
EMC® Documentum®

Content Server
Version 6.7

Fundamentals Guide

EMC Corporation
Corporate Headquarters:

Hopkinton, MA 01748-9103
1-508-435-1000
www.EMC.com

EMC believes the information in this publication is accurate as of its publication date. The information is subject to change
without notice.

The information in this publication is provided as is. EMC Corporation makes no representations or warranties of any kind
with respect to the information in this publication, and specifically disclaims implied warranties of merchantability or fitness
for a particular purpose. Use, copying, and distribution of any EMC software described in this publication requires an
applicable software license.

For the most up-to-date listing of EMC product names, see EMC Corporation Trademarks on EMC.com. All other trademarks
used herein are the property of their respective owners.
© Copyright 2011 EMC Corporation. All rights reserved.

Table of Contents

Preface .. 15

Chapter 1 Overview ... 17
Managed content .. 17
Elements of the content management system.. 17
Check out / check in.. 18
Versioning.. 19
Virtual documents .. 19
Full text indexing.. 19
Security ... 19
Repository security ... 19
Accountability.. 20

Process management features.. 20
Workflows ... 20
Lifecycles ... 21

Distributed services .. 21
Additional options.. 21
Trusted Content Services... 21
Content Services for EMC Centera ... 22
Content Storage Services ... 22
XML Store and XQuery... 23

EMC Documentum products requiring activation on Content Server 23
Retention Policy Services... 23
Documentum Collaborative Services ... 24

Internationalization .. 24
Communicating with Content Server ... 24
Applications... 24
Interactive utilities .. 25

Chapter 2 Session and Transaction Management .. 27
Session Overview ... 27
Session Implementation in DFC... 28
Obtaining a session... 28
Shared and private sessions... 28
Explicit and implicit sessions... 29
Session configuration .. 29
The dfc.properties file .. 29
The runtime configuration objects.. 30

Closing repository sessions ... 30
Concurrent sessions .. 30
Inactive repository sessions ... 31
Restricted sessions .. 31
Connection brokers... 31

EMC Documentum Content Server Version 6.7 Fundamentals Guide 3

Table of Contents

Native and secure connections... 32
Connection pooling .. 33
Login tickets... 33
Login Ticket format and Scope .. 34
The login ticket key .. 34
Login ticket expiration .. 35
Revoking login tickets... 35
Restricting superuser use .. 36

Application access control tokens .. 36
Using tokens ... 37
Token format and scope .. 37
Token generation and expiration ... 38
Internal methods, user methods, and tokens... 39

Trusting and trusted repositories ... 39
Transaction management .. 39
Internal and explicit transactions ... 40
Constraints on explicit transactions.. 40
Database-level locking in explicit transactions .. 41
Managing deadlocks... 41
Handling deadlocks in internal transactions ... 41
Handling deadlocks in explicit transactions.. 42

Chapter 3 Caching ... 43
Object type caching... 43
Object types with names beginning with dm, dmr, and dmi 43
Custom object types and types with names beginning with dmc...................... 44

Repository session caches.. 44
Persistent caching ... 45
Query cache storage location ... 45
Using persistent client caching in an application ... 45

Consistency checking.. 46
Determining if a consistency check is needed ... 47
Rules with a keyword or integer .. 47
Rules with a cache config object... 47

Conducting consistency checks.. 48
The client_pcaching_change property .. 48

Chapter 4 The Data Model .. 51
Objects and object types .. 51
Object type categories ... 52
Lightweight object types ... 52
Shareable object types ... 53
Documentum system object type names... 53
Content files and object types .. 54

Properties .. 54
Property characteristics... 54
Persistent and nonpersistent.. 54
Single-valued and repeating .. 55
Datatype .. 55
Read only or read and write .. 55
Qualifiable and nonqualifiable... 55
Local and global ... 56
Property identifiers... 56

The property bag .. 57
Implementation .. 57

4 EMC Documentum Content Server Version 6.7 Fundamentals Guide

Table of Contents

Repositories ... 58
Object type tables ... 58
Single-valued property tables .. 58
Repeating property tables ... 58
How standard subtype instances are stored.. 59
How lightweight subtype instances are stored.. 60
Location and extent of object type tables .. 62

Object type index tables .. 63
Content storage areas.. 63

Registered tables .. 63
The data dictionary... 64
Localization support ... 64
Modifying the data dictionary ... 65
Publishing the data dictionary ... 65
Retrieving data dictionary information .. 66
Using DQL... 66
Using the DFC.. 66

Data dictionary contents ... 67
Constraints .. 67
Lifecycle states and default lifecycles for object types 67
Component specifications ... 68
Default values for properties ... 68
Value assistance.. 68
Mapping information ... 68

Chapter 5 Object Type and Instance Manipulations and Customizations 71
Object type manipulations .. 71
Creating new object types ... 71
Altering object types ... 71
Dropping object types... 72

Object instance manipulations ... 72
Object creation ... 72
Object modification... 73
Object destruction... 73

Changing the object type of an object ... 74
Business object framework .. 75
The BOF module .. 75
Module packaging and deployment... 76

Service-based objects .. 77
Type-based objects.. 78
Aspects .. 78
Aspect properties ... 78
Implementation of aspect properties .. 79
Default aspects ... 79

Simple modules.. 79

Chapter 6 Security Services .. 81
Overview ... 81
Standard security features ... 82
Trusted Content Services security features.. 83

Repository security ... 84
Users and groups ... 84
Users ... 85
Repository implementation of users... 85
Local and global users... 85

EMC Documentum Content Server Version 6.7 Fundamentals Guide 5

Table of Contents

Groups .. 85
User authentication .. 87
Password encryption .. 88
Application-level control of SysObjects .. 89
User privileges ... 90
Basic user privileges ... 90
Extended user privileges ... 90

Object-level permissions ... 91
Base object-level permissions .. 91
Extended object-level permissions ... 92
Default permissions .. 93

Table permits ... 93
Folder security ... 94
ACLs ... 94
ACL entries.. 95
Categories of ACLs ... 95
Template ACLs... 96

Auditing and tracing .. 96
Auditing .. 96
Tracing .. 97

Signature requirement support.. 97
Electronic signatures... 98
Overview of Implementation... 98
The addESignature method ... 99
Default signature page template .. 100
Default signature creation method ... 100
Default content handling... 101
Audit trail entries ... 101
Customizing signatures .. 102
Signature verification.. 102

Digital signatures ... 103
Simple sign-offs.. 103

Privileged DFC... 104
Privileged DFC registrations ... 104
Recognizing a privileged DFC instance .. 105
Using approved DFC instances only .. 106

Encrypted file store storage areas... 106
Digital shredding ... 107

Chapter 7 Content Management Services .. 109
Document objects ... 109
Document content .. 110
Content objects ... 110
Primary content.. 110
Renditions.. 111
Rendition formats and characteristics... 111
Generated renditions .. 112
Supported conversions on Microsoft Windows platforms.......................... 113
Supported conversions on UNIX platforms .. 113
PBM image converters .. 114
Miscellaneous converters .. 115

Connecting source documents and renditions .. 116
Translations ... 116

6 EMC Documentum Content Server Version 6.7 Fundamentals Guide

Table of Contents

For more information.. 116
Versioning.. 116
Version labels ... 117
Version trees .. 118
Branching .. 118
Removing versions ... 119
Changeable versions ... 121

Immutability .. 121
Effects of a checkin or branch method .. 121
Effects of a freeze method ... 121
Effects of a retention policy ... 122
Attributes that remain changeable ... 122

Concurrent access control ... 123
Database-level locking .. 123
Repository-level locking.. 124
Optimistic locking .. 124

Document retention and deletion... 125
Retention policies ... 125
Storage-based retention periods... 126
Behavior if both a retention policy and storage-based retention apply 126
Deleting documents under retention .. 127
Deleting versions and renditions ... 128
Retention in distributed environments .. 128

Documents and lifecycles .. 128
Documents and full-text indexing.. 129
Creating document objects .. 129
Adding content .. 130
Storing content ... 130
Content assignment policies .. 131
Default storage allocation.. 131
Explicitly assigning a storage area ... 131

Setting content properties and metadata for content-addressed
storage... 131
Document objects and Access Control Lists .. 133

Modifying document objects ... 133
Accessing a document in the repository ... 134
Modifying single-valued attributes .. 135
Modifying repeating attributes .. 135
Performance tip for repeating attributes ... 135

Adding content .. 135
Adding additional primary content ... 136
Replacing an existing content file... 136

Removing content from a document .. 136
Sharing a content file .. 136
Writing changes to the repository .. 137
Checkin and checkinEx methods ... 137
Save and saveLock methods .. 137

Managing permissions .. 137
The default ACLs ... 138
Template ACLs... 138
Assigning ACLs ... 138
Generating custom ACLs .. 139

Rooms and ACL assignments .. 140
Removing permissions.. 140
Replacing an ACL... 141

EMC Documentum Content Server Version 6.7 Fundamentals Guide 7

Table of Contents

Managing content across repositories... 141
Relationships between objects... 142
System-defined relationships.. 142
User-defined relationships .. 143

Managing translations .. 143
Translation relationships ... 143

Annotation relationships... 144
Object operations and annotations ... 144

Chapter 8 Virtual Documents ... 147
Overview ... 147
Use of virtual documents .. 148
Implementation .. 149
Versioning.. 150
Deleting virtual documents and components.. 150
Assembling the virtual document .. 150
Virtual documents and content files ... 151
XML support.. 151
Virtual documents and retention policies ... 152

Virtual document assembly and binding .. 152
Defining component assembly behavior... 153
use_node_ver_label .. 154
follow_assembly... 155

Copy behavior.. 155
Creating virtual documents ... 156
Assembling a virtual document ... 156
Processing the SELECT statement ... 157

Snapshots .. 159
Creating a snapshot .. 159
Modifying snapshots .. 159
Adding new assembly objects.. 160
Deleting an assembly object .. 160
Changing an assembly object... 160

Deleting a snapshot .. 161
Frozen virtual documents and snapshots ... 161
Freezing a document .. 161
Unfreezing a document... 162

Obtaining information about virtual documents ... 162
Querying virtual documents ... 162
Obtaining a path to a particular component.. 163
The path_name property... 163
Using DFC ... 164

Chapter 9 Workflows ... 165
Overview ... 165
Implementation .. 165
Template workflows ... 167
Process Builder and Workflow Manager .. 167

Workflow definitions .. 168
Process definitions .. 168
Activity types in a process definition ... 168
Links ... 169

Activity definitions ... 170

8 EMC Documentum Content Server Version 6.7 Fundamentals Guide

Table of Contents

Manual and automatic activities .. 170
Manual activities .. 170
Automatic activities .. 170

Activity priorities ... 171
Use of the priority defined in the process definition 171
Use of the work queue priority values.. 171

Process and activity definition states .. 171
Delegation and extension .. 172
Extension ... 172

Performer choices ... 173
Task subjects .. 173
Starting conditions.. 174

Port and package definitions ... 174
Port definitions... 174
Package definitions ... 175
Scope of a package definition .. 175
Package compatibility ... 176

Package acceptance... 176
Transition behavior... 178
Warning and suspend timers ... 179
Package control .. 179

Validation and installation .. 180
Validating process and activity definitions ... 180
Installing new process and activity definitions.. 181

Workflow execution ... 181
Workflow objects .. 182
Work item and queue item objects ... 182
How manual activity work items are handled .. 182
Priority values .. 183
Signing off manual work items .. 183

Package objects... 183
Package notes... 184

Activity timers ... 184
Pre-timer instantiation .. 184
Post-timer instantiation ... 185
Suspend timer instantiation... 185

Completed workflow reports... 185
Attachments... 186
The workflow supervisor .. 186
The workflow agent.. 186
Instance states .. 187
Workflow states.. 187
Activity instance states ... 188
Work item states ... 189

Typical workflow example .. 190
The workflow starts .. 192
Activity execution starts.. 192
Evaluating the starting condition ... 192
Package consolidation... 193
Resolving performers and generating work items 193
Executing automatic activities ... 194
Assigning an activity for execution .. 194
Executing an activity program... 195

Completing an activity.. 196
Distributed workflow ... 199

EMC Documentum Content Server Version 6.7 Fundamentals Guide 9

Table of Contents

Distributed notification ... 199
Tasks and events... 200
Accessing tasks and events.. 200

Inboxes .. 201
Accessing an Inbox ... 201

Obtaining Inbox content.. 202
Manual queuing and dequeuing ... 202
Queuing items.. 203
Dequeuing an inbox item .. 203

Registering and unregistering for event notifications .. 203
Registering for events ... 204
Removing a registration .. 204
Querying for registration information .. 204

Chapter 10 Lifecycles .. 205
Overview ... 205
Normal and exception states ... 206
Attaching an object to a lifecycle .. 206
Attaching objects .. 207
Moving between states.. 208
Promotions .. 208
Demotions ... 208
Suspensions ... 209
Resumptions .. 209
Scheduled transitions.. 210

Internal supporting methods ... 210
State changes.. 210

Types of objects that can be attached to lifecycles .. 212
Object permissions and lifecycles... 213
Entry criteria, actions on entry, and post-entry actions 213

Repository storage .. 213
Lifecycle design phases ... 214

Designing a lifecycle ... 214
Lifecycle state definitions .. 215
Actions on entry definitions .. 217
Post-entry action definitions .. 217
Including electronic signature requirements ... 218
Using aliases in actions ... 218

Custom validation programs ... 219
Integrating lifecycles and applications ... 219
Lifecycles, alias sets, and aliases .. 219
State extensions .. 220
State types.. 220
For more information.. 221

Appendix A Aliases .. 223
Overview ... 223
Defining aliases .. 224
Alias scopes ... 224
Workflow alias scopes... 225
Nonworkflow alias scopes... 225
Determining the lifecycle scope for SysObjects ... 226

Resolving aliases in SysObjects .. 226

10 EMC Documentum Content Server Version 6.7 Fundamentals Guide

Table of Contents

Resolving aliases in template ACLs.. 227
Resolving aliases in Link and Unlink methods.. 227
Resolving aliases in workflows .. 228
Resolving aliases during workflow startup... 228
Resolving aliases during activity startup .. 228
The default resolution algorithm ... 229
The package resolution algorithm.. 229
The user resolution algorithm.. 229
When a match is found ... 230
Resolution errors .. 230

Appendix B Internationalization Summary ... 231
Overview ... 231
Content files ... 232
Metadata.. 232
Client communications with Content Server... 232
Constraints .. 232
Configuration requirements for internationalization ... 233
Values set during installation .. 233
The server config object... 233

Values set during sessions ... 234
The client config object.. 234
The session config object ... 234
How values are set ... 235

Where ASCII must be used ... 235
Other Requirements.. 236
User names, email addresses, and group names.. 236
Lifecycles ... 236
Docbasic .. 236
Federations .. 237
Object replication ... 237
Other cross-repository operations .. 237

EMC Documentum Content Server Version 6.7 Fundamentals Guide 11

Table of Contents

.

