txt -m a -d integer

where integer is the number of objects in the subset, then press Enter.

If the integrity tool runs successfully, the screen output is similar to this sample:

E:\Documentum\fulltext\IndexServer\bin>cobra ftintegrity.py -i
ftintegrity.params.txt -m b

Wed Mar 23 13:33:38 2005 [PROGRESS]
Wed Mar 23 13:33:47 2005 [PROGRESS]
Wed Mar 23 13:33:53 2005 [PROGRESS]
Wed Mar 23 13:33:58 2005 [PROGRESS]:
Wed Mar 23 13:34:00 2005 [PROGRESS]
Wed Mar 23 13:34:00 2005 [INFO]
Wed Mar 23 13:34:00 2005 [DEBUG]
Wed Mar 23 13:34:00 2005 [INFO]
Collection: 0.241 s
Wed Mar 23 13:34:00 2005 [INFO]1:
documentum: 502
Wed Mar 23 13:34:01 2005 [PROGRESS]
Wed Mar 23 13:34:01 2005 [INFO]
Wed Mar 23 13:34:01 2005 [DEBUG]
Wed Mar 23 13:34:01 2005 [INFO]
Wed Mar 23 13:34:01 2005 [INFO]1:
Wed Mar 23 13:34:01 2005 [INFO]:
Wed Mar 23 13:34:01 2005 [PROGRESS]
Wed Mar 23 13:34:01 2005 [PROGRESS]
Wed Mar 23 13:34:01 2005 [DEBUG]
Wed Mar 23 13:34:01 2005 [PROGRESS]
Wed Mar 23 13:34:01 2005 [PROGRESS]
Wed Mar 23 13:34:01 2005 [PROGRESS]:

Completeness Test Started

Fetched 10000 docids from
Fetched 20000 docids from
Fetched 30000 docids from
Fetched all 31261 docids from Documentum
Get Documentum IDs:

21.870

Got 31261 docids from Dctm
Get Number of Documents in

Documentum
Documentum
Documentum

Number of documents in collection

Fetched all 502 docids from index server
Get index server IDs: 0.771 s

Got 502 docids from index server
Transform index server ID file: 0.005 s
Transform Documentum ID file: 0.270 s
Compare IDs: 0.271 s

Completeness Test Finished
Accuracy Test Started

Getting Dctm Ids from res-comp-common.txt
Fetched all 502 docids from Documentum

Starting test of 0 documents
Launching iftdgl:
\INDEXA~I\FTINTE~1\iftdgl C:\PROGRA~I\DOCUME~1\INDEXA~1\FTINTE~1

C:\PROGRA~1\DOCUME~1

Wed Mar 23 13:34:10 2005 [PROGRESS]: Tested 100 of 502 documents,
0 failures. Estimated completion in 0.62 minutes
Wed Mar 23 13:34:13 2005 [PROGRESS]: Tested 200 of 502 documents,
0 failures. Estimated completion in 0.31 minutes
Wed Mar 23 13:34:17 2005 [PROGRESS]: Tested 300 of 502 documents,
0 failures. Estimated completion in 0.18 minutes
Wed Mar 23 13:34:20 2005 [PROGRESS]: Tested 400 of 502 documents,
0 failures. Estimated completion in 0.08 minutes
Wed Mar 23 13:34:23 2005 [PROGRESS]: Tested 500 of 502 documents,
0 failures. Estimated completion in 0.00 minutes
Wed Mar 23 13:34:24 2005 [INFO]: Total documents: 502
Wed Mar 23 13:34:24 2005 [INFO]: Documents tested: 502
Wed Mar 23 13:34:24 2005 [INFO]: Failures: 0
Wed Mar 23 13:34:24 2005 [INFO]: Statistical Information:
Wed Mar 23 13:34:24 2005 [INFO 1: Min Max
Avg StdDev N Name
Wed Mar 23 13:34:24 2005 [INFO]: .02 .01
0.03 0.22 502 Dump Attributes
Wed Mar 23 13:34:24 2005 [INFO]: 0.00 .00
0.00 0.00 502 Build Query
Wed Mar 23 13:34:24 2005 [INFO]: 0.01 .37
0.01 0.03 502 Execute Query
Wed Mar 23 13:34:24 2005 [INFO]: 0.02 .38

86

Content Server Full-Text Indexing System Installation and Administration Guide

Creating and Managing the Full-Text Index

0.04 0.24 502 Test One Document
Wed Mar 23 13:34:24 2005 [PROGRESS]: Accuracy Test Finished
E:\Documentum\fulltext\IndexServer\bin>

Additional samples of the tool’s output are in Appendix C, Sample Output of
ftintegrity Utility.

Accuracy testing confidence and failures

Running the accuracy testing provides a high degree of confidence that the index is
accurate, but the testing is not exhaustive. Consequently, there may be some acceptable
failures. For example, the following causes of failures may be acceptable:

* Missing r_object_id values.

This may occur if an object ID was not indexed. However, ftintegrity tool is not
aware of object types that you have chosen not to index, through either a custom
filter or the specification of selective indexing in Documentum Administrator. If you
have chosen not to index one or more object types, the object IDs of instances of those
types will appear in the generated res-comp-dctmonly.txt file.

* vstamp mismatches

The object in the index may not yet reflect any changes made in the repository.

* Transient failures due to intermittent resource problems experienced by the index
server

¢ Failure to dump property values, possibly due to inactive Content Server

* Metadata query failures related indexing of special characters

Resubmitting objects to the index agent

When the ftintegrity tool is run, the completeness check produces a text file of

object IDs corresponding to objects that are found in the repository but not in

the full-text index. The file is called res-comp-dctmonly.txt. It is located in the
Documentum/fulltext/indexserver/bin directory. Use the file to resubmit objects to the
index agent for indexing.

Because the ftintegrity tool is not aware of object types that you may have chosen not
to index, through either a custom filter or the specification of selective indexing in
Documentum Administrator, the object IDs of instances of those types will appear in
the generated res-comp-dctmonly.txt file. However, when you use the file to resubmit
objects for indexing, the objects represented by those object IDs are ignored. If you are
using a custom filter to define the nonindexed types, the operation will generate queue

Content Server Full-Text Indexing System Installation and Administration Guide 87

Creating and Managing the Full-Text Index

items for those objects, but they are not indexed and the queue items are deleted later
in the process.

Objects may be resubmitted when the index agent is running in either migration mode
or normal mode. The file of object IDs is designated in the file_name parameter of the
indexagent.xml configuration file for a particular index agent. By default, the
file_name parameter is set to the file name ids.txt. The indexagent.xml file is in

drive:\ Program

Files\Documentum \ IndexAgents\ IndexAgentN \ webapps \ IndexAgentN\ WEB-
INF\classes (Windows) or
indexagentinstalldirectory/IndexAgents/IndexAgentN/webapps/IndexAgentN/WEB-INF/
classes (UNIX), where N is the number of the particular index agent.

The index agent periodically checks for the existence of ids.txt. If the file is found, the
objects are resubmitted for indexing.

The file designated in the file_name parameter can have any arbitrary name. For
example, the output file re-comp-dctmonly.txt might be renamed to resubmit.txt or to the
default ids.txt. The name may be a simple name (for example, ids.txt) or a fully-qualified
name (for example, C:\Program Files\ Documentum \ MyFiles\ids.txt). If the file has a
simple name, the index agent tries to resolve the name by following the CLASSPATH. If
you change the name from the default name, you must modify the indexagent.xml file
and substitute the name you assign the file in the file_name parameter.

A particular file must be made available to one index agent only. If multiple index agents
are installed on a host, at installation time the indexagent.xml files for all index agents
name the ids.txt file in the file_name parameter.

For example, if the file is located in C:\Program
Files\Documentum \ IndexAgents\ IndexAgentN \ webapps\ IndexAgentN\ WEB-
INF\ classes, only that instance will find the file.

When the index agent has read the entire file and submitted all objects for indexing, the
input file is renamed to original_filename.done. For example, if the input file is ids.txt,
when all objects are submitted, it is renamed ids.txt.done.

To resubmit objects to the index agent:

1. Run the ftintegrity tool.

2. Navigate to $DOCUMENTUM//fulltext/indexserver/bin
(%DOCUMENTUM \ fulltext\ indexerver\bin).

3. Copy the res-comp-dctmonly.txt file to indexagentinstalldirectory/IndexAgents/
IndexAgentN/webapps/IndexAgentN/WEB-INF/classes (drive:\Program
Files\Documentum \ IndexAgents\ IndexAgentN\ webapps\ IndexAgentN\ WEB-
INF\ classes).

4. Rename the res-comp-dctmonly.txt file to ids.txt or to an arbitrary name you choose.

88 Content Server Full-Text Indexing System Installation and Administration Guide

Creating and Managing the Full-Text Index

5. If you rename res-comp-dctmonly.txt to any name other than ids.txt, you must
modify the file_name parameter in the indexagent.xml file for the particular index
agent to reflect the new name.

The objects are automatically resubmitted for indexing.

The State of the Index job

Configuring a repository installs a job called State of the Index. This job is implemented
as a Java method. Running the job generates reports that provide the following
information:

¢ Index completeness information, similar to ftintegrity, but also comparing version
stamps on documents

e Status information about the index server, including disk space usage, node statistics,
and process statuses

* Information about total number of objects with content correctly indexed, total
number of objects with content that had some failure during indexing, and total
number of objects with no content

If you have configured a custom filter to ignore specific object types when indexing, you
can include the -usefilter argument to ensure that the job also uses that filter to exclude
objects of those types from the generated reports.

The job does not recognize object types chosen for exclusion from indexing through
Documentum Administrator. Objects of those types will be included in the generated
report. If you have a custom filter configured to exclude object types from indexing, you
can use the -usefilter argument to exclude instances of those types from the reports
generated by the job.

Execute the job from Documentum Administrator.

Arguments

Table 7-1, page 90, lists the arguments for the job.

Content Server Full-Text Indexing System Installation and Administration Guide 89

Creating and Managing the Full-Text Index

Table 7-1. State of the Index job arguments

Argument

Datatype

Description

-batchsize value

-writetodb_
threshold value

-usefilter value

-dumpfailedid
value

-serverbase value

90

integer

integer

Boolean

Boolean

Boolean

Number of objects to be retrieved from the
index in each batch.

The default value is 1000.

Determines how the object comparison is
conducted. If the total number of returned
objects is less than the value of this argument,
or its default value, the comparison is
conducted in-memory. If the total number is
greater, the comparison is conducted in the
database.

The default value is 100000.

Note: Conducting the comparison in memory
consumes memory and in a limited system,
may result in an out-of-memory error.

Determines whether a filter is used during the
object comparisons. The default value is F.

If a custom filter is used for indexing, set this
argument to T to use the filter when generating
the job results. If this is set to T but no filter is
found, the job ignores this argument, but logs
a message in the job report.

Note: Custom filters can be created to stop
indexing of specific object types. Information
is available on the developer.com website.

Indicates whether to generate the
docids-failedids.txt file, which records
the object IDs of objects with content that
experienced some failure during content
indexing.

T means to generate the file. F means do not
generate that file.

The default is F.

Whether to collect information about objects
with content and objects without content from
one collection in the index or all collections.

T means to collect information from all
collections. F means to collect information
from only one collection.

Content Server Full-Text Indexing System Installation and Administration Guide

Creating and Managing the Full-Text Index

Argument Datatype Description

The default is F.

In addition, the job is installed with the -queueperson, -windowinterval, and
-max_events_per_run arguments set. The -queueperson and -windowinterval arguments
are standard arguments for administration jobs, and are explained in the Content Server
Administrator’s Guide. The -max_events_per_run argument is not currently used.

Job report and generated files

The job generates a job report, FTStateofIndexDoc.txt and four results files. The
FTStateofIndexDoc.txt contains information about the job execution, similar to the job
reports generated by other administration jobs. The four results files are:

¢ docids-common.txt
This file contains the object IDs and i_vstamp values of all objects that are found in

both the index and the repository and having identical i_vstamp values in both
places.

¢ docid-common-misVstamp.txt
This file records all objects that are found in both the index and the repository with

identical object IDs but non-matching i_vstamp values. For each object, it records the
object’s object ID, i_vstamp value in the repository, and i_vstamp value in the index.

* docids-dctm-only.txt
This report contains the object IDs and i_vstamp values of objects that found in the
repository but not in the index.

* docids-fast-only.txt

This report contains the object IDs and i_vstamp values of objects that found in the
index but not in the repository.

In addition to the report and the four standard result files, the report may generate
additional result files depending on the arguments defined for the job run:

e If -dumpfailedid is set to T, the job generates a file called docids-failedids.txt. This
file contains the object ID of all objects whose content experienced some failure
duriing indexing.

e If -usefilter is set to T, the job generates two additional reports.

— docids-filtered.txt, which records the objects that have been filtered from the
repository for indexing. The objects are identified by object ID and i_vstamp
values.

Content Server Full-Text Indexing System Installation and Administration Guide 91

Creating and Managing the Full-Text Index

— docids_shouldnotin_fast.txt, which records the object ID and i_vstamp values of
any objects in the index that should have been filtered out before indexing.

The report and result files are found in
%DOCUMENTUM%\ dba\log\ sessionID\ sysadmin
($DOCUMENTUM/dba/log/sessionID/sysadmin).

Creating indexing events for new content in a
repository

In some circumstances, you must ensure that events are generated for content added to a
repository between the time a full-text index is created and the time the repository is
upgraded.

For example, a copy of a 5.2.5 repository can be used to create a new 5.3 SP2 index.
Depending on when the production repository is upgraded, new indexable objects may
be created in the 5.2.5 production repository after the new 5.3 SP2 index is created on
the repository copy. When the production repository is upgraded to 5.3 SP2 and begins
to use the new index, the repository contains objects that are not yet indexed. A job
installed by default in all 5.3 and later repositories, dm_FTCreateEvents, can be used in
its default mode to generate events for new indexable objects. An index agent running in
normal mode uses the events to submit the objects for indexing.

By default, the job is installed in the active state to run daily at 11 p.m. The job processes
new objects in batches of 50,000. If all objects are not processed in one run, the job
continues executing each day at 11 p.m. When it finds no more objects to process,

it sets itself to inactive.

The first time the job runs, the job determines the last object indexed by an index agent
running in migration mode and the date on which that object was indexed. The job
searches for objects modified after that date and before the job runs for the first time
and generates events for those objects. On its subsequent iterations, the job searches
for objects modified after the end of the last iteration and before the beginning of the
current iteration.

After a repository upgrade, use Documentum Administrator to review the job log for
dm_FTCreateEvents. The dm_FTCreateEvents job can also be run manually using
Documentum Administrator.

Turning indexing on and off

The following guidelines apply to turning indexing on and off:

92 Content Server Full-Text Indexing System Installation and Administration Guide

Creating and Managing the Full-Text Index

® You can turn off indexing of both properties and content files.

Turning off all indexing, page 93, contains instructions for turning off indexing.

* You can turn off content indexing but leave properties indexed.
Turning off content indexing, page 93, contains instructions for turning off content
indexing.

* You cannot turn off only property indexing.

* You can disable the creation of the full-text index by shutting down the index agent
and index server for a repository, but queue items are still generated by the events
that trigger indexing.