12 EMC Documentum Content Server Version 6.7 Fundamentals Guide

Table of Contents

EMC Documentum Content Server Version 6.7 Fundamentals Guide 13

Table of Contents

14 EMC Documentum Content Server Version 6.7 Fundamentals Guide

Preface

This manual describes the fundamental features and behaviors of Documentum Content Server. It
provides an overview of the server and then discusses the basic features of the server in detail.

Intended audience
This manual is written for system and repository administrators, application programmers, and any
other user who wishes to obtain a basic understanding of the services and behavior of Documentum
Content Server. The manual assumes the reader has an understanding of relational databases,
object-oriented programming, and SQL (Structured Query Language).

Conventions
This manual uses the following conventions in the syntax descriptions and examples.

Syntax conventions

Convention Identifies

italics A variable for which you must provide a value

[] square brackets An optional argument that can be included only once

{ } curly braces An optional argument that can be included multiple times

| vertical line A choice between two or more options

EMC Documentum Content Server Version 6.7 Fundamentals Guide 15

Preface

Revision history
The following changes have been made to this document.

Revision history

Revision date Description

April 2011 Initial publication for Release 6.7

16 EMC Documentum Content Server Version 6.7 Fundamentals Guide

Chapter 1
Overview

This chapter provides an introduction to content management and the features of Content Server.

Managed content
Content, in a broad sense, is information stored as computer data files. It can include word
processing, spreadsheet, graphics, video and audio files.

Most content is stored locally on personal computers, organized arbitrarily, and only available to a
single user. This means that valuable data is subject to loss, and projects are subject to delay when
people cannot get the information they need.

The best way to protect these important assets is to move them to a centralized content management
system.

Elements of the content management system

Documentum Content Server manages content in a repository. The repository has three primary
elements: a Content Server, a relational database, and a place to store files.

EMC Documentum Content Server Version 6.7 Fundamentals Guide 17

Overview

Everything in a repository is stored as an object. The content file associated with an object is typically
stored in a file system. An object has associated metadata (for example, a file name, storage location,
creation date, and much more). The metadata for each object is stored as a record in a relational
database.

Chapter 4, The Data Model, provides a detailed description of the repository data model.

A data dictionary describes each of the object types in the Documentum system. You can create
custom applications that query this information to automate processes and enforce business rules.
The data dictionary, page 64, gives more detail on what information is available and how it might
be used in your Documentum implementation.

Content Server provides the connection to the outside world. When content is added to the repository,
Content Server parses the object metadata, automatically generates additional information about the
object, and puts a copy of the content file into the file store. Once stored as an object in the repository,
there are many ways that users can access and interact with the content.

Check out / check in

Content in the repository can be checked out, making it available for edit by one user while
preventing other users from making changes. When the edits are complete, the user checks the
content back in to the repository. The changes are then visible to other users, who can check out
and update the content as needed.

Concurrent access control, page 123, provides more detail on access control features of Content Server.

18 EMC Documentum Content Server Version 6.7 Fundamentals Guide

Overview

Versioning

Content Server maintains information about each version of a content object as it is checked out and
checked in to the repository. At any time, users can access earlier versions of the content object to
retrieve sections that have been removed or branch to create a new content object.

Versioning, page 116, describes how versions are handled by Content Server.

Virtual documents

Virtual documents are a way to link individual content objects into one larger document.

A content object can belong to multiple virtual documents. When you change the individual content
object, the change appears in every virtual document that contains that object.

You can assemble and publish all or part of a virtual document. You can integrate the assembly and
publishing services with popular commercial applications such as Arbortext Editor. Assembly can be
controlled dynamically with business rules and data stored in the repository.

Chapter 8, Virtual Documents, provides a detailed description of virtual documents.

Full text indexing

Content Server supports the Documentum xPlore index server, which provides comprehensive
indexing and search capabilities. By default, all property values and indexable content are indexed,
allowing users to search for documents or other objects. The Documentum xPlore documentation set
describes installation, administration, and customization of the xPlore indexing server.

Security

DocumentumContent Server provides security features to control access and automate accountability.

Repository security

Content in the repository is protected on two levels:
• At the repository level

Content Server supports several authentication methods. When users attempt to connect to the
Content Server, the system validates their credentials. If invalid, the connection is not allowed.

Content Server also provides five levels of user privilege, three extended user privileges, folder
security, privileged roles, and basic support for client-application roles and application-controlled
objects.

• At the object level

EMC Documentum Content Server Version 6.7 Fundamentals Guide 19

Overview

Content Server uses a security model based on Access Control Lists (ACLs) to protect repository
objects.

In the ACL model, every content object has an associated ACL. The entries in the ACL define
object-level permissions that apply to the object. Object-level permissions are granted to
individual users and to groups. The permissions control which users and groups can access
the object, and what operations they can perform. There are seven levels of base object-level
permissions and five extended object-level permissions

Chapter 6, Security Services, provides information on all security options. The Documentum Content
Server Administration and Configuration Guide provides information on user administration and
working with ACLs.

Accountability

Content Server provides auditing and tracing facilities. Auditing keeps track of specified operations
and stores a record for each in the repository. Tracing provides a record that you can use to
troubleshoot problems when they occur.

Content Server also supports electronic signatures. In custom applications, you can require users
to sign off on a document before passing the document to the next activity in a workflow, or before
moving the document forward in its lifecycle. Sign-off information is stored in the repository.

The Documentum Content Server Administration and Configuration Guide provides information on
auditing and tracing facilities.

Process management features
The process management features of Content Server enforce business rules and policies when
users create and manipulate content. The primary process management features of Content Server
are workflows and lifecycles.

Workflows

The Content Server workflow model lets you develop process and event-oriented applications for
content management. The model supports both automatic and ad hoc workflows.

You can define workflows for individual documents, folders containing a group of documents, and
virtual documents. A workflow definition can include simple or complex task sequences, including
sequences with dependencies. Workflow and event notifications are automatically issued through
standard electronic mail systems, while content remains under secure server control. Workflow
definitions are stored in the repository, allowing you to start multiple workflows based on one
workflow definition.

Workflows are created and managed using Documentum Workflow Manager or Process Builder.
WorkflowManager is the standard interface for creating and managing workflows. Process Builder is
a separately licensed product that provides additional, sophisticated workflow features.

20 EMC Documentum Content Server Version 6.7 Fundamentals Guide

Overview

Chapter 9, Workflows, describes basic workflow functionality and introduces the additional features
provided by Process Builder. The Documentum Process Builder User Guide describes Documentum
Process Builder features in detail and describes how to use Process Builder. The Documentum Content
Server System Object Reference describes the object types that support workflows.

Lifecycles

Many documents within an enterprise have a recognizable lifecycle. A document is created, often
through a defined process of authoring and review, and then is used and ultimately superseded or
discarded.

Content Server life cycle management services let you automate the stages of document life. The
stages in a lifecycle are defined in a policy object stored in the repository. For each stage, you can
define prerequisites to be met and actions to be performed before an object can move into that
particular stage.

Chapter 10, Lifecycles, describes how lifecycles are implemented. The Documentum Content Server
System Object Reference describes the object types that support lifecycles.

Distributed services
A Documentum system installation can have multiple repositories. Content Server provides built-in,
automatic support for a variety of configurations. The Documentum Content Server Distributed
Configuration Guide provides a complete description of the features supporting distributed services.

Additional options
The features described in this section provide extended and enhanced functionality, and can be
licensed for an additional fee.

Trusted Content Services

Trusted Content Services (TCS) add enhanced security features to Content Server. The features
supported by this license are:

• Digital shredding of content files

• Strong electronic signatures

• Ability to encrypt content in file store storage areas

• Ability to create more complex access rules and restrictions in ACLs

EMC Documentum Content Server Version 6.7 Fundamentals Guide 21

Overview

The following sections contain more detailed information on TCS:

• Trusted Content Services security features, page 83

• Encrypted file store storage areas, page 106

• Digital shredding, page 107

• Signature requirement support, page 97

• ACLs, page 94

The Documentum Content Server Administration and Configuration Guide describes ACLs and how
to add, modify, and remove entries.

Content Services for EMC Centera

The Content Services for EMC Centera (CSEC) add-on provides support for Centera storage hosts. If
you install Content Server with a CSEC license, you can use content-addressed storage areas, the
repository representation of a Centera storage host. These storage areas are particularly useful if the
repository is storing large amounts of relatively static data that must be kept for a specified interval.
CSEC provides content storage with guaranteed retention and immutability.

Note: It is possible to apply retention to content without a CSEC license if you have installed Content
Server with a Retention Policy Services license. A CSEC license is required only if you also want to
store the content in a content-addressed storage area.

Document retention and deletion, page 125, and Setting content properties and metadata for
content-addressed storage, page 131, provide more information on CSEC. The Documentum Content
Server Administration and Configuration Guide includes information on content-addressed storage areas.

Content Storage Services

The Content Storage Services (CSS) add-on allows you to create and use content storage and
migration policies. These policies automate the assignment of content to storage areas, eliminating
manual, error-prone processes and ensuring compliance with company policy with regard to content
storage. Storage polices also automate the movement of content from one storage area to another,
thereby enabling policy-based information lifecycle management.

The CSS license also enables the content compression and content duplication checking and
prevention features. Content compression is an optional configuration choice for file store and
content-addressed storage areas. Content duplication checking and compression is an optional
configuration choice for file store storage areas.

The Documentum Content Server Administration and Configuration Guide contains more information
on Content Storage Services.

22 EMC Documentum Content Server Version 6.7 Fundamentals Guide

Overview

XML Store and XQuery

The Documentum XML Store add-on is a highly scalable, native XML repository for Content Server.
XML Store adds standards-based XQuery to the XML capabilities of Content Server. A native XML
content store or repository stores persistent XML content "as-is," without mapping the XML to
database rows and columns. The XML structure is preserved, allowing users to query content at any
level of detail (for example, individual elements, attributes, content objects, or metadata attributes),
even on very large information sets. As a native XML repository, XML Store provides performance
advantages over relational databases and file systems through specialized XML indexing methods,
caching, and architecture optimized for XML.

The Documentum XML Store Installation and Administration Guide contains more information about
XML Store and XQuery.

EMC Documentum products requiring
activation on Content Server
The products described in this section are sold separately, with separate installers. They require
a license to be entered when installing Content Server to activate Content Server support for the
product.

Retention Policy Services

This add-on requires that you install the Retention Policy Services Documentum Archive (DAR) file (
aDAR file is the executable, binary version of a Documentum Composer project). DAR files are
typically used to distribute applications.

Retention Policy Services (RPS) automates the retention and disposition of content in compliance
with regulations, legal requirements, and best practice guidelines.

The product allows you to manage a content retention in the repository through a retention policy:
a defined set of phases, with a formal disposition phase at the end. You access RPS through
Documentum Administrator.

RPS policies are created and managed using Retention Policy Services Administrator, an
administration tool that is similar to, but separate from, Documentum Administrator.

Document retention and deletion, page 125, describes the various ways to implement document
retention, including retention policies, and how those policies affect behaviors. Virtual documents
and retention policies, page 152, describes how applying a retention policy to a virtual document
affects that document. The Documentum Retention Policy Services Administrator User Guide contains
complete information about using Retention Policy Services Administrator.

EMC Documentum Content Server Version 6.7 Fundamentals Guide 23

Overview

Documentum Collaborative Services

EMC Documentum Collaborative Services allow teams to securely work with content as a group
from any Documentum Web Development Kit based client. Collaborative Services support a wide
range of collaborative features, such as:
• Rooms: secure areas within a repository with a defined membership. Rooms provide a secure
virtual workplace, allowing members to restrict access to content in the room to the room
membership.

• Discussions: online comment threads that enable informal or spontaneous collaboration.

• Contextual folders: folders that allow users to add descriptions and discussions. Users capture
and express the business-oriented context of a folder hierarchy.

• Notes: simple documents that have built-in discussions and can contain rich text content. Using
notes avoids the overhead of running a separate application for text-based collaboration.

The EMC DocumentumWebtop documentation contains additional information about Documentum
Collaborative Services.

Internationalization
Internationalization refers to the ability of Content Server to handle communications and data
transfer between itself and various client applications independent of the character encoding they use.

Content Server runs internally with the UTF-8 encoding of Unicode. The Unicode standard provides
a unique number to identify every letter, number, symbol, and character in every language.

Content Server uses Unicode to:
• Store metadata using non-English characters

• Store metadata in multiple languages

• Manage multilingual web and enterprise content

The Unicode Consortium web site at http://www.unicode.org/ has more information about Unicode,
UTF-8, and national character sets. Appendix B, Internationalization Summary, contains a summary
of Content Server internationalization requirements.

Communicating with Content Server
The Documentum system provides a full suite of products to give users access to Content Server.

Applications

The Documentum system provides web-based and desktop client applications.

24 EMC Documentum Content Server Version 6.7 Fundamentals Guide

Overview

You can also write your own custom applications. Content Server supports all the Documentum
Application Programming Interfaces (APIs). The primary API is the Documentum Foundation
Classes (DFC). This API is a set of Java classes and interfaces that provides full access to Content
Server features. Applications written in Java, Visual Basic (through OLE COM), C++ (through OLE
COM), and Docbasic can use the DFC. (Docbasic is the proprietary programming language Content
Server uses.)

For ease of development, the Documentum system provides a web-based and a desktop development
environment. You can develop custom applications and deploy them on the web or desktop. You can
also customize components of the Documentum client applications.

Interactive utilities

Documentum Administrator is a web-based tool that lets you perform administrative tasks for
a single installation or distributed enterprise from one location.

The IDQL interactive utility in Documentum Administrator lets you execute DQL statements directly.
The utility is primarily useful as a testing arena for statements that you want to add to an application.
It is also useful when you want to execute a quick ad hoc query against the repository.

The Documentum Content Server Administration and Configuration Guide contains more information
about Documentum Administrator and IDQL.

EMC Documentum Content Server Version 6.7 Fundamentals Guide 25

Overview

26 EMC Documentum Content Server Version 6.7 Fundamentals Guide

Chapter 2
Session and Transaction Management

This chapter includes the following topics:
• Session Overview, page 27

• Session Implementation in DFC, page 28

• Concurrent sessions, page 30

• Inactive repository sessions, page 31

• Restricted sessions, page 31

• Connection brokers, page 31

• Native and secure connections, page 32

• Connection pooling, page 33

• Login tickets, page 33

• Application access control tokens, page 36

• Trusting and trusted repositories, page 39

• Transaction management, page 39

Session Overview
A session is a client connection to a repository. Repository sessions are opened when users or
applications establish a connection to a Content Server.

Users or applications can have multiple sessions open at the same time with one or more repositories.
The number of sessions that can be established for a given user or application is controlled by the
max_session_count entry in the dfc.properties file. The value of this entry is set to 10 by default
and can be reset.

For a web application, all sessions started by the application are counted towards the maximum.

Note: If the client application is running on a UNIX platform, the maximum number of sessions
possible is also limited by the number of descriptors set in the UNIX kernel.

EMC Documentum Content Server Version 6.7 Fundamentals Guide 27

Session and Transaction Management

Session Implementation in DFC
This section describes how sessions are implemented within Documentum Foundation Classes
(DFC). DFC is the published and supported programming interface for accessing the functionality of
the Documentum platform.

In DFC, sessions are objects that implement a session, commonly the IDfSession interface. Each
session object gives a particular user access to a particular repository and the objects in that repository.

Obtaining a session

Typically, sessions are obtained from a session manager. A session manager is an object that
implements the IDfSessionManager interface. Session manager objects are obtained by calling
the newSessionManager method of the IDfClient interface. Obtaining sessions from the session
manager is the recommended way to obtain a session. This is especially true in web applications
because the enhanced resource management features provided by a session manager are most useful
in web applications.

By default, if an attempt to obtain a session fails, DFC automatically tries again. If the second attempt
fails, DFC tries to connect to another server if another is available. If no other server is available, the
client application receives an error message. You can configure the time interval between connection
attempts and the number of retries.

Each session has a session identifier in the format Sn where n is an integer equal to or greater than
zero. This identifier is used in trace file entries, to identify the session to which a particular entry
applies. Session identifiers are not used or accepted in DFC method calls.

Shared and private sessions

Repository sessions are either shared or private.

Shared sessions can be used by more than one thread in an application. In web applications,
shared sessions are particularly useful because they allow multiple components of the application
to communicate. For example, a value entered in one frame can affect a setting or field in another
frame. Shared sessions also make the most efficient use of resources.

Shared sessions are obtained by using an IDfSessionManager.getSession method.

Private sessions can be used by the application thread that obtained the session. Using private
sessions is only recommended if the application or thread must retain complete control of the session
state for a specific transaction.

Private sessions are obtained by using a newSession method to obtain a session.

28 EMC Documentum Content Server Version 6.7 Fundamentals Guide

Session and Transaction Management

Explicit and implicit sessions

When end users open a session with a repository by an explicit request, that session is referred to as
an explicit session. Explicit sessions can be either shared or private sessions.

Because some repositories have more than one Content Server and the servers are often running on
different host machines, DFC methods let you be specific when requesting the connection. You
can let the system choose which server to use or you can identify a specific server by name or host
machine or both.

During an explicit session, the tasks a user performs may require working with a document or other
object from another repository. When that situation occurs, DFC seamlessly opens an implicit session
for the user with the other repository. For example, suppose you pass a reference to ObjectB from
RepositoryB to a session object representing a session with RepositoryA. In such cases, DFC will open
an implicit session with RepositoryB to perform the requested action on ObjectB.

Implicit sessions are managed by DFC and are invisible to the user and the application. However,
resource management is more efficient for explicit sessions than for implicit sessions. Consequently,
using explicit sessions, instead of relying on implicit sessions, is recommended.

Both explicit and implicit sessions count towards the maximum number of allowed sessions specified
in the max_session_count configuration parameter.

Session configuration

A session configuration defines some basic features and functionality for the session. For example,
the configuration defines which connection brokers the client can communicate with, the maximum
number of connections the client can establish, and the size of the client cache.

The dfc.properties file

Configuration parameters for client sessions are recorded in the dfc.properties file. This file is
installed with default values for some configuration parameters. Other parameters are optional
and must be explicitly set. Additionally, some parameters are dynamic and may be changed at
runtime if the deployment environment allows. Every client application must be able to access
the dfc.properties file.

The file is polled regularly to check for changes. The default polling interval is 30 seconds. The
interval is configurable by setting a key in the dfc.properties file.

When DFC is initialized and a session is started, the information in this file is propagated to the
runtime configuration objects.

The Documentum Content Server Administration and Configuration Guide has instructions for setting the
connection attempt interval and the number of retries.

EMC Documentum Content Server Version 6.7 Fundamentals Guide 29

Session and Transaction Management

The runtime configuration objects

There are three runtime (nonpersistent) configuration objects that govern a session:
• client config object

• session config object

• connection config object

The client config object is created when DFC is initialized. The configuration values in this object are
derived primarily from the values recorded in the dfc.properties file. Some of the properties in the
client config object are also reflected in the server config object.

The configuration values are applicable to all sessions started through that DFC instance.

The session config and the connection config objects represent individual sessions with a repository.
Each session has one session config object and one connection config object.

These objects are destroyed when the session is terminated.

The Documentum Content Server System Object Reference lists the properties in the configuration objects.

Closing repository sessions

From an end user viewpoint, a user or application repository session is terminated when the user
or application disconnects or releases the session or when another user assumes ownership of the
session. Internally, a released or disconnected session is held in a connection pool, to be reused.
Connection pooling, page 33, describes how connection pooling is implemented.

When a user disconnects or releases a session or a new user assumes ownership of a repository
session, all implicit sessions opened for that session are closed.

Objects obtained during a session are associated with the session and the session manager under
which the session was obtained. If you close a session and then attempt to perform a repository
operation on an object obtained during that session, DFC opens an implicit session for the operation.

A session manager is terminated using an IDfSessionManager.close method. Before terminating a
session manager, you must ensure that:
• All sessions are released or disconnected

• All beginClientControl methods have a matching endClientControl executed

• All transactions opened with a beginTransaction have been committed or aborted

Concurrent sessions
Concurrent sessions are repository sessions that are open at the same time through one Content
Server. The sessions can be for one user or multiple users.

By default, a Content Server can have 100 connections open concurrently. The limit is configurable by
setting the concurrent_sessions key in the server.ini file. You can edit this file using Documentum
Administrator.

30 EMC Documentum Content Server Version 6.7 Fundamentals Guide

Session and Transaction Management

Each connection to a Content Server, whether an explicit or implicit connection, counts as one
connection. Content Server returns an error if the maximum number of sessions defined in the
concurrent_sessions key is exceeded.

The Documentum Content Server Administration and Configuration Guide provides instructions for
setting server.ini file keys.

Inactive repository sessions
Inactive repository sessions are sessions in which the server connection has timed out but the client
application has not specifically disconnected from the server. If the client application sends a request
to Content Server, the server reauthenticates the user and, if the user is authenticated, the inactive
session automatically reestablishes its server connection and becomes active.

If a session was started with a single-use login ticket and that session times out, the session cannot be
automatically restarted by default because the login ticket cannot be reused. To avoid this problem,
an application can use resetPassword, an IDfSession method. This method allows an application to
provide either the actual password for the user or another login ticket for the user. After the user
connects with the initial login ticket, the application can either:
• Generate a second ticket with a long validity period and then use resetPassword to replace the
single-use ticket

• Execute resetPassword to replace the single-use ticket with the actual password of the user

Performing either option will ensure that the user is reconnected automatically if the user session
times out.

Restricted sessions
A restricted session is a repository session opened for a user who connects with an expired operating
system password. The only operation allowed in a restricted session is changing the user password.
Applications can determine whether a session they begin is a restricted session by examining the
value of the computed property _is_restricted_session. This property is T (TRUE) if the session
is a restricted session.

Connection brokers
A connection broker is a name server for the Content Server. It provides connection information for
Content Servers and application servers, and information about the proximity of network locations.

When a user or application requests a repository connection, the request goes to a connection broker
identified in the client dfc.properties file. The connection broker returns the connection information
for the repository or particular server identified in the request.

Connection brokers do not request information from Content Servers, but rely on the servers to
regularly broadcast their connection information to them. Which connection brokers are sent server
information is configured in the server config object of the server.

EMC Documentum Content Server Version 6.7 Fundamentals Guide 31

Session and Transaction Management

Which connection brokers a client can communicate with is configured in the dfc.properties file used
by the client. You can define primary and backup connection brokers in the file. Doing so ensures
that users will rarely encounter a situation in which they can not obtain a connection to a repository.

An application can also set the connection broker programmatically. This allows the application
to use a connection broker that may not be included in the connection brokers specified in the
dfc.properties file. The application must set the connection broker information before requesting a
connection to a repository.

The Documentum Content Server Administration and Configuration Guide provides information about
how servers, clients, and connection brokers interact. The Documentum Foundation Classes Development
Guide contains information about setting a connection broker programmatically.

Native and secure connections
Content Servers, connection brokers, and client applications can communicate using native
(non-secure) connections or secure connections that use the secure socket layer (SSL) protocol.

By default, all Content Servers and connection brokers are configured to support only native
(non-SSL) connections. However, during initial configuration, or at a later time, Content Server and
connection brokers can be configured to support SSL connections. They can be configured to first
attempt connection with either native or SSL, and then try the other mode if not successful.

Similarly, all client sessions, by default, request a native connection, but can be configured in the same
way as Content server and connection brokers.

To provide a secure connection to a client, the server must be configured to listen on a secure port.
That is configured in the server config object. To provide a secure connection to a connection broker,
both the server and the broker must be configured. Content Server is configured to project to the
connection broker with an SSL session and the connection broker is configured to listen for SSL
connections. If you have a distributed installation, and you want to use only SSL connections, make
sure that all the elements of your installation are configured to use (and can support) SSL connections.

To request a secure connection, the client application must have the appropriate value set in the
dfc.properties file or must explicitly request a secure connection when a session is requested. The
security mode requested for the session is defined in the IDfLoginInfo object used by the session
manager to obtain the session.

The security mode requested by the client interacts with the connection type configured for the
server and connection broker to determine whether the session request succeeds and what type
of connection is established.

The Documentum Content Server Administration and Configuration Guide has information on resetting
the connection default for Content Server and how clients request a secure connection. The interaction
between the Content Server setting and the client request is described in the associated Javadocs,
in the description of the IDfLoginInfo.setSecurityMode method.

32 EMC Documentum Content Server Version 6.7 Fundamentals Guide

Session and Transaction Management

Connection pooling
Connection pooling is an optional feature that allows an explicit repository session to be recycled
and used by more than one user. Connection pooling is an automatic behavior implemented in DFC
through session managers. It provides performance benefits for applications, especially those that
execute frequent connections and disconnections for multiple users.

Whenever a session is released or disconnected, DFC puts the session into the connection pool. This
pool is divided into two levels. The first level is a homogeneous pool. When a session is in the
homogeneous pool, it can be reused only by the same user. If, after a specified interval, the user has
not reclaimed the session, the session is moved to the heterogeneous pool. From that pool, the
session can be claimed by any user.

When a session is claimed from the heterogeneous pool by a new user, DFC resets automatically
any security and cache-related information as needed for the new user. DFC also resets the error
message stack and rolls back any open transactions.

To obtain the best performance and resource management from connection pooling, connection
pooling must be enabled through the dfc.properties file. If connection pooling is not enabled through
the dfc.properties file, DFC only uses the homogeneous pool. The session is held in that pool for a
longer period of time, and does not use the heterogeneous pool. If the user does not reclaim the
session from the homogeneous pool, the session is terminated.

Simulating connection pooling at the application level is accomplished using an IDfSession.assume
method. The method lets one user assume ownership of an existing primary repository session.

When connection pooling is simulated using an assume method, the session is not placed into the
connection pool. Instead, ownership of the repository session passes from one user to another by
executing the assume method within the application.

When an assume method is issued, the system authenticates the requested new user. If the user
passes authentication, the system resets the security and cache information for the session as needed.
It also resets the error message stack.

The Documentum Content Server Administration and Configuration Guide contains instructions about
enabling and configuring connection pooling. The associated Javadocs contain details about using an
assume method.

Login tickets
A login ticket is an ASCII-encoded string that an application can use in place of a user password
when connecting to a repository. Login tickets can be used to establish a connection with the current
or a different repository.

Each login ticket has a scope that defines who can use the ticket and how many times the ticket can
be used. By default, login tickets may be used multiple times. However, you can create a ticket
configured for only one use. If a ticket is configured for just one use, the ticket must be used by
the issuing server or another designated server.

Login tickets are generated in a repository session, at runtime, using one of the getLoginTicket
methods from the IDfSession interface.

EMC Documentum Content Server Version 6.7 Fundamentals Guide 33

Session and Transaction Management

Login Ticket format and Scope

A login ticket has the following format:
DM_TICKET=ASCII-encoded string

The ASCII-encoded string is comprised of two parts: a set of values describing the ticket and a
signature generated from those values. The values describing the ticket include information such as
when the ticket was created, the repository in which it was created, and who created the ticket. The
signature is generated using the login ticket key installed in the repository.

For troubleshooting purposes, DFC supports the IDfClient.getLoginTicketDiagnostics method, which
returns the encoded values in readable text format.

The scope of a login ticket defines which Content Servers accept the login ticket. When you generate a
login ticket, you can define its scope as:
• The server that issues the ticket

• A single server other than the issuing server. In this case, the ticket is automatically a single-use
ticket.

• The issuing repository. Any server in the repository accepts the ticket.

• All servers of trusting repositories. Any server of a repository that considers the issuing repository
a trusted repository may accept the ticket.

A login ticket that can be accepted by any server of a trusted repository is called a global login
ticket. An application can use a global login ticket to connect to a repository that differs from the
ticket issuing repository if:
• The login ticket key (LTK) in the receiving repository is identical to the LTK in the repository in
which the global ticket was generated

• The receiving repository trusts the repository in which the ticket was generated

Trusting and trusted repositories, page 39, describes how trusted repositories are defined and
identified.

The login ticket key

The login ticket key (LTK) is a symmetric key, automatically installed in a repository when the
repository is created. Each repository has one LTK. The LTK is stored in the ticket_crypto_key
property of the docbase config object.

Login ticket keys are used with login tickets and application access tokens.