Turning off all indexing

To turn off all full-text indexing operations in a repository, connect as a Superuser, then
unregister the Save, Checkin, Destroy, Readonlysave, and MoveContent notifications for
the full-text user (dm_fulltext_index_user). This disables the generation of queue items
for Save, Checkin, Destroy, Readonlysave, and MoveContent events.

Turning off content indexing

To turn off content indexing, set the a_full_text property of the SysObject to FALSE.

Setting a_full_text to FALSE turns off content indexing but does not turn off indexing
of the object’s properties.

Suspending and resuming indexing

Suspending indexing stops the index server from processing the FIXML files generated
by the indexing process. The generation of FIXML files in not stopped. The process
proceeds through the generation of the FIXML files, but is suspended at that point.
When indexing is resumed, the index server resumes processing the FIXML files and
updating the index.

An index server must be running when you suspend its indexing functions.

Content Server Full-Text Indexing System Installation and Administration Guide 93

Creating and Managing the Full-Text Index

Suspending and resuming an index server in a
single-node configuration

Use the following command to suspend an index server:

rtsadmin adminhost port webcluster 0 0 suspendindexing

To resume indexing, use the following command:

rtsadmin adminhost port webcluster 0 0 resetindex

where adminhost is the name of the index server’s administrative host. The port is the
index server’s base port number plus the constant 3099. If the index server is using the
default base port, then the port value is 16099.

Suspending and resuming an index server in a
multinode configuration

In a multinode configuration, you issue one suspend or resume command for each
node. For example, if there are two nodes in the configuration, you use the following
commands:

rtsadmin adminlhost port webcluster 0 0 suspendindexing
rtsadmin adminhost port webcluster 1 0 suspendindexing

To resume indexing on those nodes, use the following commands:

rtsadmin adminhost port webcluster 0 0 resetindex
rtsadmin adminhost port webcluster 1 0 resetindex

where adminhost is the name of the index server’s administrative host. The port is the
index server’s base port number plus the constant 3099. If the index server is using the
default base port, then the port value is 16099.

The first integer after “webcluster’ represents a column, and each node has one column.
The commands to suspend and reset indexing reference the nodes through the column
numbers. Column numbers start with 0 and increment by one for each columns, or
node. The second integer must always be 0.

To determine how many nodes are running, if needed, you can use the dsadmin tool to
find all the configured nodes. You can use grep (UNIX) or findstr (Windows) to limit the
returned values to Indexer modules. For example:

$ dsadmin listmodules | grep Indexer

[2006-12-11T21:47:17Z]: INFO dsadmin RTS Indexer 3.0.98-Release
mice.mylabs.com 15674

[2006-12-11T21:47:172]: INFO dsadmin RTS Indexer 3.0.98-Release
cats.mylabs.com 15674

94 Content Server Full-Text Indexing System Installation and Administration Guide

Creating and Managing the Full-Text Index

Count the number of returned rows to determine how many indexing nodes are running.
This example return indicates that there are two nodes.

Configuring the indexing behavior

This section describes how to configure indexing behaviors, to help ensure that users’
searches find the objects they want.

Disabling indexing of specific object types

By default, all instances of dm_sysobject or its subtypes are indexed. However, you
can disable indexing of instances of specific object types in repositories at version 5.3
SP5 or later.

A type is registered for indexing if any of its supertypes are registered for indexing. You
cannot turn off indexing for an object type if any of its supertypes are indexed. Because
dm_sysobject and all of its subtypes are indexed (registered for indexing) by default, if
you want to disable indexing for one or more subtypes, you must turn off indexing for
dm_sysobject and then enable indexing specifically for those subtypes that you want
indexed, leaving those you do not want to index as unregistered.

Use Documentum Administrator to disable or enable indexing. You must connect as

a Superuser. The Properties page for each object type capable of being indexed has a
checkbox named Registered for indexing. That checkbox indicates whether the object
type is currently registered for indexing. The field is enabled or disabled depending on
whether or not you can change the type’s indexing status.

To remove or add registration for indexing for an object type:

1. Start Documentum Administrator as a Superuser.

2. Select the Types node.

3. Navigate to the object type whose registration you want to change and open its
Properties page.
This must be dm_sysobject or one of its subtypes.

4. To stop indexing of instances of the type, clear Register for indexing.

5. To resume indexing of instances of the type, select Register for indexing.

Content Server Full-Text Indexing System Installation and Administration Guide 95

Creating and Managing the Full-Text Index

Configuring format objects to specify which renditions
are indexed

Properties of the format object determine which formats are indexable and which content
files in indexable formats are indexed. If the value of the can_index property of a content
file’s format object is set to TRUE, the content file is indexable. If the primary content of
an object is not in an indexable format, you can ensure that the content file is indexed by
creating a rendition in an indexable format.

The format_class property of the format object may be set to values that determine
which formats are indexed:

e ft_always

All renditions in formats whose format_class property is set to ft_always are
indexed. For example, if a document has renditions in Microsoft Word and PDF
formats and the format_class property for both formats is set to ft_always, both
renditions are indexed.

e ft preferred

If a document has multiple renditions in indexable formats and one is in a format
whose format_class property is set to ft_preferred, the rendition in that format

is indexed rather than any renditions in other formats, with the exception that

any formats whose format_class property is set to ft_always are also indexed. If

a document has more than one rendition whose format_class property is set to
ft_preferred, the first rendition processed for indexing is indexed and the other
renditions are not. Which rendition is processed for indexing cannot be determined
in advance. It is recommended that for any document, only one rendition is in a
format whose format_class property is set to ft_preferred.

If a document has renditions in four different formats, of which the format_class of
one is set to ft_preferred and the format_class of the other three is set to ft_always,
all four renditions are indexed.

There is no default value for the format_class property. You must set it manually to
designate whether a format is always indexed or is the preferred format for indexing.

By default, the first content file in a format whose can_index property is set to true is
indexed. Other renditions of the object are not indexed. If the primary content of an
object is not in an indexable format, create a rendition in an indexable format. Appendix
D, Supported and Unsupported Formats for Full-Text Indexing, contains a complete
list of indexable formats.

If the content file associated with a SysObject exists in a non-indexable format, its
properties are still indexed. To index the content, create a rendition of the SysObject in
an indexable format. Use Documentum Content Transformation Services or third-party
client applications to create the rendition.

96 Content Server Full-Text Indexing System Installation and Administration Guide

Creating and Managing the Full-Text Index

Supported formats and mime_types

Appendix D, Supported and Unsupported Formats for Full-Text Indexing lists the
formats considered indexable by the index server.

Some formats found in the appendix are not be represented in the repository by a format
object. The formats.cvs file, which is located in $DM_HOME/install/tools, contains a
complete list of supported mime_types and the formats with which they are associated.
If a supported mime_type is not represented by a format object, create a format object in
the repository and map the supported mime_type to the format.

Reindexing a repository

An existing index may become corrupted because of disk failure or corruption, host
failure, or the unexpected shutdown of the index server. When the index is corrupted, it
may be desirable to reindex the repository.

There are two ways to reindex a repository:

¢ Use an index agent running in migration mode to resubmit all qualifying repository
objects for indexing.

This is the recommended way to reindex. Refer to the Content Server Full-Text
Indexing Installation Guide for complete instructions.

Reindexing the repository rebuilds the existing index by replacing entries in the
index. It is recommended that you run the index server in suspended mode if you
reindex. For information on suspended mode, refer to Index server modes, page 122.

e Use the Create Full-Text Events tool (dm_FTCreateEvents) in full-reindex mode.

This is not recommended, but if you do reindex with the tool, schedule it to run daily
and process the default number of objects. Do not set the tool to run multiple times a
day. The tool is described in the online help system for Documentum Administrator,
from which it is run, and in Creating indexing events for new content in a repository,
page 92.

Troubleshooting indexing timeouts

Occasionally, the processing time for a particularly complex file, for example, a complex
spreadsheet, may be long and cause an indexing timeout. Use the procedure in this
section if you are experiencing a timeout while indexing a file.

Content Server Full-Text Indexing System Installation and Administration Guide 97

Creating and Managing the Full-Text Index

To modify index agent and index server timeout values:

1.

b

 »® N o U

12.
13.

14.

15.
16.
17.

18.

19.

20.
21.

98

Connect to the computer where the indexing software is installed as the installation
owner.

Navigate to $DOCUMENTUM_SHARED/IndexAgents/IndexAgentl/webapps/
IndexAgent1/WEB-INF/classes/ (UNIX and Linux) or %DOCUMENTUM_
SHARED%\IndexAgents\IndexAgentl\webapps\IndexAgentl\ WEB-

INF\ classes\.

Open the indexagent.xml file in a text editor.

In the <indexagent_instance> element, locate the <runaway_thread_timeout> and
<runaway_item_timeout> elements.

Increase the default value.

In the <exporter> element, locate the <runaway_timeout> element.
Increase the default value.

In the <indexer> element, locate the <runaway_timeout> element.

Increase the default value.

. In the <fast_indexer> element, locate the <fds_callback_wait_time> element.

11.

Increase the default value.
Save the indexagent.xml file.

Stop the index server.

Use the index agent admin tool.

Navigate to SDOCUMENTUM/fulltext/IndexServer/etc/processors/ (UNIX or Linux)
or %DOCUMENTUM% \ fulltext\ IndexServer\ etc\ processors\

Open the Format.xml file in a text editor.
Locate the <load module="processorts.Format” class="StellentConverter”/> element.

Increase the timeout value to 3000:

<param name="Timeout" value="3000" type="int"/>

Save the Format.xml file.

Navigate to $DOCUMENTUM/fulltext/IndexServer/etc/ (UNIX or Linux) or
%DOCUMENTUM% \ fulltext\ IndexServer\ etc\.

Open the NodeConf.xml file in a text editor.

In the Content Distributor section, ensure that the value of the --operation-timeout
parameter is 6000.

Content Server Full-Text Indexing System Installation and Administration Guide

Creating and Managing the Full-Text Index

22. In the Config Server section, ensure that the last entry in the <parameters> element
is -p 12000:

<parameters>-P $PORT -s no -M -ORBendPointNoListen

giop:tcp:pleearth:$PORT1

-ORBendPointNoPublish giop:tcp::$PORT1 -p 1200<parameters>
23. Save the NodeConf.xml file.

24. Restart the index server.

Creating a new index

If you must delete an existing index and create a new index for a repository, use the
following high-level instructions.

To create a new index:

1. Delete the existing full-text indexing software and index, using the instructions in
Appendix B, Uninstalling the Index Agent and Index Server.
Ensure that you delete the existing index.

2. Reinstall the software, creating an index agent in migration mode, and reindex the

repository, using the instructions in Chapter 7, Creating and Managing the Full-Text
Index.

Pointing a repository to a previously-created
index

If an index is created with the index agent in normal mode, the repository, index agent,
and index server are automatically associated with one another.

If an index is created with the index agent in migration mode, a normal mode index
agent must be created to update the index. If the repository is version 5.2.5.x, upgrade
the repository and then configure a normal mode index agent. If the repository is version
5.3 or later, configure the normal mode index agent. Configuring the normal mode index
agent associates the indexing software components, the index, and the repository.

Content Server Full-Text Indexing System Installation and Administration Guide 99

Creating and Managing the Full-Text Index

Configuring index routing

To configure index routing, you must direct documents to particular storage areas and
make configuration changes to the index agent and index server. The following sections
discuss how to configure index routing. (For a conceptual description of index routing,
refer to Multinode configuration with index routing, page 32.)

Directing documents to particular storage areas

To direct documents to particular storage areas, customize your applications to set
the a_storage_type attribute for each document. For example, you might designate
filestore_01 for PDF documents, filestore_02 for Word documents, and filestore_03 for
Excel documents.

Configuring the index server

On the node where the ConfigServer process is running, the NodeConf.xml file must be
modified to include the routing.cfg file and a routing.cft file must be created.

To configure the index server:

1. Shut down the index server.

2. Connect as the installation owner to the node where the ConfigServer process is
running.

3. Navigate to the %DOCUMENTUM% \ fulltext\ IndexServer\ etc ((DOCUMENTUM/
fulltext/IndexServer/etc) directory.

4. Open the NodeConf.xml file in a text editor.

5. Add a collection routing definition to the status server entry:

<executable>statusserver</executable>

<parameters>>--type=single --db-dir=$FASTSEARCH/data/status
--db-mem=1 -ORBendPointNoListen giop:tcp:hostl:$PORT -ORBendPointNoPublish
giop:tcp::$SPORT --collection-routing-file=SFASTSEARCH/etc/routing.cfqg

6. Save the NodeConf.xml file.

7. In the $DOCUMENTUM/fulltext/IndexServer/etc directory (UNIX)
or%DOCUMENTUM% \ fulltext\ IndexServer\ etc (Windows), create a file called
routing.cfg.

8. Enter the collection to column mapping in the following format:

100 Content Server Full-Text Indexing System Installation and Administration Guide

Creating and Managing the Full-Text Index

collectiondesignator=column designator
For example:

collectiona=0
collectionb=1
collectionc=2

9. Save the routing.cfg file.
10. Restart all index server processes on all nodes.

11. Use the nctrl command on each node to verify that the processes are running
correctly:

$ cd $FASTSEARCH/bin
$. .setupenv.sh
$ nctrl sysstatus

A list of index server processes and their status is displayed.

Configuring the index agent

On the index agent host, the indexagent.xml file must be modified to map the filestores
to particular collections. The <partition_config> element is added immediately before
the end of the <indexer> element.

In the following example, the default collection is defined and three storage areas are
mapped to particular collections. Note that the collection to which filestore_01 is mapped
is also defined as the default collection:

<partition config>
<default partition>
<collection_name>repb0l</collection_name>
</default partition
<partition>
<storage name>filestore 0l</storage name>
<collection name>repb0l</collection name>
</partition>
<partition>
<storage name>filestore 02</storage name>
<collection name>repb02</collection name>
</partition>
<partition>
<storage name>filestore 03</storage name>
<collection name>repb03</collection name>
</partition>
</partition config>

Content Server Full-Text Indexing System Installation and Administration Guide 101

Creating and Managing the Full-Text Index

</indexer>

102 Content Server Full-Text Indexing System Installation and Administration Guide

Chapter 8

Managing Full-Text Indexing
Components

This chapter contains information on starting and stop the index agent and index server, disabling
index agents, viewing index server properties, and viewing or modifying index agent properties. You
must have System Administrator or Superuser privileges to perform these tasks.

Topics in this chapter are:

* Administration tools, page 103

¢ Starting and stopping the full-text indexing system, page 104

* Viewing or modifying index agent properties, page 108

* Viewing index server properties, page 109

* Reviewing the index agent and index server log files, page 109

* Administration operations, page 110

¢ Large file rejection error, page 118

¢ Increasing capacity, page 119

Administration tools

Two tools are available for administering different aspects of full-text indexing:

¢ The Index Agent Admin Tool is installed when the index agent and index server are
installed. The tool is a JSP page accessible at the URL
http://hostname:portno/IndexAgentN/login.jsp
where hostname is the name of the host where the index agent is running, portno
is the port where the index agent is listening, and N is the number designating a
particular index agent instance.