Login ticket keys are used to generate the Content Server signatures that are part of a login ticket
key or application access token. If you want to use login tickets across repositories, the repository
from which a ticket was issued and the repository receiving the ticket must have identical login ticket
keys. When a Content Server receives a login ticket, it decodes the string and uses its login ticket
key to verify the signature. If the LTK used to verify the signature is not identical to the key used
to generate the signature, the verification fails.

34 EMC Documentum Content Server Version 6.7 Fundamentals Guide

Session and Transaction Management

Content Server supports two administration methods that allow you to export a login ticket key from
one repository and import it into another repository. The methods are EXPORT_TICKET_KEY and
IMPORT_TICKET_KEY. These methods are also available as DFCmethods in the IDfSession interface.

It is also possible to reset a repository LTK if needed. Resetting a key removes the old key and
generates a new key for the repository.

The Documentum Content Server Administration and Configuration Guide provides information about
executing the EXPORT_TICKET_KEY and IMPORT_TICKET_KEY methods, and about resetting a
login ticket key.

Login ticket expiration

Login tickets are valid for given period of time, determined by configuration settings in the server
config object or by an argument provided when the ticket is created. The configuration settings in
the server config object define both a default validity period for tickets created by that server and a
maximum validity period. The default period is defined in the login_ticket_timeout property. The
maximum period is defined in the max_login_ticket_timeout property.

A validity period specified as an argument overrides the default defined in the server config object.
However, if the method argument exceeds the maximum validity period in max_login_ticket_timeout,
the maximum period is used.

For example, suppose you configure a server so that login tickets created by that server expire by
default after 10 minutes and set the maximum validity period to 60 minutes. Now suppose that an
application creates a login ticket while connected to that server and sets the ticket validity period
to 20 minutes. The value set by the application overrides the default, and the ticket is valid for 20
minutes. If the application attempts to set the ticket validity period to 120 minutes, the 120 minutes is
ignored and the login ticket is created with a validity period of 60 minutes.

If an application creates a ticket and does not specify a validity period, the default period is applied to
the ticket.

When a login ticket is generated, both its creation time and expiration time are recorded as UTC time.
This ensures that problems do not arise from tickets used across time zones.

When a ticket is sent to a server other than the server that generated the ticket, the receiving server
tolerates up to a three-minute difference in time. That is, if the ticket is received within three minutes
of its expiration time, the ticket is considered valid. This three-minute difference allows for minor
differences in machine clock time across host machines. However, it is the responsibility of the system
administrators to ensure that the machine clocks on host machines with applications and repositories
be set as closely as possible to the correct time.

The Documentum Content Server Administration and Configuration Guide, has information about
configuring the default and maximum validity periods in a repository.

Revoking login tickets

You can set a cutoff date for login tickets on individual repositories. If you set a cutoff date for a
repository, the repository servers consider any login tickets invalid that were generated prior to the

EMC Documentum Content Server Version 6.7 Fundamentals Guide 35

Session and Transaction Management

specified date and time to be revoked. When a server receives a connection request with a revoked
login ticket, it rejects the connection request.

The cutoff date is recorded in the login_ticket_cutoff property of the repository docbase config object.

This feature adds more flexibility to the use of login tickets by allowing you to create login tickets that
may be valid in some repositories and invalid in other repositories. A ticket may be unexpired but
still be invalid in a particular repository if that repository has login_ticket_cutoff set to a date and
time prior to the ticket creation date.

Restricting superuser use

You can disallow use of a global login ticket by a superuser when connecting to a particular server.
This is a security feature of login tickets. For example, suppose there is a userX in RepositoryA and a
userX in RepositoryB and that the userX in RepositoryB is a superuser. Suppose also that the two
repositories trust each other. An application connected to RepositoryA could generate a global login
ticket for the userX (from RepositoryA) that allows that user to connect to RepositoryB. Because
userX is a superuser in RepositoryB, when userX from RepositoryA connects, that person is granted
Superuser privileges in RepositoryB.

To ensure that sort of security breach cannot occur, you can restrict superusers from using a global
login ticket to connect to a server.

The Documentum Content Server Administration and Configuration Guide, has information about
restricting superuser use of global login tickets.

Application access control tokens
This section describes application access control tokens, an optional feature that gives you added
control over access to repositories.

Application access control (AAC) tokens are encoded strings that may accompany connection
requests from applications. The information in a token defines constraints on the connection request.
If a Content Server is configured to use AAC tokens, any connection request received by that server
from a non-superuser must be accompanied by a valid token and the connection request must
comply with the constraints in the token.

If you configure a Content Server to use AAC tokens, you can control:
• Which applications can access the repository through that server

• Who can access the repository through that server

You can allow any user to access the repository through that server or you can limit access to a
particular user or to members of a particular group.

• Which client host machines can be used to access the repository through that server

These constraints can be combined. For example, you can configure a token that only allows members
of a particular group using a particular application from a specified host to connect to a server.

36 EMC Documentum Content Server Version 6.7 Fundamentals Guide

Session and Transaction Management

Application access control tokens are ignored if the user requesting a connection is a superuser. A
superuser can connect without a token to a server that requires a token. If a token is provided, it
is ignored.

Using tokens

Tokens are enabled on a server-by-server basis. You can configure a repository with multiple servers
so that some of its servers require a token and some do not. This provides flexibility in system design.
For example, you can designate one Content Server assigned to a repository as the server to be used
for connections coming from outside a firewall. By requiring that server to use tokens, you can further
restrict what machines and applications are used to connect to the repository from outside the firewall.

When you create a token, you use arguments on the command line to define the constraints that you
want to apply to the token. The constraints define who can use the token and in what circumstances.
For example, if you identify a particular group in the arguments, only members of that group can
use the token. Or, you can set an argument to constrain the token use to the host machine on which
the token was generated. If you want to restrict the token to use by a particular application, you
supply an application ID string when you generate the token, and any application using the token
must provide a matching string in its connection request. All of the constraint parameters you specify
when you create the token are encoded into the token.

When an application issues a connection request to a server that requires a token, the application may
generate a token at runtime or it may rely on the client library to append an appropriate token to the
request. The client library also appends a host machine identifier to the request.

Note: Only 5.3 DFC or later is capable of appending a token or machine identifier to a connection
request. Configuring the DFC to append a token is optional.

If you want to constrain the use to a particular host machine, you must also set the dfc.machine.id key
in the dfc.properties file used by the client on that host machine.

If the receiving server does not require a token or the user is a superuser, the server ignores any token,
application ID, and host machine ID accompanying the request and processes the request as usual.

If the receiving server requires a token, the server decodes the token and determines whether the
constraints are satisfied. If the constraints are satisfied, the server allows the connection. If not, the
server rejects the connection request.

The Documentum Content Server Administration and Configuration Guidehas information about enabling
token use in a server, configuring DFC to append a token or machine identifier to a connection
request, and implementing token use and enabling token retrieval.

Token format and scope

The format of an AAC token is:
DM_TOKEN=ASCII-encoded string

The ASCII-encoded string is comprised of two parts: a set of values describing the token and a
signature generated from those values. The values describing the token include such information
as when the token was created, the repository in which it was created, and who created the token.

EMC Documentum Content Server Version 6.7 Fundamentals Guide 37

Session and Transaction Management

(For troubleshooting purposes, DFC has the IDfClient.getApplicationTokenDiagnostics method,
which returns the encoded values in readable text format.) The signature is generated using the
repository login ticket key.

The scope of an application access control token identifies which Content Servers can accept the
token. The scope of an AAC token can be either a single repository or global. The scope is defined
when the token is generated.

If the scope of a token is a single repository, then the token is only accepted by Content Servers
of that repository. The application using the token can send its connection request to any of the
repository servers.

A global token can be used across repositories. An application can use a global token to connect to
repository other than the repository in which the token was generated, if:
• The target repository is using the same login ticket key (LTK) as the repository in which the
global token was generated

• The target repository trusts the repository in which the token was generated

Repositories that accept tokens generated in other repositories must trust these other repositories.

The login ticket key, page 34, describes the login ticket key. Trusting and trusted repositories, page 39,
describes how trust is determined between repositories.

Token generation and expiration

Application access control tokens can be generated at runtime or you can generate and store tokens
for later retrieval by the DFC.

For runtime generation in an application, use the getApplicationToken method defined in the
IDfSession interface.

To generate tokens for storage and later retrieval, use the dmtkgen utility. This option is useful if you
want to place a token on a host machine outside a firewall so that users connecting from that machine
are restricted to a particular application. It is also useful for backwards compatibility. You can use
stored tokens retrieved by DFC to ensure that methods or applications written prior to version 5.3
can connect to servers that now require a token.

The dmtkgen utility generates an XML file that contains a token. The file is stored in a location
identified by the dfc.tokenstorage_dir key in the dfc.properties file. Token use is enabled by
dfc.tokenstorage.enable key. If use is enabled, a token can be retrieved and appended to a connection
request by the DFC when needed.

Application access control tokens are valid for a given period of time. The period may be defined
when the token is generated. If not defined at that time, the period defaults to one year, expressed
in minutes. (Unlike login tickets, you cannot configure a default or maximum validity period for
an application access token.)

The Documentum Content Server Administration and Configuration Guide has information on using
dmtkgen.

38 EMC Documentum Content Server Version 6.7 Fundamentals Guide

Session and Transaction Management

Internal methods, user methods, and tokens

The internal methods supporting replication and federations are not affected by enabling token use in
any server. These methods are run under an account with Superuser privileges, so the methods can
connect to a server without a token even if that server requires a token.

Similarly if a user method (program or script defined in a dm_method object) runs under a superuser
account, the method can connect to a server without a token even if that server requires a token.
However, if the method does not run as a superuser and tries to connect without a token to a server
that requires a token, the connection attempt fails.

You can avoid the failure by setting up and enabling token retrieval by the DFC on the host on which
the method is executed. Token retrieval allows the DFC to append a token retrieved from storage to
the connection request. The token must be generated by the dmtkgen utility and must be a valid
token for the connection request.

Trusting and trusted repositories
A trusting repository is a repository that accepts login tickets or application access tokens, or both,
that were generated by a Content Server from a different repository. A trusted repository is a
repository that generates login tickets or application access tokens, or both, that are accepted by a
different repository. The repositories whose servers generate the tickets or application access tokens
or receive the tickets or tokens must be appropriately configured as trusted or trusting repositories.

All repositories run in either trusting or nontrusting mode. Whether a repository is running in
trusting or nontrusting mode is defined in the trust_by_default property in the docbase config object.

If trust_by_default is set to T, the repository is running in trusting mode and trusts all other
repositories. In trusting mode, the repository accepts any global login ticket or application access
token generated with a login ticket key (LTK) that matches its LTK, regardless of the ticket or
token source repository. If the property is set to F, the repository is running in nontrusting mode.
A nontrusting repository accepts global login tickets or application access tokens generated with a
matching LTK if they come from repositories specifically named as trusted repositories. The list of
trusted repository names is recorded in a repository trusted_docbases property in its docbase config
object.

For example, suppose an installation has four repositories: RepositoryA, RepositoryK, RepositoryM,
and RepositoryN. All four have identical LTKs. RepositoryA has trust_by_default set to T. Therefore,
RepositoryA trusts and accepts login tickets or tokens from the three other repositories. RepositoryK
has trust_by_default set to F. RepositoryK also has two repositories listed in its trusted_docbases
property: RepositoryM and RepositoryN. RepositoryK rejects login tickets or tokens from
RepositoryA because RepositoryA is not in the list of trusted repositories. It accepts tickets or tokens
from RepositoryM and RepositoryN because they are listed in the trusted_docbases property.

Transaction management
This section describes transactions and how they are managed.

EMC Documentum Content Server Version 6.7 Fundamentals Guide 39

Session and Transaction Management

A transaction is one or more repository operations handled as an atomic unit. All operations in
the transaction must succeed or none may succeed. A repository session can have only one open
transaction at any particular time. A transaction is either internal or explicit.

Internal and explicit transactions

An internal transaction is a transaction managed by Content Server. The server opens transactions,
commits changes, and performs rollbacks as necessary to maintain the integrity of the data in the
repository. Typically, an internal transaction consists of only a few operations. For example, a
save on a dm_sysobject is one transaction, consisting of minimally three operations: saving the
dm_sysobject_s table, saving the dm_sysobject_r table, and saving the content file. If any of the save
operations fail, the transaction fails and all changes are rolled back.

An explicit transaction is a transaction managed by a user or client application. The transaction is
opened with a DQL BEGINTRAN statement or a beginTransaction method. It is closed when the
transaction is explicitly committed to save the changes, or aborted to close the transaction without
saving the changes. An explicit transaction can include as many operations as desired. However,
none of the changes made in an explicit transaction are committed until the transaction is explicitly
committed. If an operation fails, the transaction is automatically aborted and all changes made
prior to the failure are lost.

Constraints on explicit transactions

There are constraints on the work you can perform in an explicit transaction:
• You cannot perform any operation on a remote object if the operation results in an update in
the remote repository.

Opening an explicit transaction starts the transaction only for the current repository. If you
issue a method in the transaction that references a remote object, work performed in the remote
repository by the method is not under the control of the explicit transaction. This means that if
you abort the transaction, the work performed in the remote repository is not rolled back.

• You cannot perform any of the following methods that manage objects in a lifecycle: attach,
promote, demote, suspend, and resume.

• You cannot issue a complete method for an activity if the activity is using XPath to route a case
condition to define the transition to the next activity.

• You cannot execute an IDfSysObject.assemble method that includes the interruptFreq argument.

• You cannot use DFC methods in the transaction if you opened the transaction with the DQL
BEGIN[TRAN] statement.

If you want to use DFC methods in an explicit transaction, open the transaction with a DFC
method.

• You cannot execute dump and load operations inside an explicit transaction.

40 EMC Documentum Content Server Version 6.7 Fundamentals Guide

Session and Transaction Management

• You cannot issue a CREATE TYPE statement in an explicit transaction.

• You cannot issue an ALTER TYPE statement in an explicit transaction, unless the ALTER TYPE
statement lengthens a string property.

Database-level locking in explicit transactions

Database-level locking places a physical lock on an object in the RDBMS tables. Database-level
locking is more severe than that provided by the checkout method and is only available in explicit
transactions.

Applications may find it advantageous to use database-level locking in explicit transactions. If an
application knows which objects it will operate on and in what order, the application can avoid
deadlock by placing database locks on the objects in that order. You can also use database locks to
ensure that version mismatch errors do not occur.

To put a database lock on an object, use a lock method (in the IDfPersistentObject interface). A
superuser can lock any object with a database-level lock. Other users must have at least Version
permission on an object to place a database lock on the object.

After an object is physically locked, the application can modify the properties or content of the object.
It is not necessary to issue a checkout method unless you want to version the object. If you want to
version an object, you must also check out the object.

Managing deadlocks

Deadlock occurs when two connections are both trying to access the same information in the
underlying database. When deadlock occurs, the RDBMS typically chooses one of the connections
as a victim, drops any locks held by that connection, and rolls back any changes made in that
connection transaction.

Handling deadlocks in internal transactions

Content Server manages internal transactions and database operations in a manner that reduces
the chance of deadlock as much as possible. However, some situations may still cause deadlocks.
For example, deadlocks can occur if:
• A query that turns off full-text search and tries to read data from a table through an index when
another connection is locking the data while it tries to update the index. (When full-text search is
enabled, properties are indexed and the table is not queried.)

• Two connections are waiting for locks being held by each other.

When deadlock occurs, Content Server executes internal deadlock retry logic. The deadlock retry
logic tries to execute the operations in the victim transaction up to 10 times. If an error such as a
version mismatch occurs during the retries, the retries are stopped and all errors are reported. If the
retry succeeds, an informational message is reported.

EMC Documentum Content Server Version 6.7 Fundamentals Guide 41

Session and Transaction Management

Handling deadlocks in explicit transactions

Content Server deadlock retry logic is not available in explicit transactions. If an application runs
under an explicit transaction or contains an explicit transaction, the application should contain
deadlock retry logic.

Content Server provides a computed property that you can use in applications to test for deadlock.
The property is _isdeadlocked. This is a Boolean property that returns TRUE if the repository
session is deadlocked.

To test custom deadlock retry logic, Content Server provides an administration method called
SET_APIDEADLOCK. This method plants a trigger on a particular operation. When the operation
executes, the server simulates a deadlock, setting the _isdeadlocked computed property and rolling
back any changes made prior to the method execution. Using SET_APIDEADLOCK allows you to
test an application deadlock retry logic in a development environment. The Documentum Content
Server DQL Reference describes the SET_APIDEADLOCK method in detail.

42 EMC Documentum Content Server Version 6.7 Fundamentals Guide

Chapter 3
Caching

This chapter includes the following topics:
• Object type caching, page 43

• Repository session caches, page 44

• Persistent caching, page 45

• Consistency checking, page 46

Object type caching
Content Server and Documentum Foundation Classes (DFC) maintain caches of object type
definitions. These caches help to ensure fast response times when users access objects. To ensure that
the cached information about an object type is accurate, DFC and Content Server have mechanisms
to verify the accuracy of a cached object type definition and update it if necessary. The mechanism
varies depending on the object types.

Object types with names beginning with dm, dmr, and
dmi

These object types are built-in types in a Content Server installation. Their type definitions are
relatively static. There are few changes that can be made to the definition of a built-in type. For these
types, the mechanism is an internal checking process that periodically checks all the object type
definitions in the Content Server global cache. If any definitions are out-of-date, the process flushes
the cache and reloads the type definitions into the global cache. Changes to these types are not visible
to existing sessions because the DFC caches are not updated when the global cache is refreshed.

Stopping and restarting a session makes any changes in the global cache visible. If the session was a
web-based client session, the web application server must be restarted.

The interval at which the process runs is configurable by changing the setting of the
database_refresh_interval in the server.ini file.

EMC Documentum Content Server Version 6.7 Fundamentals Guide 43

Caching

Custom object types and types with names beginning
with dmc

These object types are installed with Documentum Archive (DAR) files or scripts to support client
applications. Their type definitions typically change more often, and the changes may need to be
visible to users immediately. For example, a Collaboration Services user can change the structure of a
datatable often, and each change modifies the underlying type definition. To meet that requirement,
the mechanism that refreshes cached type definitions for these types is more dynamic than that
for the built-in types.

For these types, the DFC shared cache is updated regularly, at intervals defined by the
dfc.cache.type.currency_check_interval key in the dfc.properties file. That key defaults to 300 seconds
(5 minutes). It can be reset using Documentum Administrator.

Additionally, when requested in a fetch method, DFC checks the consistency of its cached version
against the server global cache. If the versions in the caches are found to be mismatched, the object
type definition is updated appropriately. If the server cache is more current, the DFC caches are
updated. If the DFC has a more current version, the server cache is updated.

This mechanism ensures that a user who makes the change sees that change immediately and
other users in other sessions see it shortly thereafter. Stopping and restarting a session or the web
application server is not required to see changes made to these objects.

The Documentum Content Server Administration and Configuration Guide has instructions for setting the
database refresh interval for the server global cache.

Repository session caches
Repository session caches are created when a user or application opens a repository session. These
caches exist only for the life of the repository session. The types of caches are:
• Object cache

An in-memory object cache is maintained for each repository session for the duration of the
repository session.

• Query cache

Query results are only cached when persistent caching is requested and enabled. The results are
cached in a file. They are not stored in memory. The file is stored with a randomly generated
extension on the client application host disk.

• Data dictionary caches

In conjunction with the object cache, DFC maintains a data dictionary cache. The data dictionary
cache is a shared cache, shared by all sessions in a multi-threaded application. When an object is
fetched, the DFC also fetches and caches in memory the object associated data dictionary objects if
they are not already in the cache.

44 EMC Documentum Content Server Version 6.7 Fundamentals Guide

Caching

Persistent caching
This section describes persistent caching, a feature supported by the DFC and Content Server,
that provides performance benefits during session start up and when users or applications access
cached query results.

Persistent caching is the ability to create, manage, and maintain persistent caches of query results.
Persistent caches are maintained across client sessions for each user and repository combination.
Persistent caches are implemented through DFC and supported by Content Server.

The ability to cache query results is enabled by default for every repository and every client session.
DocumentumWebtop takes advantage of this feature. Applications can take advantage of the feature
through the DFC methods that support requests for persistent client caching.

Consistency between the repository and cached query results is checked and maintained using a
consistency check rule identified in the method call that references them. A consistency checking rule
can be applied to individual objects or query results, or a rule can be defined for a set of cached data.

Query cache storage location

The file that contains the cached query results is stored with a randomly generated extension on the
client disk. For a desktop application, this is the user local disk. For a web-based application, this is
the web application server disk. The files are in the following directory:

On Microsoft Windows:
\root\qrycache\machine_name\repository_id\user_name

On UNIX:
/root/qrycache/machine_name/repository_id/user_name

root is the value in the dfc.data.local_dir key in the client dfc.properties file.

The query cache files for each user consist of a cache.map file and files with randomly generated
extensions. The cache.map file maps each cached query to the file that contains the results of the
query (one of the files with the randomly generated extensions).

The queries are cached by user name because access permissions may generate different results for
different users.

Note: The cache.map file and the cached results files are stored in ASCII format. They are accessible
and readable through the operating system. If security is an issue, make sure that the directory in
which they are stored is local to each client, not on a shared disk.

Using persistent client caching in an application

Some Documentum system clients use persistent client caching by default. If you want to use it in
your applications, you must:
• Ensure that persistent client caching is enabled

EMC Documentum Content Server Version 6.7 Fundamentals Guide 45

Caching

Persistent client caching is enabled at the repository and session levels by default. At the client
session level, this is controlled by the dfc.cache.enable_persistence key in the dfc.properties file.

• Identify the objects or queries, or both, that you want to cache

You identify the data to cache in application methods that fetch the objects or execute the query.

• Define the consistency check rule for cached data

A consistency check rule defines how often cached data is checked for consistency with the
repository. The methods that support persistent client caching support a variety of rule options
through a method argument.

The Documentum Content Server Administration and Configuration Guide has more information about
persistent cache write intervals and enabling or disabling persistent caching. Consistency checking,
page 46, describes consistency checking.

Consistency checking
Consistency checking is the process that ensures that cached data accessed by a client is current and
consistent with the data in the repository. How often the process is performed for any particular set
of query results is determined by the consistency check rule defined in the method that references the
data.

The consistency check rule can be a keyword, an integer value, or the name of a cache config object.
Using a cache config object to group cached data has the following benefits:
• Validates cached data efficiently

It is more efficient to validate a group of data than it is to validate each object or set of query
results individually.

• Helps ensure that applications access current data

• Makes it easy to change the consistency check rule because the rule is defined in the cache config
object rather than in application method calls

• Allows you to define a job to validate cached data automatically

Consistency checking is basically a two-part process:
1. DFC determines whether a consistency check is necessary.

2. DFC conducts the consistency check if needed.

The consistency checking process described in this section is applied to all objects in the in-memory
cache, regardless of whether the object is persistently cached or not.

Determining if a consistency check is needed, page 47, describes how the DFC determines whether a
check is needed. Conducting consistency checks, page 48, describes how the check is conducted.

46 EMC Documentum Content Server Version 6.7 Fundamentals Guide

Caching

Determining if a consistency check is needed

To determine whether a check is needed, the DFC uses the consistency check rule defined in the
method that references the data. The rule may be expressed as either a keyword, an integer value,
or the name of a cache config object.

Rules with a keyword or integer

If the rule was specified as a keyword or an integer value, DFC interprets the rule as a directive on
when to perform a consistency check. The directive is one of the following:
• Perform a check every time the data is accessed

This option means that the data is always checked against the repository. If the cached data is an
object, the object is always checked against the object in the repository. If the cached data is a set of
query results, the results are always regenerated. The keyword check_always defines this option.

• Never perform a consistency check

This option directs the DFC to always use the cached data. The cached data is never checked
against the repository if it is present in the cache. If the data is not present in the cache, the data is
obtained from the server. The keyword check_never defines this option.

• Perform a consistency check on the first access only

This option directs the DFC to perform a consistency check the first time the cached data is
accessed in a session. If the data is accessed again during the session, a consistency check is not
conducted. The keyword check_first_access defines this option.

• Perform a consistency check after a specified time interval

This option directs the DFC to compare the specified interval to the timestamp on the cached data
and perform a consistency check only if the interval has expired. The timestamp on the cached
data is set when the data is placed in the cache. The interval is expressed in seconds and can
be any value greater than 0.

Rules with a cache config object

If a consistency check rule names a cache config object, the DFC uses information from the cache
config object to determine whether to perform a consistency check on the cached data. The cache
config information is obtained by invoking the CHECK_CACHE_CONFIG administration method
and stored in memory with a timestamp that indicates when the information was obtained. The
information includes the r_last_changed_date and the client_check_interval property values of
the cache config object.

When a method defines a consistency check rule by naming a cache config object, DFC first checks
whether it has information about the cache config object in its memory. If it does not, it issues a
CHECK_CACHE_CONFIG administration method to obtain the information. If it has information
about the cache config object, DFC must determine whether the information is current before using
that information to decide whether to perform a consistency check on the cached data.

EMC Documentum Content Server Version 6.7 Fundamentals Guide 47

Caching

To determine whether the cache config information is current, the DFC compares the stored
client_check_interval value to the timestamp on the information. If the interval has expired, the
information is considered out of date and DFC executes another CHECK_CACHE_CONFIG method
to ask Content Server to provide current information about the cache config object. If the interval
has not expired, DFC uses the information that it has in memory.

After the DFC has current information about the cache config object, it determines whether the
cached data is valid. To determine that, the DFC compares the timestamp on the cached data against
the r_last_changed_date property value in the cache config object. If the timestamp is later than
the r_last_changed_date value, the cached data is considered usable and no consistency check is
performed. If the timestamp is earlier than the r_last_changed_date value, a consistency check is
performed on the data.

The Documentum Content Server DQL Reference has reference information about the
CHECK_CACHE_CONFIG administration method.

Conducting consistency checks

To perform a consistency check on a cached object, DFC uses the i_vstamp property value of the object.
If the DFC has determined that a consistency check is needed, it compares the i_vstamp value of the
cached object to the i_vstamp value of the object in the repository. If the i_vstamp values are different,
DFC refetches the object and resets the time stamp. If they are the same, DFC uses the cached copy.

DFC does not perform consistency checks on cached query results. If the cached results are out of
date, Content Server re-executes the query and replaces the cached results with the newly generated
results.

If a fetch method does not include an explicit value for the argument defining a consistency check
rule, the default is check_always. That means that DFC checks the i_vstamp value of the in-memory
object against the i_vstamp value of the object in the repository.

If a query method that requests persistent caching does not include an explicit value for the argument
defining a consistency check rule, the default consistency rule is check_never. This means that DFC
uses the cached query results.

The client_pcaching_change property

The client_pcaching_change property controls whether the persistent caches, including the object
caches and all query caches, are flushed when a client session is started. When a client session
is started, the DFC checks the cached value of the client_pcaching_change property against the
repository value. If the values are different, the DFC flushes all the persistent caches, including the
object caches and all query caches.

48 EMC Documentum Content Server Version 6.7 Fundamentals Guide

Caching

The client_pcaching_change value must be changed in the docbase config object manually, by a
Superuser.

EMC Documentum Content Server Version 6.7 Fundamentals Guide 49

Caching

50 EMC Documentum Content Server Version 6.7 Fundamentals Guide

Chapter 4
The Data Model

This chapter includes the following topics:
• Objects and object types, page 51

• Properties, page 54

• Repositories, page 58

• Registered tables, page 63

• Data dictionary contents, page 67

Objects and object types
The Documentum system is object-oriented. An object is an individual item in the repository. All the
repository items manipulated by users are objects. Every document is an object, as are the cabinets
and folders in which documents are stored. Even users are handled as objects. Each of the objects
belongs to an object type.

An object type represents a class of objects. The definition of an object type consists of a set of
properties, whose values describe individual objects of the type. Object types are like templates.
When you create an object in a repository, you identify which type of object you want to create.
Content Server uses the type definition as a template to create the object, and then sets the properties
for the object to values specific to that object instance.

Most EMC Documentum object types exist in a hierarchy. Within the hierarchy, an object type is a
supertype or a subtype or both. A supertype is an object type that is the basis for another object type,
called a subtype. The subtype inherits all the properties of the supertype. The subtype also has the
properties defined specifically for it. For example, the dm_folder type is a subtype of dm_sysobject. It
has all the properties defined for dm_sysobject plus two defined specifically for dm_folder.

A type can be both a supertype and a subtype. For example, dm_folder is a subtype of dm_sysobject
and a supertype of dm_cabinet.