Use the Index Agent Admin tool to map file stores, monitor the indexing process,
and stop or start the index agent and index server on a particular host.

e Documentum Administrator

Content Server Full-Text Indexing System Installation and Administration Guide 103

Managing Full-Text Indexing Components

Use Documentum Administrator to stop or start index agents and index servers, to
manage the full-text indexing queue, and to view index server logs.

Note: Using console mode in RemoteDesktop for the administration of the index server
is not supported.

If the repository has a high-availability indexing configuration running, in which
multiple, redundant index agents and index servers are installed and multiple,
redundant indexes are maintained, the paired index agents and index servers are
displayed together in Documentum Administrator, listed under the name of the index.
The default names are:

e For the first index, repositoryname_ftindex_01

* For the first index server, FAST Fulltext Engine Configuration

¢ For the first and all subsequent index agents, hostname_IndexAgentl
e For the next index, repositoryname_ftindex_01_ha

* For the next index server, FAST Fulltext Engine Configuration - 2

Starting and stopping the full-text indexing
system

104

Start the software components in this order:

1. Start the Content Servers.

2. Start the index server.

3. Start the index agent.

By default, at server startup, Content Server checks whether the index agent associated
with the repository is started. If the index agent is already running, it remains running.
If the index agent is not running and the start_index_agents parameter in the server.ini
file is set to TRUE (the default value), the server starts the index agent. If the application

server instance in which the index agent runs is not running, Content Server cannot
start the index agent.

If the Content Server is shut down while the index agent is running, the index agent
continues to run, waiting for Content Server.

Shut down the software in this order:

1. Shut down the index agent.
2. Shut down the index server.

3. Shut down the Content Servers.

Content Server Full-Text Indexing System Installation and Administration Guide

Managing Full-Text Indexing Components

If the software is stopped and started in the correct order, indexing continues normally
after a restart, regardless of whether the index agent is in migration mode or normal
mode. If the index agent is in migration mode, however, it is recommended that you
monitor the position in the list of object IDs of the high-water mark queue item to ensure
that indexing has not completed. A migration-mode index agent that is started against
a repository in which indexing is completed may reindex the entire repository. The
high-water mark is queue item with the object name “Full-text re-index high water
mark” and it traverses the repository in ascending order of object IDs.

Starting and stopping the index agent

Use these instructions to stop a running index agent or start an index agent that is
stopped. When the index agent is running in normal mode, you can use Documentum
Administrator or the Index Agent Admin Tool to start and stop it. When the index agent
is running in migration mode, use the Index Agent Admin Tool to start or stop it.

Stop the index agent before you stop its associated index server. If you try to stop the
index server first, Documentum Administrator automatically stops the index agent as
well. The JSP interface warns you to stop the index agent before you stop the index server.

If the index server is stopped and you try to start its associated index agent, you are
asked whether you want to also start the index server. If the status of the index server is
Not Responding, you cannot start or stop the index server, but you can start or stop the
associated index agent.

An index agent that is disabled cannot be started and is not started automatically when
its associated Content Server is started. You must enable the index agent first. For
information on enabling a disabled index agent, refer to Enabling and disabling index
agents, page 107. If the index agent’s status is Not Responding, examine the machine on
which it is installed and ensure that the software is running.

Note that stopping or starting an index agent does not stop or start the application server
process in which the index agent runs. You must stop the application server processes
manually. However, if you stop an application server process, you must restart it before
the index agent can be started.

Caution: Stopping the index agent interrupts full-text indexing operations, including
updates to the index and queries to the index. An index agent that is stopped does not
pick up index queue items or process documents for indexing.

To start or stop an index agent using Documentum Administrator:

1. Log into Documentum Administrator, connecting to the repository as user who has
System Administrator or Superuser privileges.

2. Click Administration>Indexing Management>Index Agents and Index Servers.

Content Server Full-Text Indexing System Installation and Administration Guide 105

Managing Full-Text Indexing Components

Select the correct index agent.
To start the index agent, click Tools>Start.

To stop the index agent, click Tools>Stop.

o U ok W

Confirm that you want the index agent started or stopped.

The index agent’s status changes to running or stopped.

To start or stop an index agent using the Index Agent Admin Tool:

1. Log in to the Index Agent Admin Tool.
The Index Agent Admin Tool is available at this URL:

http://hostname:portno/IndexAgentN/login. jsp

where hostname is the name of the host where the index agent is running and portno
is the port where the index agent is listening and N is the number assigned to the
index agent instance. If the browser is on the index agent host, replace hostname
with localhost.

To start the index agent, click Start in the index agent status line.
Click Ok.
To stop the index agent, click Stop in the index agent status line.

Click Ok.

ook LN

The dm_FTIndexAgentBoot job

The dm_FTIndexAgentBoot job is installed when you install the full-text indexing
components. The job is set to the active state when the index agent is configured. The
job periodically checks the state of the index agent and if the agent is not running,
restarts the index agent.

Starting and stopping the index server

Use these instructions to stop a running index server or start an index server that is
stopped. You can use Documentum Administrator or the Index Agent Admin Tool to
start and stop it. If you stop an index server, its associate index agent is also stopped, and
you are informed that the index agent will be stopped as well.

If the index server’s status is Not Responding, attempt to retrieve and examine the log
files, using the instructions in Reviewing the index agent and index server log files, page
109. If you cannot retrieve the log files, examine the machine on which the index server is
installed and determine whether it is running.

106 Content Server Full-Text Indexing System Installation and Administration Guide

Managing Full-Text Indexing Components

When you stop the index server, wait a few minutes before attempting to restart it. Note
that stopping or starting an index agent does not stop or start the application server
process in which the index server runs.

Caution: Stopping the index server interrupts full-text indexing operations, including
! updates to the index and queries to the index.

To start or stop an index server using Documentum Administrator:

1. Log into Documentum Administrator, connecting to the repository as user who has
System Administrator or Superuser privileges.

Click Administration>Indexing Management>Index Agents and Index Servers.
Select the correct index server.
To start the index server, click Tools>Start.

To stop the index server, click Tools>Stop.

SANEN L T A

Confirm that you want the index server started or stopped.

The index server’s status changes to running or stopped.

To start or stop an index server using the Index Agent Admin Tool:

1. Log in to the Index Agent Admin Tool.
The Index Agent Admin Tool is available at this URL:

http://hostname:portno/IndexAgentN/login.jsp

where hostname is the name of the host where the index agent is running and portno
is the port where the index agent is listening and N is the number assigned to the
index agent instance. If the browser is on the index agent host, replace hostname
with localhost.

To start the index server, click Start in the index server status line.
Click Ok.
To stop the index server, click Stop in the index server status line.

Click Ok.

SR

Enabling and disabling index agents

An index agent that is disabled cannot be started and is not started automatically when
its associated Content Server is started. You can disable an index agent whether it is
running or stopped. To start a disabled index agent that is not running, you must enable
the index agent first.

Content Server Full-Text Indexing System Installation and Administration Guide 107

Managing Full-Text Indexing Components

You may wish to disable an index agent if the computer on which the index server is
installed has had a hardware failure or if the index agent itself has failed.

To enable or disable an index agent:

1. Log into Documentum Administrator, connecting to the repository as user who has
System Administrator or Superuser privileges.

Click Administration>Indexing Management>Index Agents and Index Servers.
Select the correct index agent.

Click Tools>Enable orTools>Disable.

S E

Confirm that you want the index agent enabled or disabled.

The index agent’s status changes to the selected state.

6. If you enabled the index agent, restart it.

Viewing or modifying index agent properties

Use these instructions to view the properties of an index agent. You can modify the
following index agent properties, but it is recommended that you do not change the
values:

¢ Exporter Thread Count

This is the number of concurrent exporter threads run by the index agent. The
default value is 3. If you change the exporter thread count, you must restart the
index agent for the change to take effect.

¢ DPolling Interval

This is the frequency, in seconds, at which the index agent polls for queue items.
The default value is 60.

All other properties are read-only.

To view or modify index agent properties:

1. Log in to Documentum Administrator, connecting to the repository as user who has
System Administrator or Superuser privileges.

2. Click Administration>Indexing Management>Index Agents and Index Servers.
3. Click the Info icon for the index agent.

4. If required, modify the exporter thread count or polling interval properties.

It is recommended that you do not modify the default values.

5. Click Ok to save the changes or Cancel to exit without saving.

108 Content Server Full-Text Indexing System Installation and Administration Guide

Managing Full-Text Indexing Components

Viewing index server properties

You cannot modify the properties of an index server. To view the properties of an index
server, click the Info icon next to the name of the server in Documentum Administrator
(Administration>Indexing Management>Index Agents and Index Servers). The
following properties are displayed:

The index server name

This is the object name of the configuration object.
The name of the host on which the index server is running

The base port number used by the index server

The default value is 13000.

Collection name

The name of an index collection, which typically contains the index data for a
particular repository.

Description

A description of the collection, including the repository for which the collection
contains the index data.

Cluster

The search cluster to which the collection belongs. The default name is webcluster.
Pipeline

The document processing pipeline for a particular collection. The default value
is DFTXML.

For 5.3 repositories with the indexing software installed, only one row is displayed
because a 5.3 index server managed only one collection. In 5.3 SP1 and later repositories,
an index server can manage multiple collections.

Reviewing the index agent and index server
log files

The index agent log file is located in SDOCUMENTUM_SHARED/Logs on UNIX

or Linux or %DOCUMENTUM_SHARED%\ Logs (Windows). The file name is
IndexAgentN.log, where N is the number of the particular index agent. For example,

in a consolidated indexing deployment, in which more than one repository is indexed
by a single index server, you may have IndexAgentl, IndexAgent2, and IndexAgent3
running, with each corresponding to a particular repository. The log file for IndexAgent3
is called IndexAgent3.log.

Content Server Full-Text Indexing System Installation and Administration Guide 109

Managing Full-Text Indexing Components

To view the logs for an index server, use Documentum Administrator.

To view the logs of an index server:

1. Log into Documentum Administrator, connecting to the repository as user who has
System Administrator or Superuser privileges.

2. Click Administration>Indexing Management>Index Agents and Index Servers.
3. Select an index server.

4. Click View>Get Index Server Logs.
A zip file containing the logs is produced.

5. Save the zip file to the local drive.

6. Unzip the compressed file and view the logs.

Administration operations

Use the instructions in this section to perform configuration and administrative tasks.

Note: Using console mode in RemoteDesktop for the administration of the index server
is not supported.

Configuring batched returns for non-FTDQL queries

110

Queries that contain a SEARCH clause but are not FTDQL queries are processed using a
temporary table. Content Server populates a temporary table with the results returned
by the SEARCH clause and then filters the results for security and matches to any other
conditions specified in the query. If the SEARCH clause has returned a large number
of results, processing them may take some time. To improve performance, the results
are populated into the temporary table and, with some exceptions (refer to the Note)
are processed in batches. The batch size is configurable.

The batch size is controlled by the temp_table_batch_size parameter for the full-text
engine configuration. This parameter is set in the dm_ftengine_config object. The
parameter name is set in param_name property and the value is set in the param_value
property. These are repeating properties, so you must set the name and value at the
same index position within the property. The value is an integer number representing
the number of results in each batch.

You must reinitialize Content Server after setting the parameter.

If this parameter is not set, the default batch size is 20000. Setting the parameter to
0 disables the batching feature.

Content Server Full-Text Indexing System Installation and Administration Guide

Managing Full-Text Indexing Components

Note: Batched returns are not used if the query contains any of the following:
* An aggregate function, such as count() or sum().

e A UNION, IN DOCUMENT, IN ASSEMBLY, or ORDER BY clause

e A SEARCH clause in a subquery

In such cases, all results are populated into the temporary table for processing in one
batch.

Because the full-text engine may return duplicate hits for an object, Content Server also
processes the full-text results within each batch to remove duplicates. Note however,
that if there are duplicate rows across the batches, those duplicates are not removed.

Configuring duplicate checking batch size

If the search results are populated into the temporary table in batches, Content Server
removes any duplicates within each batch. If all results are populated into the table in
one batch, Content Server removes any duplicates in the set, unless the set exceeds
the size limit specified in the temp_table_remove_dup_size parameter set in the
dm_ftengine_config object. If the size of the result set exceeds that parameter, Content
Server does not attempt to remove duplicates. The parameter’s default is 20000. You
can change the default.

The temp_table_remove_dup_size parameter is set in the dm_ftengine_config object. The
parameter name is set in param_name property and the value is set in the param_value
property. These are repeating properties, so you must set the name and value at the
same index position within the property. The value is an integer number representing
the number of results in each batch.

Setting the parameter to 0 disables this feature.

You must reinitialize Content Server after setting the parameter.

Enabling thesaurus searching

Thesaurus searching allows users to define which words are returned by a particular
search.

A synonym file contains the definitions. Typically, entries in the file contain words with
similar meanings (synonyms). For example, you can define “auto” and “automobile”
as synonym entries that must be returned when the word “car” is the search term.
However, an entry can contain unrelated words or create user-defined associations.

A synonym file may also containing spelling variations and abbreviations. For example,
“favour” is the British spelling of “favor” and “fvr” is an abbreviation of “favor.”

Content Server Full-Text Indexing System Installation and Administration Guide 111

Managing Full-Text Indexing Components

Thesaurus searching is supported for only one language per index server installation.
All languages listed in Appendix E, Supported Languages for Full-Text Indexing, are
supported for thesaurus searching. The default language for thesaurus searching is
English.

This section contains instructions for creating a synonym file and importing its contents
to create a synonym dictionary. Once the synonym file is imported and the synonym
dictionary is created, thesaurus searching is enabled. User searches return not only the
searched-for word, but also any synonyms defined in the synonym file.

If you upgraded from an EMC Documentum version prior to 5.3, an existing Verity
thesaurus file can also be used to create the synonym dictionary.

You can enable thesaurus searching at any time. You can also add entries to an existing
synonym dictionary.

Creating the synonym file

112

The synonym file defines which words you want to be returned by a particular search.
Create a text file with synonym entries in the following format:

term=[[spelling variations], [abbreviations], [[synonyms][]]]
The file may have any name. Save the file in the UTF-8 code page.

The brackets in each entry are literal characters that separate spelling variations,
abbreviations, and synonyms. The empty brackets at the end of the synonym entry
are required.

The following examples contain only synonyms::

car=[[],1[], [[automobiles, autos], []]]
cars=[[],[], [[automobiles,autos], []1]]
auto=[[],[], [[automobiles,autos], []]]
autos=[[],[], [[automobiles,autos], []]]

The following example contains a spelling variation, an abbreviation, and synonyms:

favor=[[favour], [fvr], [[prefer,privilege], []11]]

There are no limitations on the length of an entry or the number of entries in the
synonym file.

Content Server Full-Text Indexing System Installation and Administration Guide

Managing Full-Text Indexing Components

Importing the synonym file

You can import a synonym file created as described above in Creating the synonym file,
page 112 or you can import an existing Verity thesaurus file.

To import the synonym file, connect to the index server host as the index server
installation owner and run the ImportDictionary.py script. The script is executed by
Cobra, which is included in the index server installation. The following conditions
must be met to run ImportDictionary.py:

e The FASTSEARCH environment variable must be set ($}FASTSEARCH on UNIX,
%FASTSEARCH% on Windows).

e The script must be run from the $FASTSEARCH/bin directory (UNIX) or
%FASTSEARCH% \bin folder (Windows).

¢ The synonym file must be found in the $FASTSEARCH/bin directory (UNIX) or
%FASTSEARCH% \bin folder (Windows).

The syntax is

cobra ImportDictionary.py [-I filename -M verity|fast -L
language -T transaction type]

or

cobra ImportDictionary.py [--importfile=filename --mode=verity|fast
--language=language --transactiontype=transaction type]

The arguments are described in Table 8-1, page 113.

Table 8-1. Syntax of ImportDictionary.py script

Argument Description

-1 filenameor The name of the synonym file. May be any arbitrary name.
--importfile filename

-M wverity|fast or Whether an existing Verity thesaurus file or a new index
--modeverity | fast server synonym file is being imported. Allowable values are

verity and fast. If the argument is not included, the default
value is fast.

Content Server Full-Text Indexing System Installation and Administration Guide 113

Managing Full-Text Indexing Components

Argument Description

-L or --language The language of the synonym file. Allowable values are the
names of the languages listed in Appendix E, Supported
Languages for Full-Text Indexing. If the argument is not
included, the default value is English.

-T transaction_type The allowable values are:
or --transactiontype
transaction_type

e createnew, which instructs the index server to create a new
synonym dictionary using the terms in the file filename.

¢ insertentries, which instructs the index server to add entries
from the synonym file filename to an existing synonym
dictionary.

¢ deletedictionary, which instructs the index server to delete
the existing dictionary. Do not provide a file name if you
run ImportDictionary.py to delete an existing synonym
dictionary. If you do not provide an argument, the English
dictionary is deleted by default.

For example, to import a new file called MySynonyms.txt:

cobra ImportDictionary.py -I MySynonyms.txt -M fast -L English -T createnew

To use an existing Verity thesaurus file called VeritySynonyms:

cobra ImportDictionary.py -I VeritySynonyms -M verity -L English -T createnew

To add new synonyms from a file MoreSynonyms.txt to an existing synonym dictionary:

cobra ImportDictionary.py -I MoreSynonyms.txt -M fast -L English -T insertentries

To delete an existing synonym dictionary:

cobra ImportDictionary.py -T deletedictionary

Logging

Running the ImportDictionary.py script generates a log file in $FASTSEARCH/bin
(UNIX) or %FASTSEARCH%\bin (Windows). The log file is called error.log. It is
generated each time the ImportDictionary.py script is run, whether or not errors are
reported. The information in the log file is also displayed on your console or monitor
while the script is running. The log file contains information on:

* Which options were used to run the script

* The name of the synonym file

¢ Whether required files are present in the index server installation
* The actions performed by the script

* When any errors occurred

114 Content Server Full-Text Indexing System Installation and Administration Guide

Managing Full-Text Indexing Components

e How to correct the errors
* The name of the synonym dictionary that is created

¢ Which index server processes create the synonym dictionary

Log sample

The following is a sample log:

Information : Logging started

Services ['storageservice', 'j2ee'] will be started

IMPORTANT!!!:The current File C:\Documentum\fulltext\IndexServer\etc\NodeConf.xml

is being modified as C:\Documentum\fulltext\IndexServer\etc\NodeConf.xml.origRestore
it back before rerunning the script if script fails Launching File Transformer
C:\Documentum\fulltext\IndexServer\bin\cobra with args ['convert.py',
'veritysyn.txt', 'FASTFile', 'en']

B R R AR A AR A AR A

Information : Launching application C:\Documentum\fulltext\IndexServer\bin\cobra
The argument list is ['cobra', 'convert.py', 'veritysyn.txt', 'FASTFile', 'en']
Successfully generated the transformed file FASTFile

Copying NodeConf.xml.mod as C:\Documentum\fulltext\IndexServer\etc\NodeConf.xml
to start services

B R R AR AR AR AR AR AR R A

Information : Launching application C:\Documentum\fulltext\IndexServer\bin\nctrl
The argument list is ['nctrl', 'reloadcfg']

B R R AR R AR R A

Information : Launching application C:\Documentum\fulltext\IndexServer\bin\nctrl
The argument list is ['nctrl', 'start', 'storageservice', 'j2ee']

B R R R AR AR AR AR R A

Information : Launching application C:\Documentum\fulltext\IndexServer\bin\nctrl
The argument list is ['nctrl', 'sysstatus']

B R R R AR R AR AR AR A

Information : Launching application C:\Documentum\fulltext\IndexServer\bin\nctrl
The argument list is ['nctrl', 'sysstatus']

The dictionary app is C:\Documentum\fulltext\IndexServer\bin\dictman

The documentum synonym en dictionary will be generated

The DictmanCmdFile command file will be used by dictman

The Dictionary documentum synonym en exists

The importFile FASTFile

Content Server Full-Text Indexing System Installation and Administration Guide 115

Managing Full-Text Indexing Components

i
Starting Dictionary documentum synonym en import
Creating Dictman command file DictmanCmdFile

B R R R R R R R R R R R R R AR AR AR AR A

Information : File DictmanCmdFile created
Writing strings

open /documentum synonym en

thesimport /documentum synonym en FASTFile
close /documentum synonym en

compile /documentum synonym en
quit

Generated DictmanCmdFile command file for Dictman

R R R R R R R

Information : Launching application C:\Documentum\fulltext\IndexServer\bin\dictman

The argument list is ['dictman', '-u', 'root', '-f', 'DictmanCmdFile']
imported entries successfully into Dictionary documentum synonym en
Stopping ['grserver', 'search-1'] services

B R R R R R R R R R R R AR AR R AR R AR R A

Information : Launching application C:\Documentum\fulltext\IndexServer\bin\nctrl
The argument list is ['nctrl', 'start', 'gqrserver', 'search-1']

B R R R R R R R R R R AR R R AR AR AR R A

Information : Launching application C:\Documentum\fulltext\IndexServer\bin\nctrl
The argument list is ['nctrl', 'sysstatus']

B R R R R R R R R R R AR R AR AR AR R R A

Information : Launching application C:\Documentum\fulltext\IndexServer\bin\nctrl
The argument list is ['nctrl', 'stop', 'grserver', 'search-1']

B R R R R R R R R R R R R R R AR AR AR AR AR R A

Information : Launching application C:\Documentum\fulltext\IndexServer\bin\nctrl
The argument list is ['nctrl', 'stop', 'grserver', 'search-1']

Error : Application C:\Documentum\fulltext\IndexServer\bin\nctrl returned

with error code -5

Error : Launch failed for application C:\Documentum\fulltext\IndexServer\bin\nctrl
Error : Application C:\Documentum\fulltext\IndexServer\bin\nctrl returned

with error code -5

116 Content Server Full-Text Indexing System Installation and Administration Guide

Managing Full-Text Indexing Components

Obtaining a list of indexable formats

Use the following DQL query to obtain a list of content formats that are marked as
indexable:

SELECT "name", "description" FROM "dm format"
WHERE "can index"=true

Tracing full-text query operations

Use the MODIFY_TRACE administration method to turn on tracing for full-text querying
operations. The method is executed from Documentum Administrator. Two tracing
levels are available: None, in which tracing is turned off, and All, in which all Content
Server and full-text messages resulting from queries are logged. The fttrace_repository.
log file contains messages generated by turning tracing on using MODIFY_TRACE.

When tracing is turned on, FTDQL queries are logged with the following format:

FTDQL Execution. ft convertible = T|F, converted ft query
= %s, ft search type = $%s

When ft_convertible is TRUE, converted_ft_query contains the converted full-text
equivalent of the WHERE clause. If a where clause was not specified in the query’s select
statement, converted_ft_query is empty. The ft_search_type indicates how the query
was executed against the index.

When tracing is turned on and non-FTDQL queries are executed, the SQL statements
created for the DQL queries are logged to the full-text log file.

Enabling tracing for the index agent

Use these instructions to enable tracing for the index agent.

To enable tracing for the index agent:

1. On the index agent host, navigate to the {DOCUMENTUM_SHARED/config
directory (%DOCUMENTUM% \ config on Windows).

2. Open the IndexAgentN.log4j.properties file, where N is the number of the index
agent for which you are enabling tracing.

3. Locate the following text:

log4j.category.com.documentum=INFO

4. Replace INFO with DEBUG:

Content Server Full-Text Indexing System Installation and Administration Guide 117

Managing Full-Text Indexing Components

log4j.category.com.documentum=DEBUG

5. Save the file.

If a node fails in a high-availability configuration

In a high-availability configuration, one index is defined as the default index and the
other index is defined as the standby index. The value of the is_standby attribute of the
fulltext index objects determines which is the default index. If is_standby is set to FALSE,
the index represented by the fulltext object is the default index. If is_standby is set

to TRUE, the index is the standby index.

If a node fails, indexing operations continue for the remaining index. If the remaining
index is the default index, querying operations continue. If the remaining index is the
standby index, querying operations stop. Use Documentum Administrator to change the
value of the is_standby attribute of the two fulltext index objects:

* Change the default index to the standby index by setting the value to TRUE

¢ Change the standby index to the default index by setting the value to FALSE

You must restart any running Content Servers after setting the values. Queries are then
directed to the index that is active.

Cleaning up old log files

Periodically, the indexing system automatically archives the all.log file. The archived file
is stored as a zip file in the C:\ Documentum \ fulltext\ IndexServer\var\log\ Archive
(Windows) or $DOCUMENTUM/fulltext/IndexServer/var/log/Archive (UNIX) directory.
These archived files are not removed automatically. They remain in the archive directory
until they are manually removed.

Large file rejection error

The fulltext engine is configured to reject for indexing any FIXML file larger than 10MB.
The rejection is logged in the dmi_queue_item and in the index agent log file. The error
message is:

DOCUMENT ERROR Module :FIXMLFilter - Error: Process (objectID)
failure: docproc.ProcessorStatus.NotPassing'

where objectID is the object ID of the document containing the rejected content.

118 Content Server Full-Text Indexing System Installation and Administration Guide

Managing Full-Text Indexing Components

Increasing capacity

Use the information in this section if you require increased indexing or querying capacity.

Increasing indexing capacity

If the primary requirement is to increase indexing capacity — the ability to index a greater

number of documents in a particular time period — several strategies are available:

¢ Adding index server nodes — using a multinode configuration — increases indexing
capacity.

In multinode configurations, documents are routed sequentially to different
nodes, so that a particular node handles a fraction of the indexing. In a four-node
configuration, each node will index about one-fourth of the data.

* Add docprocessor (procserver) processes on each host.

This increases the speed with which FIXML is processed. Instructions for adding

docprocessor processes are included in the April, 2006 Content Server Release Notes
for server version 5.3 SP2.

¢ Adding index agents

Increasing the number of exporter threads in the index
agent

The number of index agent exporter threads is configurable. Increasing the number
of threads increases the speed at which the index agent acquires queue items. The

default value is 3. The value may be increased. It is recommended that the value does
not exceed 12.

Content Server Full-Text Indexing System Installation and Administration Guide 119

Managing Full-Text Indexing Components

120 Content Server Full-Text Indexing System Installation and Administration Guide

Chapter 9

Full-Text Indexing Components in
Detail

Full-text indexing is supported for installations with repositories running on Microsoft Cluster
Services provided the indexing software is installed on a host other than the Content Server host. This
chapter contains the following topics:

* The index server in detail, page 121
* The index agent , page 123
¢ The full-text index, page 126

* Repository objects and properties supporting full-text indexing, page 128

The index server in detail

The index server has two functions: it creates full-text indexes and responds to full-text
queries from Content Server.

An index server node is any physical host on which an index server instance runs,
regardless of whether multiple instances of the index server’s individual software
process are running.

The index server is represented in the repository by the ft engine config object
(dm_ftengine_config). There is one ft engine config object for each fulltext index object.

Index server processes

The index server consists of five groups of processes that have different functions.
In a basic configuration, these processes all run on the same host. In a multinode

configuration, these processes are run on different hosts to improve performance. The
processes are:

Content Server Full-Text Indexing System Installation and Administration Guide 121

Full-Text Indexing Components in Detail

¢ Administrative services

The index server’s administrative services are the Status Server, which monitors the
progress of a document through the index server’s internal processes from when the
document is acquired from the index agent to the time the document is indexed, and
the Content Distributor, which accepts DFTXML from the index agent and routes it to
a document processor.

¢ Document processors

Document processors (also sometimes called procservers) extract indexable content
from content files, convert DFTXML to FIXML (a format that is used directly by the
indexer), and merge the indexable content with the metadata during the DFTXML
conversion process. Document processors are the largest consumer of CPU power
in the index server. In multinode configurations, a particular document processor
communicates with the indexers on all other hosts in the configuration.

e Indexer

The indexer creates the searchable full-text index from the intermediate FIXML
format. It consists of two processes. The frtsobj process interfaces with the document
processor and spawns different findex processes as necessary to build the index
from FIXML.

* Query and results servers
The QR Server (Query and Results Server) is a permanently-running process that
accepts queries from Content Server, passes queries to the fsearch processes, and
merges the results when there are multiple fsearch processes running. In a multinode

configuration, the QR Server is installed on the node where administrative processes
are running.

® Search servers
Search servers locate items in the index as specified in a query. The fsearchctrl,

fdispatch, and fsearch processes work together to fulfil requests from the qrserver
process.

In a single-node deployment, all of these processes reside on one host.

In a multinode deployment, copies of the document processors, the Indexer, and the
search servers reside on each node. The administrative processes and the query and
results servers reside on only one of the nodes.

Index server modes

The index server can run in continuous mode or in a special mode called suspended
mode. In suspended mode, FIXML is generated for any updates to the index but not

122 Content Server Full-Text Indexing System Installation and Administration Guide

Full-Text Indexing Components in Detail

integrated into the index. When the index server is taken out of suspended mode, the
index is updated.

Running in suspended mode speeds up the indexing process. Use suspended mode
in these circumstances:

* When creating a new index as part of migrating from a pre-5.3 Content Server
* When reindexing a repository
¢ When indexing a large volume of documents

Use the index agent JSP page to put the index server in suspended mode.

The index agent

The index agent is a multi-threaded Java application running in the Apache Tomcat
servlet container. Each index agent runs in its own Tomcat instance, and each index
agent is associated with only one repository.

The index agent and the index server must be installed on the same host.

Certain operations on objects in the repository generate queue items indicating that the
object and any associated content files must be submitted for full-text indexing. The
index agent reads the queue items, then exports the content files and metadata from
the repository and prepares the documents and metadata for indexing by converting
them to DFTXML.

An index agent in normal mode is represented by an ft index agent config object. The
properties of the ft index agent config object primarily record status information about
the index agent, including the mode in which the index agent is running and when the
index agent began processing queue items. The properties also record configuration
information about the index agent, such as the number of queue items processed in a
single batch, the number of exporter threads, and the time interval at which the index
agent polls the repository for queue items. This information may be viewed using
Documentum Administrator. For more information about the ft index agent config
object, refer to the EMC Documentum Object Reference Manual.