Most object types are persistent. When a user creates an object of a persistent type, the object is stored
in the repository and persists across sessions. A document that a user creates and saves one day is
stored in the repository and available in another session on another day. The definitions of persistent
object types are stored in the repository as objects of type dm_type and dmi_type_info.

There are some object types that are not persistent. Objects of these types are created at runtime when
they are needed. For example, collection objects and query result objects are not persistent. They are

EMC Documentum Content Server Version 6.7 Fundamentals Guide 51

The Data Model

used at runtime to return the results of DQL statements. When the underlying RDBMS returns rows
for a SELECT statement, Content Server places each returned row in a query result object and then
associates the set of query result objects with a collection object. Neither the collection object nor the
query result objects are stored in the repository. When you close the collection, after all query result
objects are retrieved, both the collection and the query result objects are destroyed.

Object type categories

Object types are sorted into categories to facilitate their management by Content Server. The
categories are:
• Standard object type

Standard object types are types that do not fall into one of the remaining categories.

• Aspect property object type

Aspect property object types are internal types used by Content Server and Documentum
Foundation Classes (DFC) to manage properties defined for aspects. These types are automatically
created and managed internally when properties are added to aspects. They are not visible to
users and user applications.

• Lightweight object type

Lightweight object types are a special type used to minimize the storage footprint for multiple
objects that share the same system information. A lightweight type is a subtype of its shareable
type.

• Shareable object type

Shareable object types are the parent types of lightweight object types. Only dm_sysobject and
its subtypes can be defined as shareable. A single instance of a shareable type object is shared
among many lightweight objects.

Lightweight and shareable object types are additional types added to Content Server to solve
common problems with large content stores. Specifically, these types can increase the rate of object
ingestion into a repository and can reduce the object storage requirements.

An object type category is stored in the type_category property in the dm_type object representing
the object type.

How lightweight subtype instances are stored, page 60, describes how lightweight and shareable
types are associated within the underlying database tables.

Lightweight object types

A lightweight type is a type whose implementation is optimized to reduce the storage space needed
in the database for instances of the type. All lightweight SysObjects types (a SysObject is the parent
type of the most commonly used objects in the Documentum system) are subtypes of a shareable
type. When a lightweight SysObject is created, it references a shareable supertype object. As
additional lightweight SysObjects are created, they can reference the same shareable object. That
shareable object is called the lightweight SysObject parent, and the lightweight SysObject is the child.

52 EMC Documentum Content Server Version 6.7 Fundamentals Guide

The Data Model

Each lightweight SysObject shares the information in its shareable parent object. In that way, instead
of having multiple nearly identical rows in the SysObject tables to support all the instances of the
lightweight type, a single parent object exists for multiple lightweight SysObjects.

You may see a lightweight SysObject referred to as a lightweight object, or sometimes abbreviated as
LWSO. All of these terms are equivalent.

Lightweight objects are useful if you have a large number of properties that are identical for a group
of objects. This redundant information can be shared among the LWSOs from a single copy of the
shared parent object. For example, Enterprise A-Plus Financial Services receives many payment
checks each day. They record the images of the checks and store the payment information in
SysObjects. They will retain this information for several years and then delete it. For their purposes,
all objects created on the same day can use a single ACL, retention information, creation date,
version, and other properties. That information is held by the shared parent object. The LWSO
has information about the specific transaction.

Using lightweight SysObjects can provide the following benefits:
• Lightweight types take up less space in the underlying database tables than a standard subtype.

• Importing lightweight objects into a repository is faster than importing standard SysObjects.

Shareable object types

A shareable type is a type whose instances can share its property values with instances of lightweight
types. It is possible for multiple lightweight objects to share the property values of one shareable
object. The shareable object that is sharing its properties with the lightweight object is called the
parent object, and the lightweight object is called its child.

Documentum system object type names

The names of all object types that are installed with Content Server or by a Documentum client
product start with the letters "dm". There are four such prefixes:
• dm, which represents object types that are commonly used and visible to users and applications.

• dmr, which represents object types that are generally read only.

• dmi, which represents object types that are used internally by Content Server and Documentum
client products.

• dmc, which represents object types installed to support a Documentum client application. They
are typically installed by a script when Content Server is installed or when the client product is
installed.

The use of “dm” as the first two characters in an object type name is reserved for Documentum
products.

The Documentum Content Server System Object Reference has information on the rules for naming
user-defined object types and properties, and a description of the dm_lightweight object type.

EMC Documentum Content Server Version 6.7 Fundamentals Guide 53

The Data Model

Content files and object types

The SysObject object type and all of its subtypes, except cabinets, folders, and their subtypes, have
the ability to accept content. You can associate one or more content files with individual objects
of the type.

The content associated with an object is either primary content or renditions of the primary content.
The format of all primary content for any one object must have the same file format. The renditions
can be in any format. (A rendition of a document is a content file that differs from the source
document content file only in its format.)

If you want to create a document that has primary content in a variety of formats, you must use a
virtual document. Virtual documents are a hierarchical structure of component documents that can
be published as a single document. The component documents can have different file formats.

Chapter 8, Virtual Documents, describes virtual documents and their implementation. Adding
content, page 130, describes adding content to objects. , describes renditions in detail.

Properties
Properties are the fields that comprise an object definition. The values in those fields describe
individual instances of the object type. When an object is created, its properties are set to values that
describe that particular instance of the object type. For example, two properties of the document
object type are title and subject. When you create a document, you provide values for the title and
subject properties that are specific to that document.

Property characteristics

Properties have a number of characteristics that define how they are managed and handled by
Content Server. These characteristics are set when the property is defined and cannot be changed
after the property is created.

Persistent and nonpersistent

The properties that make up a persistent object type definition are persistent. Their values for
individual objects of the type are saved in the repository. These persistent properties and their
values make up the object metadata.

An object type persistent properties include not only the properties defined for the type, but also
those that the type inherits from it supertype. If the type is a lightweight object type, its persistent
properties also include those it shares with its sharing type.

Many object types also have associated computed properties. Computed properties are nonpersistent.
Their values are computed at runtime when a user requests the property value and lost when the
user closes the session.

54 EMC Documentum Content Server Version 6.7 Fundamentals Guide

The Data Model

Persistent properties have domains. A property domain identifies the property datatype and several
other characteristics of the property, such as its default value or label text for it. You can query the
data dictionary to retrieve the characteristics defined by a domain.

Objects and object types, page 51, explains supertypes and inheritance. The Documentum Content
Server System Object Reference, contains information about persistent and computed properties.

Single-valued and repeating

All properties are either single-valued or repeating. A single-valued property stores one value or, if it
stores multiple values, stores them in one comma-separated list. Querying a single-valued property
returns the entire value, whether it is one value or a list of values.

A repeating property stores multiple values in an indexed list. Index positions within the list are
specified in brackets at the end of the property name when referencing a specific value in a repeating
property. An example is: keywords[2] or authors[17]. Full-text queries can also locate specific values
in a repeating property. Special DQL functions exist to allow you to query values in a repeating
property.

Datatype

All properties have a datatype that determines what kind of values can be stored in the property. For
example, a property with an integer datatype can only store whole numbers. A property datatype is
specified when the object type for which the property is defined is created.

The Documentum Content Server System Object Reference, contains complete information about valid
datatypes and the limits and defaults for each datatype.

Read only or read and write

All properties are either read only or read and write. Read-only properties are those that only Content
Server can write. Read and write properties can typically be operated on by users or applications. In
general, the prefix, or lack of a prefix, on a property name indicates whether the property is read
only or can also be written.

User-defined properties are read and write by default. Only superusers can add a read-only property
to an object type.

Qualifiable and nonqualifiable

Persistent properties are either qualifiable or nonqualifiable.

A qualifiable property is represented by a column in the appropriate underlying database table for
the type that contains the property. The majority of properties are qualifiable. By default, a property

EMC Documentum Content Server Version 6.7 Fundamentals Guide 55

The Data Model

is created as a qualifiable property unless its definition explicitly declares it to be a nonqualifiable
property.

A nonqualifiable property is stored in the i_property_bag property of the object. This is a special
property that stores properties and their values in a serialized format. Nonqualifiable properties do
not have their own columns in the underlying database tables that represent the object types for
which they are defined. Consequently, the definition of a nonqualifiable property cannot include a
Check constraint.

Both qualifiable and nonqualifiable properties can be full-text indexed, and both can be referenced
in the selected values list of a query statement. Like qualifiable properties, selected nonqualifiable
properties are returned by a query as a column in a query result object. However, nonqualifiable
properties cannot be referenced in an expression in a qualification (such as in a WHERE clause) in a
query unless the query is a full-text DQL query.

The attr_restriction property in the dm_type object identifies the type properties as either qualifiable
or nonqualifiable.

Local and global

All persistent properties are either global or local. This characteristic is only significant if a repository
participates in object replication or is part of a federation. (A federation is a group of one or more
repositories.)

Object replication creates replica objects, copies of objects that have been replicated between
repositories. When users change a global property in a replica, the change actually affects the source
object property. Content Server automatically refreshes all the replicas of the object containing the
property. When a repository participates in a federation, changes to global properties in users and
groups are propagated to all member repositories if the change is made through the governing
repository using Documentum Administrator.

A local property value can be different in each repository participating in the replication or federation.
If a user changes a local property in a replicated object, the source object is not changed and neither
are the other replicated objects.

Note: It is possible to configure four local properties of the dm_user object to make them behave
as global properties.

The Documentum Content Server Distributed Configuration Guide , in the instructions for creating global
users, contains instructions for configuring four local user properties to behave as global properties.

Property identifiers

Every property has an identifier. These identifiers are used instead of property names to identify
a property when the property is stored in a property bag. The property identifier is unique within
an object type hierarchy. For example, all the properties of dm_sysobject and its subtypes have
identifiers that are unique within the hierarchy that has dm_sysobject as its top-level supertype.

The identifier is an integer value stored in the attr_identifier property of each type dm_type object.
When a property is stored in a property bag, its identifier is stored as a base64-encoded string in
place of the property name.

56 EMC Documentum Content Server Version 6.7 Fundamentals Guide

The Data Model

A property identifier cannot be changed.

The property bag, page 57, describes the property bag. The Documentum Content Server System Object
Reference, contains more information about property identifiers.

The property bag

The property bag is a special property used to store:
• Nonqualifiable properties and their values

• Aspect properties and their values.

You can store both single-valued and repeating property values in a property bag.

Implementation

The property bag is implemented in a repository as the i_property_bag property. The i_property_bag
property is part of the dm_sysobject type definition by default. Consequently, each subtype of
dm_sysobject inherits this property. That means that you can define a subtype of the dm_sysobject
or one of its subtypes that includes a nonqualifiable property without specifically naming the
i_property_bag property in the subtype definition.

The i_property_bag property is not part of the definition of the dm_lightweight type. However, if you
create a lightweight subtype whose definition contains a nonqualifiable property, Content Server
automatically adds i_property_bag to the type definition. It is not necessary to explicitly name
the property in the type definition.

Similarly, if you include a nonqualifiable property in the definition of an object type that has no
supertype or whose supertype is not in the dm_sysobject hierarchy, the i_property_bag property
is added automatically to the type.

The i_property_bag property is also used to store aspect properties if the properties are optimized for
fetching. Consequently, the object type definitions of object instances associated with the aspect must
include the i_property_bag property. In this situation, you must explicitly add the property bag to
the object type before associating its instances with the aspect.

It is also possible to explicitly add the property bag to an object type using an ALTER TYPE statement.

The property bag cannot be removed once it is added to an object type.

The i_property_bag property is a string datatype of 2000 characters. If the names and values of
properties stored in i_property_bag exceed that size, the overflow is stored in a second property,
called r_property_bag. This is a repeating string property of 2000 characters.

Whenever the i_property_bag property is added to an object type definition, the r_property_bag
property is also added.

Aspects, page 78, describes aspects and aspect properties. The Documentum Content Server System
Object Reference has the reference description for the property bag property. The Documentum Content
Server DQL Reference describes how to alter a type to add a property bag.

EMC Documentum Content Server Version 6.7 Fundamentals Guide 57

The Data Model

Repositories
A repository is where persistent objects managed by Content Server are stored. A repository stores
the object metadata and, sometimes, content files. A Documentum system installation can have
multiple repositories. Each repository is uniquely identified by a repository ID, and each object stored
in the repository is identified by a unique object ID.

Repositories contain sets of tables in an underlying relational database installation. Two types
of tables are implemented:
• Object type tables

• Object type index tables

Object type tables

The object type tables store metadata.

Each persistent object type, such as dm_sysobject or dm_group, is represented by two tables in the
set of object type tables. One table stores the values for the single-valued properties for all instances
of the object type. The other table stores the values for repeating properties for all instances of the
object type.

Single-valued property tables

The tables that store the values for single-valued properties are identified by the object type name
followed by _s (for example, dm_sysobject_s and dm_group_s). In the _s tables, each column
represents one property and each row represents one instance of the object type. The column values
in the row represent the single-valued property values for that object.

Repeating property tables

The tables that store values for repeating properties are identified by the object type name followed
by _r (for example, dm_sysobject_r and dm_group_r). In these tables, each column represents one
property.

In the _r tables, there is a separate row for each value in a repeating property. For example, suppose a
subtype called recipe has one repeating property, ingredients. A recipe object that has five values
in the ingredients property will have five rows in the recipe_r table-one row for each ingredient, as
shown in the following table:

Table 1.

r_object_id ingredients

. . . 4 eggs

. . . 1 lb. cream cheese

58 EMC Documentum Content Server Version 6.7 Fundamentals Guide

The Data Model

. . . 2 t vanilla

. . . 1 c sugar

. . . 2 T grated orange peel

The r_object_id value for each row identifies the recipe that contains these five ingredients.

If a type has two or more repeating properties, the number of rows in the _r table for each object is
equal to the number of values in the repeating property that has the most values. The columns for
repeating properties having fewer values are filled in with NULLs.

For example, suppose the recipe type has four repeating properties: authors, ingredients, testers,
and ratings. One particular recipe has one author, four ingredients, and three testers. For this
recipe, the ingredients property has the largest number of values, so this recipe object has four
rows in the recipe_r table:

Table 2.

. . . authors ingredients testers ratings

. . . yvonned 1/4 lb. butter winifredh 4

. . . NULL 1/2 c bittersweet
chocolate

johnp 6

. . . NULL 1 c sugar claricej 7

. . . NULL 2/3 cup light
cream

NULL NULL

The server fills out the columns for repeating properties that contain a smaller number of values
with NULLs.