An index agent in migration mode is represented by an XML configuration file,
indexagent.xml, on the index agent host. Do not modify the parameters in the
configuration file unless you are enabling file store mapping. (Mapping file stores for
improved indexing performance is documented in Deciding whether to share the drives
where content files are located, page 52.)

Index agent modes, page 125, contains complete information on the modes in which the
index agent runs.

Content Server Full-Text Indexing System Installation and Administration Guide 123

Full-Text Indexing Components in Detail

Index agent processes

When running in normal mode, the index agent processes index queue items

and the SysObjects associated with the queue items. The index queue consists of
dmi_queue_items that are queued to the dm_fulltext_index_user. The queue items

are generated by Save, Saveasnew, Checkin, Destroy, or Branch events performed on a
SysObject or SysObject subtype in the repository. The value of the queue item’s task_state
property changes depending on where the SysObject is in the indexing process:

1. The initial task_state is value is a blank, indicating that the associated SysObject must
be indexed and the queue item is available for processing by the index agent.

2. When the index agent acquires the queue item and begins to process the SysObject,
the task_state is updated to Acquired.

3. When the SysObject is successfully indexed by the index server, the task_state is
updated to Done and the queue item is deleted from the repository.

No further updates are made to the queue item.

4. If the index agent encounters a problem in processing the SysObject to which the
queue item refers, the task_state is changed to Warning.

This indicates that the index server has made a partial update to the index. The
index agent does not further update the queue item or perform further operations on
the SysObject. The queue item remains in the queue.

5. If indexing fails and the index server is unable to add information about the
SysObject to the index, the task_state is updated to Failed.

The index agent does no further processing on the SysObject and the queue item
remains in the queue. To determine which objects failed indexing, use Documentum
Administrator.

By default, the index agent acquires queue items in batches of 1,000. If the index agent
shuts down unexpectedly after acquiring queue items, the queue items remain acquired
by that index agent. When the index agent is restarted, the task_state property for those
acquired queue items is reset to * and the queue items are processed correctly.

If the index agent acquires multiple queue items for a particular SysObject, it processes
only one of the queue items. For example, if an object is saved several times, the
most recent version is indexed. If an object is saved and then deleted, only the delete
is processed.

Managing the index queue, page 78, contains complete information on managing the
index queue.

124 Content Server Full-Text Indexing System Installation and Administration Guide

Full-Text Indexing Components in Detail

Index agent modes

An index agent may run in one of three operational modes:

e normal

In normal mode, the index agent process index queue items and prepares the
SysObjects associated with the queue items for indexing.

* migration

In migration mode, the index agent processes all SysObjects in a repository
sequentially in r_object_id order and prepares them for indexing. A special queue
item, the high-water mark queue item, is used to mark the index agent’s progress
in the repository.

o file

In file mode, a file is used to submit a list of objects IDs to the index agent when a
new index is created and index verification determines which objects are missing
from the index.

The index agent runs in either migration mode or normal mode against a 5.3 repository
and in migration mode against a 5.2.5 repository. Both modes are compatible with file
mode, which is used for submitting a list of object IDs to the index agent for indexing.

Normal mode

Content Servers 5.3 and later generate a queue item when an event such as a check-in or
save requires that a new or modified object must be indexed. In normal mode, the index
agent reads the queue item, prepares the object for indexing, and updates the queue
item. When the index agent successfully submits the object for indexing, the index agent
deletes the queue item from the repository. If the object is not submitted successfully, the
queue item remains in the repository and the error or warning generated by the attempt
to index the object is stored in the queue item. The index agent can run in normal mode
only against a 5.3 or later repository.

An index agent in normal mode and an index agent in migration mode cannot
simultaneously update the same index.

Migration mode

In migration mode, the index agent prepares all indexable objects in a repository for
indexing in object ID order. A special queue item, the high-water mark, records the ID
of the most recent object indexed. The index agent reads the value in the queue item,

Content Server Full-Text Indexing System Installation and Administration Guide 125

Full-Text Indexing Components in Detail

exports the next batch of indexable objects from the repository, and updates the queue
item. The index agent can run in migration mode to create new indexes against a 5.2.5.x,
or 5.3.x repository.

For example, if you need to move the indexing component installation to a new host
computer, you can install the components on the new computer and create a new index
there in migration mode, while the existing indexing component installation maintains
the existing index in normal mode.

In migration mode, the index agent prepares all indexable objects for indexing in object
ID order. A single queue item records the ID of the most recent object indexed.

File mode

File mode is used for submitting a list of object IDs to the index agent for indexing.

File mode can be used when the index agent is in any operational mode. However, it
is most useful immediately after a new index is created. After a new index is created,
the ftintegrity tool is run to determine whether all indexable objects in the repository
are included in the index. The ftintegrity tool produces a list of object IDs of SysObjects
that are not included in the index. The list is used to submit the objects to the index
agent for indexing.

The full-text index

An index is made up of nodes. Depending on your deployment configuration, an index
may have a single node or multiple nodes.

Each node has one column. A column is a physical set of processes and partitions that
contain a portion of the indexed data. Each column has three partitions and the processes
that search those partitions.

The data in each column is unique. That is, a document’s indexed data resides on only
one node. A column may contain data from one repository or multiple repositories.

Partitions

A partition is the smallest physical grouping of documents within a column. By default,
each column has three partitions: a small partition, a medium partition, and a large
partition. The documents most recently submitted for indexing are initially indexed into
the small partition. The index server moves index data from the small partition to the

126 Content Server Full-Text Indexing System Installation and Administration Guide

Full-Text Indexing Components in Detail

medium partition, and finally to the large partition. The index data for all documents
eventually is in the large partition.

While new documents are being added to a partition, the partition is offline and in the
process of being rebuilt. New documents are not added to the index while the partition
is offline. A copy of the partition remains online and searchable. When the offline
partition is completely rebuilt, it becomes online and searchable, and the online copy
is taken offline and newly-processed FIXML is indexed.

Collections

All documents in an index belong to a collection, a logical set of data. The full-text
indexing engine uses collections to segregate data logically. If the index stores data from
only one repository in a single-node deployment, the data is typically in one collection.

In consolidated deployments, in which multiple repositories are indexed in the same
index, the indexed data from each repository is associated with a separate collection.

In a multi-node deployment, a particular collection may be spread out over multiple
nodes or it may be stored on only one node. The default behavior in a multinode
deployment is to store the collections across nodes. However, if you wish, you can
configure the system to use directed routing. This behavior requires you to store content
files in particular storage areas, which are mapped to particular collections, and in turn,
those collections are mapped to particular nodes. Which content files go to which
storage area is a business decision.

Directed routing

Directed routing is the term that refers to the ability to direct index data to particular
nodes. Using a multinode deployment with directed routing is recommended if you
need to separately back up and restore individual collections or if you have a very large
repository (in this release, 20 million or more documents).

Directed routing is implemented by mapping each file store storage area to a particular
collection, and then mapping each collection to a particular column. Any arbitrary
number of storage areas may be mapped to a particular collection. The mapping may
be modified after installation to add more collections, though the index agent must be
restarted after the mapping is modified.

Directed routing should only be used in the following circumstances:

¢ If some large amount of the data will be unchanging (never updated) and you wish
to reduce the amount of data to index.

Content Server Full-Text Indexing System Installation and Administration Guide 127

Full-Text Indexing Components in Detail

e If the full-text indexing system is growing and you need to incrementally add
hardware to the system with little or no need to reorganize the indexed data.

Directed routing allows you to fill a node and move on to newly added nodes. If
you were not using directed routing in these situations, the system would perform
additional work to redistribute the data across all of the new nodes.

For information about setting up directed routing, refer to Configuring index routing,
page 100.

Repository objects and properties supporting
full-text indexing

128

Full-text indexing is supported in the repository by objects representing the full-text
index, the index server, and the index agent. Properties of the server config object,
SysObject, and queue item also support full-text indexing.

Full-text indexing is supported in the repository by the following objects:
¢ fulltext index object, representing the full-text index

e ftindex agent config object, representing the index agent

e ft engine config object, representing the index server

The fulltext index object is created at repository configuration time. In a basic full-text
indexing configuration, the ft index agent config object and ft engine config object
are created in the repository when the index agent configuration program creates a
normal-mode index agent

In a high-availability configuration, a fulltext index object, ft index agent config object,
and ft engine config object must be created to represent the second indexing software
installation and the index maintained by the second installation. Certain attribute values
must be set in the objects created to ensure that the index is updated correctly. In
addition, a second full-text index user (dm_fulltext_index_user_01) must be created and
the Save, Checkin, Destroy, Readonlysave, and MoveContent events must be registered
for that user. A script is provided to create the required objects, set the attribute values,
and register the events for the second full-text index user.

Figure 9-1, page 129, shows the objects involved and the relationships among them:

Content Server Full-Text Indexing System Installation and Administration Guide

Full-Text Indexing Components in Detail

Figure 9-1. Full-text indexing object relationships

dmi_queus_itemn

name= dm_fulltext_index_user

item_id:

event: dm_destroy

task_siate: acquired

sign_off user; host_IndexAgent1

dmn_ftindex_agent_config

ohject_name= host_IndexAgentt

iadax_narm= docbase fiindex 01 <
queus_user=
dm_fulltext_index_user

dmi_gueue_item

name= dm_fulltext_index_user2

item_id:

event: dm_save

task_state: acquired

sign_off user: host_IndexAgent2

dm_fulltext_index

cbject_name: docbase ftindex_ 01
ft_engine_id: 0002180007132 .

irl'llsial |_loe:
is_standby: FALSE

dm_fiengine_config

r_object_id: 08004e2180007132
object name: FAST Fulltext ...

PErEMm_Name:

[2] fids_comfig fansy
[3]z fds_comfig_povr

|.:-l.'5|]: fals grerver host
[20]: fills_gprserver_pos

param_value:

[2 |: AdminNade!
[3]: Jeiias

[19]: hosiA
[20]: 15100

dm_ftindex_agent_config

chject_name= host_IndexAgent2

irl';dax_name= docbase_flindex_ (02 <3
queus_user=
dm_fulltext_index_user2

dm_fulltext_index

object_name: docbase ftindex 02
ft_engine_id: 0B0(Me2180007142 .

ir.'llsiall_lnc:
is_standby: TRUE

dm_ftengine_config

r_ohbject |d- 08004e21 80007142
object namea: FAST Fulltext ..

PErEM_Name:

[2] fels_config foss
[3] fels_canfig_poer

|.:-l.'5|]: fis gryerver host
[20]: fils_qreerver_pows

param_value:

[E Iz AdminNade?
[3] Jeras

[19]: hasiB
[20]: 15100

Content Server Full-Text Indexing System Installation and Administration Guide

129

Full-Text Indexing Components in Detail

Refer to Installing a high-availability deployment, page 64, for high-level information on
installing a high-availability configuration and on the objects that must be created and
attribute values updated after installation.

Fulltext index object

A fulltext index object (dm_fulltext_index) represents an index associated with a
repository. Its properties provide information such as the code page in which the
Content Server represents strings sent to the query plug-in, the index name, the object
ID of the index server for the index, and the name of the location object containing the
location of the query plug-in. A fulltext index object is created when the first normal
mode index agent is configured for the repository. The only property of the fulltext index
object that may be updated is the ft_engine_id property, which contains the object ID of
the ft engine config object representing the index server.

FT index agent config object

The ft index agent config object represents a normal-mode index agent configured for
the repository. Its properties record status information and configuration information
about the index agent.

FT engine config object

The ft engine config object represents the index server for the repository.

Location objects

Each fulltext index object points to a location object that represents the location of the
dmfulltext.ini file.

Supporting properties of other objects

The following properties of other objects support full-text indexing:

e a_full text

130 Content Server Full-Text Indexing System Installation and Administration Guide

Full-Text Indexing Components in Detail

e fulltext_location

Configuring format objects to specify which renditions are indexed, page 96, contains
information on how the setting of the format_class property of the format object controls
which renditions are indexed.

The a_full_text property

The a_full_text property is defined for the SysObject type and is inherited by all
SysObject subtypes. It is a Boolean property that controls whether an object’s associated
content files are indexed.

When a_full_text is TRUE, content files are indexed whenever a Save, Checkin, Destroy,
Readonlysave, or MoveContent operation generates an index queue item for the object.
Any changes to the object’s content are added to the index.

The a_full_text property is set to TRUE whenever a SysObject is created. Users with
Sysadmin or Superuser privileges can change the a_full_text setting. Users without
Sysadmin or Superuser privileges cannot change the a_full_text setting.

The fulltext_location property

The value of the fulltext_location property of the server config object contains the name
of the location object that identifies the fulltext configuration file, dmfulltext.ini.

Initialization files

This section describes the entries in the server initialization file that support full-text
indexing and the dedicated fulltext initialization file.

Full-text entries in the server.ini file

Two parameters in the server.ini file govern aspects of full-text indexing:

e max_ftacl_cache_size

Content Server caches ACL information on objects to evaluate security on the results
returned by full-text queries. The max_ftacl_cache_size key defines the number of
elements cached.

Content Server Full-Text Indexing System Installation and Administration Guide 131

Full-Text Indexing Components in Detail

The default value is -1 (no limit set). If the value is set to 0, no security information
is cached. The value may be set to any integer greater than -1. It is strongly
recommended that you do not change the default value.

e start_index_agents

The start_index_agents parameter defines whether the index agents associated with
a particular repository are started at Content Server startup. The default value is
TRUE. Changing the value to FALSE means that no index agent is available to
process index queue items in the repository until you manually start an index agent.

The dmfulltext.ini file

The dmfulltext.ini file is created when the server is installed. It contains information
used by Content Server to find the index agent plug-in.

132 Content Server Full-Text Indexing System Installation and Administration Guide

Appendix A

Pre-installation Checklist

Use the checklist below to ensure that you have performed all required tasks before installing the
full-text indexing software.

Full-text indexing checklist

Before installing a new server and repository or upgrading an existing repository,
complete the following checklist, which contains a list of tasks that must be performed
in order to prepare for implementing full-text indexing. (This checklist also appears
in the Content Server Installation Guide.)

Table A-1. Checklist for Full-Text Indexing

Task For More Information Completed?

Determine which full-text Chapter 2, Full-Text

indexing configuration to Indexing Deployment

use Models and Chapter 3,
Planning considerations

Determine the port Which ports to use for the
numbers the index agent index agent, page 47
uses

Determine the base port Which ports to use for the
the index server uses index server, page 48

Content Server Full-Text Indexing System Installation and Administration Guide 133

Pre-installation Checklist

134

Task

For More Information

Ensure that 4,000 ports
above the base port
number are unused and
available for index server
(for example, if the base
port number is 3,000, port
numbers from 3,000 to
7,000 must be available)

Determine the user
account(s) to use for
installing the index agent
and index server

Ensure that the user
accounts are set up

Ensure that the disk space
and memory requirements
for the indexing software
are met

For a Content Server
upgrade, decide whether
to migrate the indexes
before or after the
server and repository
are upgraded

Determine where the
full-text indexes are to be
created and stored

Ensure that any additional
hosts required by the index
agent and index server are
configured

Content Server Full-Text Indexing System Installation and Administration Guide

Which ports to use for the
index server, page 48

Index agent and index
server installation account,
page 50

Network administrators

Chapter 4, Preparing to
Install Full-Text Indexing

Migrating the full-text
indexing system, page 59

Disk space requirements
for indexing and
installation, page 46

Chapter 4, Preparing to
Install Full-Text Indexing

Completed?

Pre-installation Checklist

Task For More Information Completed?
Mount the drive where the Documentation from the

content files are located hardware and operating

to make the content system vendors; Deciding

accessible to the index whether to share the drives

server(s) where content files are

located, page 52

Determine for which Whether to use
languages grammatical grammatical normalization
normalization is required , page 43

Content Server Full-Text Indexing System Installation and Administration Guide 135

Pre-installation Checklist

136 Content Server Full-Text Indexing System Installation and Administration Guide

Appendix B

Uninstalling the Index Agent and Index
Server

This appendix describes how to uninstall the index agent and index server and how to delete an
index. The appendix contains the following sections:

* Order of uninstalling, page 137

* Deleting an index agent, page 138

* Deleting the index agent configuration program, page 139
* Deleting an index server, page 139

* Deleting a full-text Index, page 140

Order of uninstalling

You must use a particular order to uninstall Content Server, a repository, the index
agent, and the index server.

To uninstall an index agent, the repository it servers must be running. To uninstall
an index server, the repository must be shut down. If the index server is on the
Content Server host, additional issues arise because of shared libraries in the software
installations.

Uninstall the software components in this order:

Shut down and uninstall the index agent.
Shut down the repository.

Shut down and uninstall the index server.
Delete the repository, if required.

Uninstall the Content Server software, if required.

S

Uninstall the Index Agent Configuration Program, if required.

Content Server Full-Text Indexing System Installation and Administration Guide 137

Uninstalling the Index Agent and Index Server

Deleting an index agent

Use these instructions to uninstall an index agent. .

To uninstall an index agent:

1.
2.

138

Log in to the index agent host as the user who installed the index agent.

Stop the index agent.

Use the instructions in Starting and stopping the index agent, page 105 or in
Documentum Administrator online Help, depending on which repository version
the index agent is running against.

Start the Index Agent Configuration Program.

e On Windows, click Start — Programs -~ Documentum - Index Agent
Configuration Program.

* On UNIX and Linux, navigate to (DOCUMENTUM_SHARED/IndexAgents and
start the configuration program for your operating system:

— On AIX, IndexAgent_Configuration_Program.aix

— On Solaris, IndexAgent_Configuration_Program.bin

— On HP-UX, IndexAgent_Configuration_Program.hp

— On HP Itanium, IndexAgent_Configuration_ProgramHPIA64.bin

— On Linux, IndexAgent_Configuration_Program.linux

A Welcome dialog box is displayed.

Click Next.

Select Delete index agent and click Next.

Read the information and click Next.

The index agent is deleted.

To run the configuration program again, check the check box.

Click Next.

If you checked the check box to run the configuration program again, skip to Step 5;
otherwise, the program exits.

The index agent software and configuration program are still on the host. To remove
the software and configuration program, use the instructions in

Content Server Full-Text Indexing System Installation and Administration Guide

Uninstalling the Index Agent and Index Server

Deleting the index agent configuration program

Use these instructions to delete the index agent configuration program from a host
on which it is installed.

To delete the index agent configuration program:

1.
2.

Log in to the host as the user who installed the software.

If you are on Windows:

a. Click Start - Settings —~ Add/Remove Programs.

b. Select Documentum Index Agent Configuration Program.

c. Click Change/Remove.

The uninstaller starts.
If you are on UNIX or Linux, navigate to $DOCUMENTUM_SHARED/_uninst/
IndexAgents and type uninstall.bin.

The uninstaller starts.

Read the information screen and click Next.

An information screen displays the location where the index agent software is
installed.

Click Next.

The software is uninstalled.

Click Finish.

Deleting an index server

Use these instructions to delete an index sever from the host.

To delete an index server:

1.

Ensure that the repository served by the index server is stopped.

Refer to the Content Server Installation Guide for information on stopping repositories.
Log in to the host where the index server is installed as the installation owner.

Use the instructions in Starting and stopping the index agent, page 105 or in
Documentum Administrator online Help to stop the index server.

If you are on Windows:

a. Click Start - Settings — Control Panel - Add/Remove Programs.

Content Server Full-Text Indexing System Installation and Administration Guide 139

Uninstalling the Index Agent and Index Server

b. Select Documentum Index Server.
c. Click Change/Remove.
The uninstaller starts and a welcome dialog box is displayed.

5. If you are on UNIX or Linux, navigate to sDOCUMENTUM/_uninst/IndexServer
and type uninstall.bin.

The uninstaller starts and a welcome dialog box is displayed.

6. Click Next.

An information dialog box is displayed with information about where the index
server is installed.

7. Click Next.

The software is uninstalled and a summary dialog box is displayed.

8. Click Finish.

Deleting a full-text Index

To delete a full-text index, run the uninstaller and delete the index agent and index
server. A dialog box provides the option to delete the index as well.

140 Content Server Full-Text Indexing System Installation and Administration Guide

Appendix C

Sample Output of ftintegrity Utility

The following report is the output of a failed completeness and accuracy run of the ftintegrity utility:

29 C% cobra ftintegrity.py -i ftintegrity.params.txt -m b

Mon Feb 07 15:48:37
Mon Feb 07 15:48:38
Mon Feb 07 15:48:38
errors could be due
Mon Feb 07 15:48:38
Mon Feb 07 15:48:38

2005 [PROGRESS]: Completeness Test Started

2005 [PROGRESS]: Fetched all 11 docids from Documentum

2005 [WARNING]: Suspiciously low document count. Following
to invalid result from the command below.

2005 [WARNING]: Please run it to validate correctness

2005 [WARNING]: C:\PROGRA~1\DOCUME~1\java\l449C1~1.2 0\bin\

java -classpath C:\PROGRA~1\DOCUME~1\INDEXA~1\INDEXA~1\webapps\INDEXA~1\WEB-INF\

lib\server-impl.jar;

C:\PROGRA~1\DOCUME~1\dctm.jar;C:\Documentum\config com.docum

entum.server.impl.fulltext.ftintegrity.FTDumpIDs -m:0 -D:waasdfasdfasfasfasdfasf
-U:wongw —-P:groucho2

Mon Feb 07 15:48:38
Mon Feb 07 15:48:38
Mon Feb 07 15:48:38
1 s

Mon Feb 07 15:48:38
m: 1351

Mon Feb 07 15:48:39
Mon Feb 07 15:48:39
Mon Feb 07 15:48:39
Mon Feb 07 15:48:39
Mon Feb 07 15:48:39
Mon Feb 07 15:48:39
Mon Feb 07 15:48:39
Mon Feb 07 15:48:39
Mon Feb 07 15:48:39
Mon Feb 07 15:48:39

2005 [INFO]: Get Documentum IDs: 0.988 s

2005 [DEBUG 1: Got 11 docids from Dctm

2005 [INFO 1: Get Number of Documents in Collection: 0.28
2005 [INFO]: Number of documents in collection documentu

2005 [PROGRESS]: Fetched all 1351 docids from FAST

2005 [INFO]: Get FAST IDs: 0.780 s

2005 [DEBUG 1: Got 1351 docids from fast

2005 [INFO]: Transform FAST ID file: 0.084 s

2005 [INFO]: Transform Documentum ID file: 0.026 s
2005 [INFO]: Compare IDs: 0.064 s

2005 [PROGRESS]: Completeness Test Finished

2005 [PROGRESS]: Accuracy Test Started

2005 [DEBUG]: Getting Dctm Ids from res-comp-common.txt
2005 [FATAL]: Failed to read any docids from Documentum.

The command below failed.
type res-comp-common.txt

Terminated.

The following report is the output of a successful completeness and accuracy run of the ftintegrity tool:

30 C% cobra ftintegrity.py -i ftintegrity.params.txt -m b

Mon Feb 07 15:50:29
Mon Feb 07 15:50:35
Mon Feb 07 15:50:35
Mon Feb 07 15:50:35
Mon Feb 07 15:50:35
9 s

2005 [PROGRESS]: Completeness Test Started
2005 [PROGRESS]: Fetched all 1351 docids from Documentum

2005 [INFO]: Get Documentum IDs: 5.223 s
2005 [DEBRUG]: Got 1351 docids from Dctm
2005 [INFO]: Get Number of Documents in Collection: 0.21

Content Server Full-Text Indexing System Installation and Administration Guide 141

Sample Output of ftintegrity Utility

Mon Feb 07 15:50:35 2005 [INFO]: Number of documents in collection documentu
m: 1351

Mon Feb 07 15:50:36 2005 [PROGRESS]: Fetched all 1351 docids from FAST

Mon Feb 07 15:50:36 2005 [INFO : Get FAST IDs: 0.819 s

Mon Feb 07 15:50:36 2005 [DEBUG Got 1351 docids from fast

Mon Feb 07 15:50:36 2005 [INFO Transform FAST ID file: 0.114 s

Mon Feb 07 15:50:36 2005 [INFO : Transform Documentum ID file: 0.099 s

Mon Feb 07 15:50:36 2005 [INFO]: Compare IDs: 0.136 s

Mon Feb 07 15:50:36 2005 [PROGRESS]: Completeness Test Finished

Mon Feb 07 15:50:36 2005 [PROGRESS]: Accuracy Test Started

Mon Feb 07 15:50:36 2005 [DEBUG]: Getting Dctm Ids from res-comp-common.txt
Mon Feb 07 15:50:36 2005 [PROGRESS]: Fetched all 1351 docids from Documentum

Mon Feb 07 15:50:36 2005 [PROGRESS]: Starting test of 0 documents

Mon Feb 07 15:50:36 2005 [PROGRESS]: Launching iftdgl: C:\PROGRA~1\DOCUME~1\INDE
XA~I\FTINTE~1\iftdgl C:\PROGRA~1\DOCUME~1\INDEXA~I\FTINTE~1\FASTQueryPlugin.dll

]
]:
]:
]

Mon Feb 07 15:51:03 2005 [PROGRESS]: Tested 100 of 1351 documents, 0 failures.
Estimated completion in 5.63 minutes
Mon Feb 07 15:51:16 2005 [PROGRESS]: Tested 200 of 1351 documents, 0 failures.
Estimated completion in 3.87 minutes
Mon Feb 07 15:51:28 2005 [PROGRESS]: Tested 300 of 1351 documents, 0 failures.
Estimated completion in 3.06 minutes
Mon Feb 07 15:51:43 2005 [PROGRESS]: Tested 400 of 1351 documents, 0 failures.
Estimated completion in 2.66 minutes
Mon Feb 07 15:51:57 2005 [PROGRESS]: Tested 500 of 1351 documents, 0 failures.
Estimated completion in 2.28 minutes
Mon Feb 07 15:52:07 2005 [PROGRESS]: Tested 600 of 1351 documents, 0 failures.
Estimated completion in 1.90 minutes
Mon Feb 07 15:52:17 2005 [PROGRESS]: Tested 700 of 1351 documents, 0 failures.
Estimated completion in 1.57 minutes
Mon Feb 07 15:52:29 2005 [PROGRESS]: Tested 800 of 1351 documents, 0 failures.
Estimated completion in 1.30 minutes
Mon Feb 07 15:52:42 2005 [PROGRESS]: Tested 900 of 1351 documents, 0 failures.
Estimated completion in 1.05 minutes
Mon Feb 07 15:52:54 2005 [PROGRESS]: Tested 1000 of 1351 documents, 0 failures.
Estimated completion in 0.81 minutes
Mon Feb 07 15:53:06 2005 [PROGRESS]: Tested 1100 of 1351 documents, 0 failures.
Estimated completion in 0.57 minutes
Mon Feb 07 15:53:17 2005 [PROGRESS]: Tested 1200 of 1351 documents, 0 failures.
Estimated completion in 0.34 minutes
Mon Feb 07 15:53:29 2005 [PROGRESS]: Tested 1300 of 1351 documents, 0 failures.
Estimated completion in 0.11 minutes

Mon Feb 07 15:53:34 2005 [INFO]: Total documents: 1351

Mon Feb 07 15:53:35 2005 [INFO]: Documents tested: 1351

Mon Feb 07 15:53:35 2005 [INFO]: Failures: 0

Mon Feb 07 15:53:35 2005 [INFO]: Statistical Information:

Mon Feb 07 15:53:35 2005 [INFO 1: Min Max Avg StdDev
N Name

Mon Feb 07 15:53:35 2005 [INFO]: 0.01 6.80 0.03 0.19
1351 Dump Attributes

Mon Feb 07 15:53:35 2005 [INFO]: 0.00 0.00 0.00 0.00
1351 Build Query

Mon Feb 07 15:53:35 2005 [INFO]: 0.01 1.16 0.10 0.10
1351 Execute Query

Mon Feb 07 15:53:35 2005 [INFO]: 0.02 7.04 0.13 0.22

1351 Test One Document

142 Content Server Full-Text Indexing System Installation and Administration Guide

Sample Output of ftintegrity Utility

143 Content Server Full-Text Indexing System Installation and Administration Guide

Sample Output of ftintegrity Utility

144 Content Server Full-Text Indexing System Installation and Administration Guide

Appendix D

Supported and Unsupported Formats
for Full-Text Indexing

The formats listed in Table D-1, page 145are supported for full-text indexing. Formats not listed in
Table D-1, page 145 are not supported.

Table D-1. Supported document formats

Document format Version
Access Versions through 2.0
Adobe Acrobat (PDF) Versions 2.1, 3.0 — 7.0; Note that

scanned PDFs cannot be searched
unless the OCR equipment generated

searchable PDFs.