Even an object with no values assigned to any of its repeating properties has at least one row in its
type _r table. The row contains a NULL value for each of the repeating properties. If the object is
a SysObject or SysObject subtype, it has a minimum of two rows in its type _r table because its
r_version_label property has at least one value-its implicit version label.

The Documentum Content Server DQL Reference contains an expanded explanation of how NULLs are
handled in the Documentum system.

How standard subtype instances are stored

If an object type is a subtype of a standard object type, the tables representing the object type store
only the properties defined for the object type. The values for inherited properties are stored in rows
in the tables of the supertype. In the _s tables, the r_object_id value serves to join the rows from the
subtype _s table to the matching row in the supertype _s table. In the _r tables, the r_object_id
and i_position values are used to join the rows.

For example, suppose you create a subtype of dm_sysobject called proposal_doc, with three
properties: budget_est, division_name, and dept_name, all single-valued properties. The figure
below illustrates the underlying table structure for this type and its instances. The values for the
properties defined for the proposal doc type are stored in the proposal_doc_s table. Those properties
that it inherits from its supertype, dm_sysobject, are stored in rows in the dm_sysobject object type
tables. The rows are associated through the r_object_id column in each table.

EMC Documentum Content Server Version 6.7 Fundamentals Guide 59

The Data Model

Figure 1.

How lightweight subtype instances are stored

A lightweight type is a subtype of a shareable type, so the tables representing the lightweight type
store only the properties defined for the lightweight type. The values for inherited properties are
stored in rows in the tables of the shareable type (the supertype of the lightweight type). In standard
objects, the r_object_id property is used to join the rows from the subtype to the matching rows in the
supertype. However, since many lightweight objects can share the properties from their shareable
parent object, the r_object_id values differ from the parent object r_object_id value. For lightweight
objects, the i_sharing_parent property is used to join the rows. Therefore, many lightweight objects,
each with its own r_object_id, can share the property values of a single shareable object.

When a lightweight object shares a parent object with other lightweight objects, the lightweight object
is unmaterialized. All the unmaterialized lightweight objects share the properties of the shared
parent, so, in effect, the lightweight objects all have identical values for the properties in the shared
parent. This situation can change if some operation needs to change a parent property for one of (or a
subset of) the lightweight objects. Since the parent is shared, the change in a property would affect all
the children. If the change only affects one child, that child object has to have its own copy of the
parent. When a lightweight object has its own private copy of a parent, the object is materialized.
Content Server creates rows in the tables of the shared type for the object, copying the values of the
shared properties into those rows. The lightweight object no longer shares the property values with
the instance of the shared type, but with its own private copy of that shared object.

For example, if you checkout a lightweight object, it is materialized. A copy of the original parent is
created with the same r_object_id value as the child and the lightweight object is updated to point
to the new parent. Since the private parent has the same r_object_id as the lightweight child, a
materialized lightweight object behaves like a standard object. As another example, if you delete
an unmaterialized lightweight object, the shared parent is not deleted (whether or not there are any
remaining lightweight children). If you delete a materialized lightweight object, the lightweight child
and the private parent are deleted.

When, or if, a lightweight object instance is materialized depends on the object type definition.
You can define a lightweight type such that instances are materialized automatically when certain
operations occur, only on request, or never.

60 EMC Documentum Content Server Version 6.7 Fundamentals Guide

The Data Model

The following is an example of how lightweight objects are stored and how materialization changes
the underlying database records. Note that this example only uses the _s tables to illustrate the
implementation. The implementation is similar for _r tables.

Suppose the following shareable and lightweight object types exist in a repository:
• customer_record, with a SysObject supertype and the following properties:

cust_name string(32),
cust_addr string(64),
cust_city string(32),
cust_state string(2)
cust_phone string(24)
cust_email string(100)

• order_record, with the following properties:
po_number string(24)
parts_ordered string(24)REPEATING
delivery_date DATE
billing_date DATE
date_paid DATE

This type shares with customer_record and is defined for automatic materialization.

Instances of the order record type will share the values of instances of the customer record object
type. By default, the order record instances are unmaterialized. The figure below shows how the
unmaterialized lightweight instances are represented in the database tables.

Figure 2.

The order record instances represented by objID_2 and objID_3 share the property values of
the customer record instance represented by objID_B. Similarly, the order record object instance
represented by objID_5 shares the property values of the customer record object instance represented
by objID_Z. The i_sharing_type property for the parent, or shared, rows in customer_record are set
to reflect the fact that those rows are shared.

There are no order record-specific rows created in customer_record_s for the unmaterialized order
record objects.

Because the order record object type is defined for automatic materialization, certain operations on
an instance will materialize the instance. This does not create a new order record instance, but
instead creates a new row in the customer record table that is specific to the materialized order

EMC Documentum Content Server Version 6.7 Fundamentals Guide 61

The Data Model

record instance. The figure below illustrates how a materialized instance is represented in the
database tables.

Figure 3.

Materializing the order record instances created new rows in the customer_record_s table, one row for
each order record object, and additional rows in each supertype table in the type hierarchy. The object
ID of each customer record object representing a materialized order record object is set to the object ID
of the order record object it represents, to associate the row with the order record object. Additionally,
the i_sharing_type property of the previously shared customer record object is updated. In the order
record objects, the i_sharing_parent property is reset to the object ID of the order record object itself.

The Documentum Content Server System Object Reference contains information about the identifiers
recognized by Content Server.

Location and extent of object type tables

By default, all object types tables are created in the same tablespace with default extent sizes.

On some databases, you can change the defaults when you create the repository. By setting server.ini
parameters before the initialization file is read during repository creation, you can define:
• The tablespaces in which to create the object-type tables

• The size of the extent allotted for system-defined object types

You can define tablespaces for the object type tables based on categories of size or for specific object
types. For example, you can define separate tablespaces for the object types categorized as large and
another space for those categorized as small. (The category designations are based on the number of
objects of the type expected to be included in the repository.) Or, you can define a separate tablespace
for the SysObject type and a different space for the user object type.

Additionally, you can change the size of the extent allotted to categories of object types or to specific
object types.

62 EMC Documentum Content Server Version 6.7 Fundamentals Guide

The Data Model

The Documentum Content Server Installation Guide contains instructions for changing the default
location and extents of object type tables and the locations of the index tables.

Object type index tables

When a repository is created, the system creates a variety of indexes on the object type tables,
including one on the r_object_id property for each _s object type table and one on the r_object_id and
i_position for each _r object type table. The indexes are used for non-full-text DQL queries only, to
enhance performance of property searches. Indexes are represented in the repository by objects of
type dmi_index. The indexes are managed by the RDBMS.

By default, when you create a repository, the system puts the type index tables in the same tablespace
as the object type tables. On certain platforms (Microsoft Windows or UNIX, with Oracle, for
example), you can define an alternative location for the indexes during repository creation. Or, after
the indexes are created, you can move them manually using the MOVE_INDEX administration
method.

You can create additional indexes using the MAKE_INDEX administration method. Using
MAKE_INDEX is recommended instead of creating indexes through the RDBMS server because
Content Server uses the dmi_index table to determine which properties are indexed. The
MAKE_INDEX method allows you to define the location of the new index.

You can remove user-defined indexes using the DROP_INDEX administration method. Dropping
a system-defined index is not recommended.

The administration methods are available through Documentum Administrator, the DQL EXECUTE
statement, or the IDfSession.apply method.

Content storage areas

The content files associated with SysObjects are part of a repository. They are stored in a file system
directory, in a Centera host system, on an external storage device, or in the repository through a
blob store or turbo storage area. All the files are represented in the repository by a content object,
which itself identifies the storage area of the file. Content files in turbo or blob storage are stored
directly in the repository. Content in turbo storage is stored in a property of the content object and
subcontent objects. Content stored in blob storage is stored in a separate database table referenced
by a blob store object.

The Documentum Content Server Administration and Configuration Guide has a complete description
of the storage area options.

Registered tables
In addition to the object type and type index tables, Content Server recognizes registered tables.

EMC Documentum Content Server Version 6.7 Fundamentals Guide 63

The Data Model

Registered tables are RDBMS tables that are not part of the repository but are known to Content
Server. They are created by the DQL REGISTER statement and automatically linked to the System
cabinet in the repository. They are represented in the repository by objects of type dm_registered.

After an RDBMS table is registered with the server, you can use DQL statements to query the
information in the table or to add information to the table.

A number of views are created in a Content Server repository automatically. Some of these views
are for internal use only, but some are available to provide information to users. The views that are
available for viewing by users are defined as registered tables. To obtain a list of these views, you can
run the following DQL query as a user with at least Sysadmin privileges:
SELECT "object_name", "table_name", "r_object_id" FROM "dm_registered"

The Documentum Content Server DQL Reference has information about the REGISTER statement and
querying registered tables.

The data dictionary
The data dictionary is a collection of information about object types and their properties. The
information is stored in internal data types and made visible to users and applications through
the process of publishing the data.

The data dictionary is primarily for the use of client applications. Content Server stores and maintains
the data dictionary information but only uses a small part-the default property values and the
ignore_immutable values. The remainder of the information is for the use of client applications
and users.

Applications can use data dictionary information to enforce business rules or provide assistance for
users. For example, you can define a unique key constraint for an object type and applications can use
that constraint to validate data entered by users. Or, you can define value assistance for a property.
Value assistance returns a list of possible values that an application can then display to users as a list
of choices for a dialog box field. You can also store error messages, help text, and labels for properties
and object types in the data dictionary. All of this information is available to client applications.

Localization support

The data dictionary is the mechanism you can use to localize Content Server. The data dictionary
supports multiple locales. A data dictionary locale represents a specific geographic region or
linguistic group. For example, suppose your company has sites in Germany and England. Using the
multi-locale support, you can store labels for object types and properties in German and English.
Then, applications can query for the user current locale and display the appropriate labels on dialog
boxes.

Documentum provides a default set of data dictionary information for each of the following locales:
• English

• French

• Italian

64 EMC Documentum Content Server Version 6.7 Fundamentals Guide

The Data Model

• Spanish

• German

• Japanese

• Korean

By default, when Content Server is installed, the data dictionary file for one of the locales is installed
also. The procedure determines which of the default locales is most appropriate and installs that
locale. The locale is identified in the dd_locales property of the dm_docbase_config object.

The data dictionary support for multiple locales lets you store a variety of text strings in the languages
associated with the installed locales. For each locale, you can store labels for object types and
properties, some help text, and error messages.

Modifying the data dictionary

There are two kinds of modifications you can make to the data dictionary. You can:
• Install additional locales from the set of default locales provided with Content Server or install
custom locales

• Modify the information in an installed locale by adding to the information, deleting the
information, or changing the information

Some data dictionary information can be set using a text file that is read into the dictionary. You can
also set data dictionary information when an object type is created or afterwards, using the ALTER
TYPE statement.

The Documentum Content Server Administration and Configuration Guide has information about adding
to or modifying the data dictionary.

Publishing the data dictionary

Data dictionary information is stored in repository objects that are not visible or available to users or
applications. To make the data dictionary information available, it must be published. Publishing the
data dictionary copies the information in the internal objects into three kinds of visible objects:
• dd type info objects

A dd type info object contains the information specific to the object type in a specific locale.

• dd attr info objects

A dd attr info object contains information specific to the property in a specific locale.

• dd common info objects

A dd common info object contains the information that applies to both the property and type level
across all locales for a given object type or property.

For example, if a site has German and English locales installed, there will be two dd type info objects
for each object type-one for the German locale and one for the English locale. Similarly, there will be
two dd attr info objects for each property-one for the German locale and one for the English locale.

EMC Documentum Content Server Version 6.7 Fundamentals Guide 65

The Data Model

However, there will be only one dd common info object for each object type and property because
that object stores the information that is common across all locales.

Applications query the dd common info, dd type info, and dd attr info objects to retrieve and use
data dictionary information. The Documentum Content Server Administration and Configuration Guide
has information about publishing the data dictionary.

Retrieving data dictionary information

You can retrieve data dictionary information using DQL queries or a DFC method.

Using DQL lets you obtain multiple data dictionary values in one query. However, the queries are
run against the current dmi_dd_type_info, dmi_dd_attr_info, and dmi_dd_common_info objects.
Consequently, a DQL query may not return the most current data dictionary information if there
are unpublished changes in the information.

Neither DQL or DFC queries return data dictionary information about new object types or added
properties until that information is published, through an explicit publishDataDictionary method (in
the IDfSession interface) or through the scheduled execution of the Data Dictionary Publisher job.

Using DQL

To retrieve data dictionary information using DQL, use a query against the object types that contain
the published information. These types are dd common info, dd type info, and dd attr info. For
example, the following query returns the labels for dm_document properties in the English locale:
SELECT "label_text" FROM "dmi_dd_attr_info"
WHERE "type_name"='dm_document' AND "nls_key"='en'

If you want to retrieve information for the locale that is the best match for the current client session
locale, use the DM_SESSION_DD_LOCALE keyword in the query. For example:
SELECT "label_text" FROM "dmi_dd_attr_info"
WHERE "type_name"='dm_document' AND "nls_key"=DM_SESSION_DD_LOCALE

To ensure the query returns current data dictionary information, examine the resync_needed
property. If that property is TRUE, the information is not current and you can republish before
executing the query.

The Documentum Content Server DQL Reference provides a full description of the
DM_SESSION_DD_LOCALE keyword.

Using the DFC

In the DFC, data dictionary information is accessed through the IDfSession.getTypeDescription
method. The method returns an IDfTypedObject object that contains the data dictionary information
about an object type or a property.

The associated Javadocs contain information about using the IDfSession.getTypeDescription method.

66 EMC Documentum Content Server Version 6.7 Fundamentals Guide

The Data Model

Data dictionary contents
This section describes the kinds of information the data dictionary can contain.

Constraints

A constraint is a restriction applied to one or more property values for an instance of an object type.
Content Server does not enforce constraints. The client application must enforce the constraint, using
the constraint data dictionary definition. You can provide an error message as part of the constraint
definition for the client application to display or log when the constraint is violated.

You can define a Check constraint in the data dictionary. Check constraints are most often used to
provide data validation. You provide an expression or routine in the constraint definition that the
client application can run to validate a given property value.

You can define a check constraint at either the object type or property level. If the constraint
expression or routine references multiple properties, you must define the constraint at the type level.
If it references a single property, you can define the constraint at either the property or type level.

You can define check constraints that apply only when objects of the type are in a particular lifecycle
state.