Adobe FrameMaker (MIF) Version 6.0

Adobe FrameMaker graphics (FMV) Vector/raster through 5.0

Adobe Illustrator Versions through 7.0, 9.0

Adobe Photoshop (PSD) Version 4.0

Ami Draw (SDW) Ami Draw

ANSI Text 7 & 8 bit

ASCII Text 7 & 8 bit

AutoCAD Drawing Versions 2.5 - 2.6, 9.0 - 14.0, 2000i and
2002

AutoCAD Interchange and Native Drawing DXF and DWG

formats

AutoShade Rendering (RND) Version 2.0

Binary Group 3 Fax All versions

Content Server Full-Text Indexing System Installation and Administration Guide 145

Supported and Unsupported Formats for Full-Text Indexing

146

Document format

Version

Bitmap (BMP, RLE, ICO, CUR, OS/2 DIB &

WARP)
CALS Raster (GP4)

Computer Graphics Metafile (CGM)

Corel Clipart format (CMX)

Corel Draw (CDR with TIFF header)

Corel Draw (CDR)
Corel/Novell Presentations
DataEase

dBASE

dBXL

DEC WPS Plus (DX)

DEC WPS Plus (WPL)
DisplayWrite 2 & 3 (TXT)
DisplayWrite 4 & 5
EBCDIC

Enable

Enable

Encapsulated PostScript (EPS)
Executable (EXE, DLL)
Executable (Windows) NT
First Choice

First Choice

First Choice

FoxBase

Framework
Framework
Framework
Freelance (Windows)
Freelance for OS/2
GEM Paint (IMG)

Content Server Full-Text Indexing System Installation and Administration Guide

All versions

Type I and Type II
ANSI, CALS NIST version 3.0
Versions 5 through 6
Versions 2.x — 9.x
Versions 3.x — 8.x
Versions through 11.0
Version 4.x

Versions through 5.0
Version 1.3

Versions through 4.0
Versions through 4.1
All versions

Versions through Release 2.0

Versions 3.0, 4.0 and 4.5
Versions 3.0, 4.0 and 4.5
TIFF header only

through 3.0

Versions through 3.0
Versions through 3.0
Version 2.1

3.0

Version 3.0

Version 3.0

Versions through Millennium 9.6

Versions through 2.0

No specific version

Supported and Unsupported Formats for Full-Text Indexing

Document format Version

Graphics Environment Mgr (GEM) Bitmap & vector
Graphics Interchange Format (GIF) No specific version
GZIP All versions

Hangul Version 97

Harvard Graphics (Windows) Windows versions
Harvard Graphics for DOS Versions 2.x & 3.x
Hewlett Packard Graphics Language (HPGL) Version 2

HTML through 3.0 (some limitations)
IBM FFT All versions

IBM Graphics Data Format (GDF) Version 1.0

IBM Picture Interchange Format (PIF) Version 1.0

IBM Revisable Form Text All versions

IBM Writing Assistant 1.01

Initial Graphics Exchange Spec (IGES) Version 5.1

JFIF (JPEG not in TIFF format) All versions

JPEG (including EXIF) All versions
JustSystems Ichitaro Versions 5.0, 6.0, 8.0 — 12.0
JustWrite Versions through 3.0
Kodak Flash Pix (FPX) All versions

Kodak Photo CD (PCD) Version 1.0

Legacy Versions through 1.1
Lotus 1-2-3 (DOS & Windows) Versions through 5.0
Lotus 1-2-3 (OS/2) Versions through 2.0
Lotus 1-2-3 Charts (DOS & Windows) Versions through 5.0
Lotus 1-2-3 for SmartSuite Versions 97 — Millennium 9.6
Lotus AMI/AMI Professional Versions through 3.1
Lotus Manuscript Version 2.0

Lotus PIC All versions

Lotus Snapshot All versions

Lotus Symphony Versions 1.0,1.1 and 2.0

Content Server Full-Text Indexing System Installation and Administration Guide 147

Supported and Unsupported Formats for Full-Text Indexing

Document format

Version

Lotus Word Pro

LZA Self Extracting Compress
LZH Compress

Macintosh PICT1 & PICT2
MacPaint (PNTG)

MacWrite II

MASS11

Micrografx Designer (DRW)
Micrografx Designer (DSF)
Micrografx Draw (DRW)
Microsoft Binder

Microsoft Excel (Mac)
Microsoft Excel (Windows)
Microsoft Excel Charts
Microsoft Multiplan

Microsoft Outlook Folder (PST)
Microsoft Outlook Message (MSG)

Microsoft PowerPoint (Mac)
Microsoft PowerPoint (Windows)
Microsoft Project

Microsoft Rich Text Format (RTF)
Microsoft Word

Microsoft Word

Microsoft Word (Mac)

Microsoft WordPad

Microsoft Works
Microsoft Works
Microsoft Works (DOS)

Versions 96 through Millennium
Edition 9.6, text only

All versions

All versions

Bitmap only

No specific version

Version 1.1

Versions through 8.0

Versions through 3.1
Windows 95, version 6.0
Versions through 4.0

Versions 7.0-97 (only on Windows)
Versions 3.0 — 4.0, 98, 2001
Versions 2.2 through 2003
Versions 2.x - 7.0

Version 4.0

Versions 97, 98, 2002, and 2002

All versions. The body of the
message is indexed and attachments
to messages are indexed.

Versions 4.0 through 2001
Versions 3.0 through 2003
Versions 98 - 2002 (text only)
All versions

Versions through 6.0
Versions through 2003
Versions 3.0 — 4.0, 98, 2001

All versions

Versions through 2.0
Versions through 4.0
Versions through 2.0

Content Server Full-Text Indexing System Installation and Administration Guide

Supported and Unsupported Formats for Full-Text Indexing

Document format Version

Microsoft Works (DOS) Versions through 2.0
Microsoft Works (Mac) Versions through 2.0
Microsoft Works (Mac) Versions through 2.0
Microsoft Works (Mac) Versions through 2.0
Microsoft Works (Windows) Versions through 4.0
Microsoft Works (Windows) Versions through 4.0
Microsoft Write Versions through 3.0
MIME Text Mail

Mosaic Twin Version 2.5
MultiMate Versions through 4.0
Navy DIF All versions

Nota Bene Version 3.0

Novell Perfect Works Version 2.0

Novell Perfect Works Version 2.0

Novell Perfect Works (Draw) Version 2.0

Novell WordPerfect Versions through 6.1
Novell WordPerfect Versions 1.02 through 3.0
Novell/Corel WordPerfect Versions through 11.0
Office Writer Versions 4.0 - 6.0
OS/2 PM Metafile (MET) Version 3.0

Paint Shop Pro 6 (PSP) Windows only, versions 5.0 — 6.0
Paradox (DOS) Versions through 4.0
Paradox (Windows) Versions through 1.0
PC Paintbrush (PCX and DCX) All versions

PC-File Letter Versions through 5.0
PC-File+ Letter Versions through 3.0
Personal R:BASE Version 1.0

PFS: Professional Plan Version 1.0

PFS: Write Versions A, B and C
Portable Bitmap (PBM) All versions
Portable Graymap (PGM) No specific version

Content Server Full-Text Indexing System Installation and Administration Guide 149

Supported and Unsupported Formats for Full-Text Indexing

150

Document format

Version

Portable Network Graphics (PNG)

Portable Pixmap (PPM)
Postscript (PS)
Professional Write
Professional Write Plus
Progressive JPEG.
Q&A

Q&A

Q&A Write

Quattro Pro (DOS)
Quattro Pro (Windows)
R:BASE 5000

R:BASE System V
Reflex

Samna Word
SmartWare II
SmartWare II
SmartWare II

Sprint

Star Office/Open Office Calc

Star Office/Open Office Draw

Star Office/Open Office Writer

StarOffice / Open Office Impress

Sun Raster (SRS)
SuperCalc 5

Text Mail (MIME)
TIFF

TIFF CCITT Group 3 & 4

Version 1.0

No specific version
Level II

Versions through 2.1
Version 1.0

No specific version
Versions through 2.0
Version 2.0

Version 3.0

Versions through 5.0
Versions through 11.0
Versions through 3.1
Version 1.0

Version 2.0

Versions through Samna Word IV+
Version 1.02

Version 1.02

Version 1.02

Versions through 1.0

Star Office Versions 5.2, 6.x, and 7.x;
Open Office version 1.1 (text only)

Star Office 5.2, 6.x, and 7.x; Open
Office version 1.1 (text only)

Star Office Versions 5.2, 6.x, and 7.x;
Open Office version 1.1 (text only)

StarOffice 5.2, 6.x, and 7.x; Open
Office 1.1 (text only)

No specific version

Version 4.0

Versions through 6
Versions through 6

Content Server Full-Text Indexing System Installation and Administration Guide

Supported and Unsupported Formats for Full-Text Indexing

Document format Version

Total Word Version 1.2

Truevision TGA (TARGA) Version 2

Unicode Text All versions

UNIX Compress

UNIX TAR

UUEncode

vCard Version 2.1

Visio Versions 5, 2000 and 2002

Visio (preview)

Volkswriter 3 & 4

VP Planner 3D

Wang PC (IWP)

WBMP

Windows Enhanced Metafile (EMF)
Windows Metafile (WMF)

WML

WordMARC

WordPerfect Graphics (WPG & WPG2)
WordStar

WordStar

WordStar 2000

XML

X-Windows Bitmap (XBM)
X-Windows Dump (XWD)
X-Windows Pixmap (XPM)
XyWrite

ZIP

Version 4

Versions through 1.0
Version 1.0

Versions through 2.6
No specific version
No specific version

No specific version

Version 5.2

Versions through Composer Plus
Versions through 2.0, 7 and 10
Versions through 7.0

Version 1.0

Versions through 3.0

All versions

x10 compatible

x10 compatible

x10 compatible

Versions through III Plus

PKWARE versions through 2.04g.
Files inside a ZIP file are not indexed.

The formats listed in Table D-2, page 152are not supported for full-text indexing. Only those formats
listed in Table D-1, page 145 are supported.

Content Server Full-Text Indexing System Installation and Administration Guide 151

Supported and Unsupported Formats for Full-Text Indexing

Table D-2. Unsupported document formats

Document format Version

Applix Graphics 43,44

Applix Presents 43,44

Applix Spreadsheets 42,43, 44

Applix Words 42,43, 44

Folio Flat File 3.1

Fujitsu Oasys 7.0

Microsoft Outlook Express eml format No specific version
Microsoft Windows Animated Cursor No specific version
Microsoft Windows Cursor/Icon No specific version
SGI RGB No specific version

152 Content Server Full-Text Indexing System Installation and Administration Guide

Appendix E

Supported Languages for Full-Text

Indexing

This appendix lists the languages supported for full-text indexing.

The following languages are supported for full-text indexing:

Table E-1. Supported languages

Language Code Language Code
Afrikaans af Italian it
Albanian sq Japanese na
Arabic ar Kazahk kk
Armenian hy Kirghiz ky
Azeri az Korean ko
Bangla bn Kurdish ku
Basque eu Latin la
Bosnian bs Latvian Iv
Breton br Letzeburgesch Ib
Bulgarian bg Lithuanian It
Byelorussian by Macedonian mk
Catalan ca Malay ms
Chinese_simplified zh_cn Maltese mt
Chinese_traditional zh_tw Maori mi
Croatian hr Mongolian mn
Czech cs Norwegian_ nb
Bokmaal

Content Server Full-Text Indexing System Installation and Administration Guide

153

Supported Languages for Full-Text Indexing

154

Language Code Language Code
Danish da Norwegian_ nn
Nynorsk
Dutch nl Polish pl
English en Portuguese pt
Esperanto eo Rhaeto_Romance rm
(Romansch)

Estonian et Romanian ro
Faeroese fo Russian ru
Farsi fa Sami_Northern se
Filipino (Tagalog) tl Serbian st
Finnish fi Slovak sk
French fr Slovenian sl
Frisian ty Spanish es
Galician gl Swahili sw
Georgian ka Swedish sv
German de Tamil ta
Greek el Thai th
Greenlandic kl Turkish tr
Hausa ha Ukrainian uk
Hebrew he Urdu ur
Hindi hi Uzbek uz
Hungarian hu Vietnamese vi
Icelandic is Welsh cy
Indonesian id Yiddish yi
Irish_Gaelic ga Zulu zu

Content Server Full-Text Indexing System Installation and Administration Guide

Index

/3GB switch constraint, 49

A

a_full_text property, 131
accent marks, in full-text index, 18
accuracy testing
confidence in results, 87
administration tool, index agent, 103
antivirus software, 48
Apache Tomcat, 123
Arabic, 18
archival repositories
multinode deployment
considerations, 40
sizing and configuration
guidelines, 39

B

basic deployments
use considerations, 25
basic deployments,
benefits, 24
described, 24
use constraints, 25
benefits
basic deployments, 24

C

Centera stores, 53

Chinese grammatical normalization, 44

collections
routing to columns, 127
collections, defined, 127
column, defined, 126
consolidated deployments
benefits and best use, 26
installing, 64
upgrading, 55
use constraints, 26

consolidated deployments,
described, 25
Content Distributor, described, 122
content files
full-text indexing constraint, 17
Content Server
index agent at server startup, 104
shutdown, 104
startup, 104
CPU size and capacity, for archival
repositories, 40
creating
indexing queue items, 81
creating full-text indexes, 75
cscript.exe file, 52

D

deleting an index, 140
deployment models

alternatives to, 34

basic, 24
deployment models for index, 23
deployment overview, 37
DFC_DATA variable (deprecated), 51
DFTXML, 122 to 123
diacritical marks, in full-text index, 18
dictionaries, synonym, 111
directory constraint for HP-UX, 52
disabling indexing for object types, 95
disk space requirements, index server,
distributed content

full-text indexing and, 46
dm_FTCreateEvents, 97
dm_FTIndexAgentBoot job, 106
dmfulltext.ini file, 132
DNS entries, 49
DocProcessor, described, 122
documents

routing to nodes, 127
Documentum Administrator, 103

Content Server Full-Text Indexing System Installation and Administration Guide

46

155

Index

156

drive sharing, 52

drives, sharing, 52, 71

duplicate removal
configuring, 111

E

encrypted file stores, 53
environment variables, 50 to 51
error for large file rejection, 118
exporter threads

default number of, 119
external stores, 53

F

file store storage areas
full-text indexing and, 123
findex process, described, 122
fixml
rejection error, 118
FIXML, 122
format objects
format_class property, 96
using to control indexing, 20
format_class property, 96
formats
indexable, 96, 145
listing indexable, 117
non-indexable, 151
frtsobj process, described, 122
ft engine config objects, 130
ft engine config parameters
temp_table_batch_size, 110
temp_table_remove_dup_size, 111
ft index agent config object, 123
ft index agent config objects, 130
ftintegrity tool, 126
ftintegrity.params.txt, 84
running, 85
ftintegrity utilitiy, 83
ftintegrity utility
accuracy confidence, 87
sample output, 141
ftintegrity.params.txt, 84
full-text index, 13, 20, 37, 45
See also full-text indexing;

installation; planning considerations;

pre-installation requirements
accuracy, verifying, 83

benefits of use, 13
completeness, verifying, 83
content of, 14
deployment models, 23
dmfulltext.ini file, 132
hardware decisions, 38
nodes, 126
replacing existing, 99
sizing considerations for archival
repository, 39
VMware constraint, 48

full-text indexes

batched returns, 110
collections, 127

columns, 126

deleting, 140

languages, supported, 153
partitions, 126

State of the Index job, 89
storage, 46

full-text indexing

a_full_text property, 131

administration, 103

antivirus software, 48

Arabic, 18

associating an index with a
repository, 99

basic deployments, 24

batched returns, configuring, 20

Centera stores, 53

configuration options, 19

consolidated deployments, 26, 55

content file location, 52

Content Server, 14

controlling by format, 20

creating events, 92, 97

creating indexes, 75

creating queue items, 81

deleting an index, 140

described, 13, 16

device types, 46

DFC_DATA environment variable
(deprecated), 51

DFTXML, 123

disabling by object types, 95

disabling content indexing, 93

distributed content, 46

drive sharing, 52

encrypted file stores, 53

environment variables, 50 to 51

Content Server Full-Text Indexing System Installation and Administration Guide

Index

external stores, 53
file store mapping, 71, 123
format_class property, 96
formats, 96
supported, 145
unsupported, 151
ft engine config objects, 130
ft index agent config object, 123
ft index agent config objects, 130
ftintegrity tool, 126
ftintegrity.params.txt, 84
fulltext index objects, 130
fulltext_location property, 131
grammatical normalization, 19, 43
Hebrew, 18
high-availability deployments, 26
host names, 47
host requirements, 49
ImportDictionary.py script, 113, 115
increasing query capacity, 28
index agent, 14, 123
index agent, role in, 14, 123
index agent, starting, 104
index queue, 78
index routing, configuring, 100
index server, 15, 121
index server, role in, 15
indexable content, 14
indexable formats, 96, 117
indexagent.xml file, 28
installation account, 50
installation order, 59, 63
installing the index agent
configuration program, 67
installing the index server, 67
languages supported, 17
languages, supported, 153
large files, constraint on, 17
lex files, 62
location objects, 130
log files, 73
memory requirements, 46
migration, 59
multiple repositories, 25
network configuration, 49
new repository, 63
parts of speech, 43
performance, 52, 71
planning, 59
post-upgrade migration, 59

pre-upgrade migration, 59
processing queue items, 124
properties supporting, 128
queries, 14

query plug-in, 14

queue item processing, 124
queue items, 78, 81

queue users, 28

reindexing, 97

relocating software components, 126
required ports for index agent, 47
required ports for index server, 48
resubmitting objects, 87
right-to-left languages, 18
routing, directed, 127

searchable characters, 18
server.ini file entries, 131

sharing drives, 52, 71

software components, 14
software installation, 63

starting, 76

stopping, 77

submitting objects, 76
submitting objects for indexing, 126
supported configurations, 24
suspended mode, 76, 122
suspending and resuming, 93
synonym file, 112

SysObjects, 14

thesaurus, 62

thesaurus searching, 111
thesaurus usage, 20

timeouts, 97

turning on or off, 92
unsearchable characters, 18
updating an index, 76
upgrading, 55

verifying indexes, 85

Verity, 59

XML content files, 53

full-text queries

tracing, 117

fulltext index objects, 130
fulltext_location property, 131

G

Getfile method, 52
Getpath method, 52
grammatical normalization, 19, 43

Content Server Full-Text Indexing System Installation and Administration Guide

157

Index

158

H

Hebrew, 18
high availability deployments
multinode deployments and, 34
high-availability deployments, 28
benefits and best use, 28
clustering environments, 28
consolidated configurations, 28
default index, 27
described, 26
failover, 27
failures, 118
increasing availability, 28
indexagent.xml file, 28
indexing, 27
installing, 64
limitations, 82
Prune API, 82
query capacity, 28
querying, 27
queue items, 26
redundancy, 26
Save events, 82
standby index, 27
unsupported configurations, 28
usage constraints, 29
host names, 47
host requirements, 49
HP-UX directory constraint, 52
HP-UX parameter values required to
install, 52

ImportDictionary.py script, 113
index agent
administration tool, 103
checking status, 78
configuration file, 123
configuring, 69
Content Server shutdown, 104
described, 14, 123

DFC_DATA environment variable

(deprecated), 51

exporter threads, configuring number

of, 119
file mode, 125 to 126
ft index agent config object, 123
indexagent.xml file, 28
installation options, 123

Content Server Full-Text Indexing System Installation and Administration Guide

installing configuration program, 67

migration mode, 123, 125 to 126
modes, 125

multiple queue items, 124
normal mode, 123 to 125
processing queue items, 124
queue item processing, 124
representation in repository, 130
required ports, 47

resubmitting objects for indexing, 87

role in full-text indexing, 14, 123
role in indexing process, 16

start_index_agents server.ini key, 104

starting, 104
timeouts, 97
tracing, 117
unexpected shutdowns, 124
uninstalling, 138
uninstalling components, 137
index agent configuration program
deleting, 139
index agents
disabled, 107
dm_FTIndexAgentBoot job, 106
enabling, 107
modifying properties, 108
properties, 108
starting, 105
stopping, 105
index queue, 78
index routing
configuring, 100
index agent configuration
requirements, 101
index server configuration
requirements, 100
index server
antivirus software, 48
basic deployments, 24
component processes, 121
configuration options, 15
consolidated deployments, 25
constraints on Windows hosts, 49
Content Distributor, 122
deleting, 139
described, 15
disk partition requirement, 48
disk space requirements, 46
DocProcessor, 122
findex process, 122

Index

host location, 52 State of the Index, 89
host time zone settings, 49

Indexer, 122 L

installing, 67

memory requirements, 46 large files
nodes, 121 rejection error, 118
OR Server, 122 latency requirements, 43

lex files, 62
location objects

full-text indexing, 130
log files, 73

archived, 118

query subsystem, 122

representation in repository, 130

required ports, 48

role in full-text indexing, 15

role in indexing process, 16

Status Server, 122 logs

suspended mode, 122

timeouts, 97
index servers M

logs, 110

properties, 109

starting, 106

stopping, 106
indexable formats, 96, 117
indexagent.xml file, 28, 71 basic model, 31
Indexer, described, 122 best use, 30
indexing events, 92 described, 29
install directory constraint for HP-UX, 52
installation

basic deployments, 63

consolidated deployments, 64

constraints on Windows hosts, 49

high-availability deployments, 64

index agent configuration

program, 67

index server, 110

memory requirements, 46
modifying
index agent properties, 108
multinode deployments
archival repositories and, 40

high availability deployments and, 34
index routing model, 32
installing, 66
unsupported configurations, 34
usage constraints, 30

multiple repositories, indexing, 25

index server, 67 N

log files, 73 NAS devices, 46

multinode deployments, 66 network configuration, 49

planning for, 20 NFS mounts, 46

upgrading 5.3 full-text system, 56 nodes, 126

upgrading pre-5.3, 59 nodes, described, 121

VMware constraint, 48 nonsearchable characters, 18
installation accounts, 50
installation logs, 73 o
installation order

new repositories, 63 object types, disabling indexing of, 95

pre-upgrade migration, 59

upgraded repositories, 59 P

partitions, described, 126

J parts of speech, normalization choices
jobs for, 44

dm_FTIndexAgentBoot, 106 planning considerations

Content Server Full-Text Indexing System Installation and Administration Guide 159

Index

160

amount of metadata, 42
formats to be indexed, 42
grammatical normalization, 43
latency requirements, 43
number of documents to index, 41
repository purpose, 38
size of documents and amount of
indexable content, 41
ports
index agent, 47
index server, 48
post-upgrade migration, 59
pre-installation requirements
disk space requirements, 46
environment variables, 50 to 51
full-text indexing, 47 to 48
host names, 47
HP-UX parameter values, 52
index agent, 47
index server, 46, 48
memory requirements, 46
operating system and host, 48
system sizing, 45
upgrading, 55
user accounts, 50
pre-upgrade migration, 59
procserver, see DocProcessor
properties
index servers, 109
punctuation marks, in full-text index, 18

Q

QR Server, described, 122
query capacity, 28
query plug-in, 14
query processing
batches, configuring use of, 110
duplicate removal, configuring, 111
query subsystem, described, 122
queue items
full-text indexing, 124
task_state, 124
queue items, indexing
creating, 81
described, 78
removing by status, 80
removing individual, 81
resubmitting failed, 80

resubmitting individual objects, 79
status, 79
viewing, 81

queue users, 28

R

redundancy
high-availability deployments, 26
redundancy, increasing, 28
reindexing repositories, 97
repositories
archival, 39
associating with a full-text index, 99
full-text indexing installation, 63
installation order, 59
large, 59
on-going content management, 39
pre-upgrade migration, 59
purpose, affect on index
configuration, 38
reindexing, 97
small, 59
upgrading large, 59
upgrading small, 59
resuming suspended indexing, 93

S

SAN devices

constraint, 47

use of, 46
searchable characters, 18
server.ini file

full-text indexing entires, 131
Status of the Index job, 89
Status Server, described, 122
supported deployments

basic, 24

consolidated, 26
suspended mode, 76
suspended mode, index server, 122
suspending indexing, 93
synonym file, 112
synonyms, 111
SysObjects

indexing, 14
system sizing, 45

Content Server Full-Text Indexing System Installation and Administration Guide

Index

T

temp_table_batch_size (ft engine config
parameter), 110

temp_table_remove_dup_size (ft engine
config parameter), 111

temporary table for query results, 110 to
111

thesaurus, 62

thesaurus searching, 111

thesaurus usage, configuring, 20

time zone settings on host, 49

timeouts
full-text indexing, 97

tracing
full-text queries, 117
index agent, 117

U

uninstalling full-text indexing
software, 137
UNIX and Linux installation, 50 to 51
unsupported configurations
high-availability deployments, 28
multinode deployments, 29
upgrading
consolidated deployments, 55
upgrading 5.3 full-text system, 56
upgrading Content Server
full-text indexing, 59

installation order, pre-upgrade
migration, 59

large repositories, 59

post-upgrade migration, 59, 61

pre-upgrade migration, 59 to 60

repository copies, 60

small repositories, 59

Verity customizations, 62
utilities

ftintegrity, 83

Vv

verification of completeness and
accuracy, 83
Verity
customizations, 62
full-text indexing, 59
view
index server logs, 110
viewing
index server properties, 109

w

Windows host requirement, 49

X

XML content files, 53

Content Server Full-Text Indexing System Installation and Administration Guide 161

	Content Server Full-Text Indexing System Installation and Administration Guide
	Preface
	Purpose of the manual
	Intended audience
	Revision history
	Acknowledgements

	Introduction to Full-Text Indexing
	Benefits of an index
	What is indexed
	Full-text indexing components
	Figure 1-1. Full-text indexing components

	About the full-text indexing process
	Large file constraint

	What languages can be indexed
	How particular characters are handled
	Configuration options
	Grammatical normalization
	Rendition formats to index
	Processing of batched returns
	Thesaurus usage

	Pre-installation planning decisions

	Full-Text Indexing Deployment Models
	Basic deployments
	Benefits
	Use considerations

	Consolidated deployments
	Benefits
	Use considerations

	High-availability deployments
	Figure 2-1. Full-text high-availability configuration
	Benefits
	Use considerations

	Multinode deployments
	Figure 2-2. Multinode configuration with three nodes
	Benefits
	Use considerations
	Supported multinode deployments
	Basic multinode model
	Figure 2-3. Basic multinode configuration

	Multinode configuration with index routing
	Figure 2-4. Multinode configuration with index routing

	High-availability multinode

	Unsupported multinode configurations

	If these models do not meet your requirements

	Planning considerations
	Planning overview
	Determining the configuration
	Purpose of the repository
	On-going content management repository
	Archival repositories
	Considerations for an archival repository
	Choosing CPU size and capacity
	Figure 3-1. Activity on archived documents over time

	Multinode considerations

	Number of documents to be indexed
	Size of documents and amount of indexable content
	Content file formats to be indexed
	Quantity of metadata to be indexed
	Indexing latency requirements

	Whether to use grammatical normalization

	Preparing to Install Full-Text Indexing
	System sizing
	Memory requirements for index server
	Disk space requirements for indexing and installation
	Full-text indexing in a distributed content environment
	Device types on which the full-text index and content files may
	Constraint on SAN devices

	Host requirements
	Host names
	Which ports to use for the index agent
	Which ports to use for the index server
	Index server operating system and host
	VMware
	Third-party software on the index server host
	Windows host requirements for the index server
	Host time settings
	Ensuring correct network configuration
	Index agent and index server installation account
	Environment variables on UNIX and Linux hosts
	Ensuring that the index server environment is correct on UNIX an
	The deprecated DFC_DATA environment variable on UNIX hosts
	Installing the index server on Windows hosts
	Installing the index server on HP-UX
	Directory constraint
	Required parameters

	Deciding whether to share the drives where content files are loc

	Upgrading Full-Text Indexing Components
	Adding the full-text indexing system to a 5.3 repository that ha
	Upgrading an existing full-text system on a repository
	Upgrading from the December 2006 Full-text Hotfix or 5.3 SP4
	Upgrading a pre-5.3 repository
	Migrating the full-text indexing system
	Migrating Verity customizations

	Installing Full-text Indexing Components
	Installing a basic deployment
	Installing a consolidated deployment
	Installing a high-availability deployment
	Installing a multinode deployment
	Installing the index server and the index agent configuration pr
	Configuring the index agent
	Modifying the indexagent.xml file to map file stores
	Reviewing the installation log files

	Creating and Managing the Full-Text Index
	Creating the full-text index
	Submitting objects for indexing
	Stopping full-text indexing
	Checking the status of the index agent

	Managing the index queue
	Resubmitting individual objects
	Resubmitting all failed queue items
	Removing queue items by status
	Removing queue items
	Viewing queue items associated with an object
	Creating a new indexing queue item
	Limitations of full-text indexing in high-availability configura
	The Prune API and missing Destroy events
	Save events not generated during load operations

	Verifying index completeness and accuracy
	Modifying the parameter file
	Running the index verification tool
	Accuracy testing confidence and failures
	Resubmitting objects to the index agent

	The State of the Index job
	Arguments
	Job report and generated files

	Creating indexing events for new content in a repository
	Turning indexing on and off
	Turning off all indexing
	Turning off content indexing

	Suspending and resuming indexing
	Suspending and resuming an index server in a single-node configu
	Suspending and resuming an index server in a multinode configura

	Configuring the indexing behavior
	Disabling indexing of specific object types
	Configuring format objects to specify which renditions are index
	Supported formats and mime_types

	Reindexing a repository
	Troubleshooting indexing timeouts
	Creating a new index
	Pointing a repository to a previously-created index
	Configuring index routing
	Directing documents to particular storage areas
	Configuring the index server
	Configuring the index agent

	Managing Full-Text Indexing Components
	Administration tools
	Starting and stopping the full-text indexing system
	Starting and stopping the index agent
	The dm_FTIndexAgentBoot job
	Starting and stopping the index server
	Enabling and disabling index agents

	Viewing or modifying index agent properties
	Viewing index server properties
	Reviewing the index agent and index server log files
	Administration operations
	Configuring batched returns for non-FTDQL queries
	Configuring duplicate checking batch size
	Enabling thesaurus searching
	Creating the synonym file
	Importing the synonym file
	Logging
	Log sample

	Obtaining a list of indexable formats
	Tracing full-text query operations
	Enabling tracing for the index agent
	If a node fails in a high-availability configuration
	Cleaning up old log files

	Large file rejection error
	Increasing capacity
	Increasing indexing capacity
	Increasing the number of exporter threads in the index agent

	Full-Text Indexing Components in Detail
	The index server in detail
	Index server processes
	Index server modes

	The index agent
	Index agent processes
	Index agent modes
	Normal mode
	Migration mode
	File mode

	The full-text index
	Partitions
	Collections
	Directed routing

	Repository objects and properties supporting full-text indexing
	Figure 9-1. Full-text indexing object relationships
	Fulltext index object
	FT index agent config object
	FT engine config object
	Location objects
	Supporting properties of other objects
	The a_full_text property
	The fulltext_location property

	Initialization files
	Full-text entries in the server.ini file
	The dmfulltext.ini file

	Pre-installation Checklist
	Full-text indexing checklist

	Uninstalling the Index Agent and Index Server
	Order of uninstalling
	Deleting an index agent
	Deleting the index agent configuration program
	Deleting an index server
	Deleting a full-text Index

	Sample Output of ftintegrity Utility
	Supported and Unsupported Formats for Full-Text Indexing
	Supported Languages for Full-Text Indexing