Lifecycle states and default lifecycles for object types

You can define data dictionary information that applies to objects only when the objects are in a
particular lifecycle state. As a document progresses through its lifecycle, the business requirements
for the document are likely to change. For example, different version labels may be required at
different states in the cycle. To control version labels, you can define value assistance to provide users
with a list of valid version labels at each state of a document lifecycle. Or, you can define check
constraints for each state, to ensure that users have entered the correct version label.

You can identify a default lifecycle for an object type and store that information in the data dictionary.
If an object type has a default lifecycle, when a user creates an object of that type, the user can use
the keyword "default" to identify the lifecycle when attaching the object to the lifecycle. There is no
need to know the lifecycle object ID or name.

Note: Defining a default lifecycle for an object type does not mean that the default is attached to all
instances of the type automatically. Users or applications must explicitly attach the default. Defining
a default lifecycle for an object type provides an easy way for users to identify the default lifecycle for
any particular type and a way to enforce business rules concerning the appropriate lifecycle for any
particular object type. Also, it allows you to write an application that will not require revision if the
default changes for an object type.

Defining a default lifecycle for an object type is performed using the ALTER TYPE statement.

The lifecycle defined as the default for an object type must be a lifecycle for which the type is defined
as valid. Valid types for a lifecycle are defined by two properties in the dm_policy object that defines

EMC Documentum Content Server Version 6.7 Fundamentals Guide 67

The Data Model

the lifecycle in the repository. The properties are included_type and include_subtypes. A type is
valid for a lifecycle if:
• The type is named in included_type, or

• The included_type property references one of the type supertypes and include_subtypes is TRUE

Component specifications

Components are user-written routines. Component specifications designate a component as a valid
routine to execute against instances of an object type. Components are represented in the repository
by dm_qual_comp objects. They are identified in the data dictionary by their classifiers and the
object ID of their associated qual comp objects.

A classifier is constructed of the qual comp class_name property and a acronym that represents the
component build technology. For example, given a component whose class_name is checkin and
whose build technology is Active X, its classifier is checkin.ACX.

You can specify only one component of each class for an object type.

Default values for properties

Content Server assigns the property a default property value when new objects of the type are
created, unless the user explicitly sets the property value.

Value assistance

Value assistance provides a list of valid values for a property. A value assistance specification defines
a literal list, a query, or a routine to list possible values for a property. Value assistance is typically
used to provide a list of values for a property associated with a field in a dialog box.

Mapping information

Mapping information consists of a list of values that are mapped to another list of values. Mapping is
generally used for repeating integer properties, to define understandable text for each integer value.
Client applications can then display the text to users instead of the integer values.

For example, suppose an application includes a field that allows users to choose between four
resort sites: Malibu, French Riviera, Cancun, and Florida Keys. In the repository, these sites may
be identified by integers-Malibu=1, French Riviera=2, Cancun=3, and Florida Keys=4. Rather than
display 1, 2, 3, and 4 to users, you can define mapping information in the data dictionary so that

68 EMC Documentum Content Server Version 6.7 Fundamentals Guide

The Data Model

users see the text names of the resort areas, and their choices are mapped to the integer values for
use the by application.

EMC Documentum Content Server Version 6.7 Fundamentals Guide 69

The Data Model

70 EMC Documentum Content Server Version 6.7 Fundamentals Guide

Chapter 5
Object Type and Instance
Manipulations and Customizations

This chapter includes the following topics:

• Object type manipulations, page 71

• Object instance manipulations, page 72

• Changing the object type of an object, page 74

• Business object framework, page 75

Object type manipulations
The Documentum object model is extensible. This extensibility provides users with the customized
object types and properties needed to meet the particular requirements of their jobs. Content Server
allows you to create new object types, alter some existing types, and drop custom types.

Creating new object types

You must have Create Type, Superuser, or Sysadmin privileges to create a new object type. With the
appropriate user privileges, you can create a new type that is unrelated to any existing type in the
repository, or you can create a subtype of any existing type that allows subtyping.

New object types are created using the CREATE TYPE statement. TheDocumentum Content Server DQL
Reference has information about CREATE TYPE and the object types that are supported supertypes.

Altering object types

An object type definition includes its structure (the properties defined for the type) and several
default values, such as the default storage area for content associated with objects of the type or
the default ACL associated with the object type.

For system-defined object types, you cannot change the structure. You can only change the default
values of some properties. If the object type is a custom type, you can change the structure and the

EMC Documentum Content Server Version 6.7 Fundamentals Guide 71

Object Type and Instance Manipulations and Customizations

default values. You can add properties, drop properties, or change the length definition of character
string properties in custom object types.

Default aspects can be added to both system-defined object types and custom object types. An aspect
is a code module associated with object instances. If you add a default aspect to an object type, that
aspect is associated with each new instance of the type or its subtypes.

Object types are altered using the ALTER TYPE statement. You must be either the type owner or
a superuser to alter a type.

The changes apply to the object type, the subtypes of the type, and all objects of the type and its
subtypes.

Aspects, page 78, describes aspects and default aspects. TheDocumentum Content Server DQL Reference
has information about ALTER TYPE and the possible alterations that can be made to object types.

Dropping object types

Dropping an object type removes its definition from the repository. It also removes any data
dictionary objects for the type. Only user-defined types can be dropped from a repository. To drop a
type, you must be the type owner or a superuser.

Content Server imposes the following restrictions on dropping types:
• No objects of the type can exist in the repository.

• The type cannot have any subtypes.

To drop a type, use the DROP TYPE statement. The Documentum Content Server DQL Reference has
information about the DROP TYPE statement.

Object instance manipulations
Content Server allows users and applications to create, modify, and destroy object instances, provided
the user or application has the appropriate privileges or permissions. Objects can be created,
manipulated, or destroyed using DFC methods or DQL statements.

Object creation

The ability to create objects is controlled by user privilege levels. Anyone can create documents and
folders. To create a cabinet, a user must have the Create Cabinet privilege. To create users, the user
must have the Sysadmin (System Administrator) privilege or the Superuser privilege. To create a
group, a user must have Create Group, Sysadmin, or Superuser privileges. User privilege levels and
object-level permissions are described in User privileges, page 90. The Documentum Content Server
Administration and Configuration Guide contains a description of how to assign privileges.

In the DFC, the interface for each class of objects has a method that allows you to instantiate a new
instance of the object.

72 EMC Documentum Content Server Version 6.7 Fundamentals Guide

Object Type and Instance Manipulations and Customizations

In DQL, you use the CREATE OBJECT method to create a new instance of an object. The Documentum
Content Server DQL Reference contains information about DQL and the reference information for the
DQL statements, including CREATE OBJECT.

Object modification

There are a variety of changes that users and applications can make to existing objects. The most
common changes are:
• changing property values

• adding, modifying, or removing content

• changing the object access permissions

• associating the object with a workflow or lifecycle

In the DFC, the methods that change property values are part of the interface that handles the
particular object type. For example, to set the subject property of a document, you use a method in
the IDfSysObject interface.

In the DFC, methods are part of the interface for individual classes. Each interface has methods that
are defined for the class plus the methods inherited from its superclass. The methods associated with
a class can be applied to objects of the class. For information about the DFC and its classes and
interfaces, refer to the Documentum Foundation Classes Development Guide or the associated Javadocs.

The Document Query Language (DQL) is a superset of SQL. It allows you to query the repository
tables and manipulate the objects in the repository. DQL has several statements that allow you to
create objects. There are also DQL statements you can use to update objects by changing property
values or adding content.

Creating or updating an object using DQL instead of the DFC is generally faster because DQL uses
one statement to create or modify and then save the object. Using DFC methods, you must issue
several methods-one to create or fetch the object, several to set its properties, and a method to save it.

Object destruction

Destroying an object removes it from the repository.

You must either be the owner of an object or you must have Delete permission on the object to destroy
it. If the object is a cabinet, you must also have the Create Cabinet privilege.

Any SysObject or subtype must meet the following conditions before you can destroy it:
• The object cannot be locked.

• The object cannot be part of a frozen virtual document or snapshot.

• If the object is a cabinet, it must be empty.

• If the object is stored with a specified retention period, the retention period must have expired.

Destroying an object removes the object from the repository and also removes any relation objects
that reference the object. (Relation objects are objects that define a relationship between two objects.)

EMC Documentum Content Server Version 6.7 Fundamentals Guide 73

Object Type and Instance Manipulations and Customizations

Only the explicit version is removed. Destroying an object does not remove other versions of the
object. To remove multiple versions of an object, use a prune method. Removing versions, page 119,
describes how the prune method behaves. The Documentum Content Server System Object Reference
contains information about relationships.

By default, destroying an object does not remove the object content file or content object that
associated the content with the destroyed object. If the content was not shared with another
document, the content file and content object are orphaned. To remove orphaned content files
and orphaned content objects, run the dmclean and dmfilescan utilities as jobs, or manually. The
Documentum Content Server Administration and Configuration Guide contains information about the
dmclean and dmfilescan jobs and how to execute the utilities manually.

However, if the content file is stored in a storage area with digital shredding enabled and the content
is not shared with another object, destroying the object also removes the content object from the
repository and shreds the content file.

When the object you destroy is the original version, Content Server does not actually remove the
object from the repository. Instead, it sets the object i_is_deleted property to TRUE and removes all
associated objects, such as relation objects, from the repository. The server also removes the object
from all cabinets or folders and places it in the Temp cabinet. If the object is carrying the symbolic
label CURRENT, it moves that label to the version in the tree that has the highest r_modify_date
property value. This is the version that has been modified most recently.

Note: If the object you want to destroy is a group, you can also use the DQL DROP GROUP statement.

Changing the object type of an object
The Documentum system gives you the ability to change the object type of an object, with some
constraints. This feature is useful in repositories that have a lot of user-defined types and subtypes.
For example, suppose your repository contains two user-defined document subtypes: working and
published. The published type is a subtype of the working type with several additional properties.
As a document moves through the writing, editing, and review cycle, it is a working document.
However, as soon as it is published, you want to change its type to published. Content Server
supports a type change of this kind. To make the change, you use the DQL CHANGE...OBJECT[S]
statement. The Documentum Content Server DQL Reference describes the syntax and use of the
CHANGE OBJECT statement.

The change is subject to the following restrictions:
• The new type must have the same type identifier as the current type.

A type identifier is a two-digit number that appears as the first two digits of an object ID. For
example, the type identifier for all documents and document subtypes is 09. Consequently, the
object ID for every document begins with 09.

• The new type must be either a subtype or supertype of the current type.

This means that type changes cannot be lateral changes in the object hierarchy. For example, if
two object types, A and B, are both direct subtypes of mybasetype, you cannot change an object of
type A directly to type B.

• The object that you want to change cannot be immutable (unchangeable).

Changeable versions, page 121, describes immutability and which objects are changeable.

74 EMC Documentum Content Server Version 6.7 Fundamentals Guide

Object Type and Instance Manipulations and Customizations

The following figure shows an example of a type hierarchy. In this example, you can change
subtype_A to either baseSubtype1 or mybasetype. Similarly, you can change baseSubtype1 to either
subtype_A or mybasetype, or mybasetype to either baseSubtype1 or baseSubtype2. However, you
cannot change baseSubtype1 to baseSubtype2 or Subtype_B to Subtype_C because these types are
peers on the hierarchy. Lateral changes are not allowed. Only vertical changes within the hierarchy
are allowed.

Figure 4.

Business object framework
The Business Object Framework (BOF) is a structured environment for developing content
applications. The BOF is a feature of DFC that allows you to write code modules to customize or add
behaviors in DFC. The customizations may be applied at the service, object type, or object level.

Using the business object framework to create customized modules provides the following benefits:
• The customizations are independent of the client applications, removing the need to code the
customization into the client applications.

• The customizations can be used to extend core Content Server and DFC functionality.

• The customizations execute well in an application server environment.

To allow you to easily test modules in BOF development mode, DFC and Content Server support a
development registry. This is a file that lists implementation classes to use during development. It
loads the classes from the local classpath rather than being downloaded from a repository. For details
about using this mode, refer to the Documentum Foundation Classes Development Guide.

The BOF module

A BOF module is unit of executable business logic and its supporting material, such as third-party
software or documentation. DFC supports four types of modules:
• Service-based modules (SBOs)

• Type-based modules (TBOs)

• Aspects

• Simple modules

EMC Documentum Content Server Version 6.7 Fundamentals Guide 75

Object Type and Instance Manipulations and Customizations

An SBO provides functionality that is not specific to a particular object type or repository. For
example, you might write an SBO that customizes the inbox.

A TBO provides functionality that is specific to an object type. For example, a TBO might be used to
validate the title, subject, and keywords properties of a custom document subtype.

An aspect provides functionality that is applicable to specific objects. For example, you can use an
aspect to set the value of a one property based on the value of another property.

A simple module is similar to an SBO, but provides functionality that is specific to a repository. For
example, a simple module would be used if you wanted to customize a behavior that is different
across repository versions.

A BOF module is comprised of the Java archive (JAR) files that contain the implementation classes
and the interface classes for the behavior the module implements, and any interface classes on which
the module depends. The module may also include Java libraries and documentation.

Module packaging and deployment

After you have created the files that comprise a module, you use Documentum Composer to package
the module into a Documentum archive (DAR) file and install the DAR file to the appropriate
repositories.

SBOs are installed in the repository that is the global registry. Simple modules, TBOs, and aspects
are installed in each repository that contains the object type or objects whose behavior you want
to modify.

Installing a BOF module creates a number of repository objects. The top-level object is a dmc_module
object. Module objects are subtypes of dm_folder. They serve as a container for the BOF module. The
properties of a module object provide information about the BOF module it represents. For example,
they identify the module type (SBO, TBO, aspect, or simple), its implementation class, the interfaces it
implements, and any modules on which the module depends.

The module folder object is placed in the repository in /System/Modules, under the appropriate
subfolder. For example, if the module represents an TBO and its name is MyTBO, it is found in
/System/Modules/TBO/MyTBO.

Each JAR file in the module is represented by a dmc_jar object. A jar object has properties that
identify the Java version level required by the classes in the module and whether the JAR file contains
implementation or interface classes, or both.

The jar objects representing the module implementation and interface classes are linked directly to
the dmc_module folder. The jar objects representing the JAR files for supporting software are linked
to folders represented by dmc_java_library objects. The java library objects are then linked to the
top-level module folder. The following figure illustrates these relationships.

76 EMC Documentum Content Server Version 6.7 Fundamentals Guide

Object Type and Instance Manipulations and Customizations

Figure 5.

The properties of a Java library object allow you to specify whether you want to sandbox the libraries
linked to that folder. Sandboxing refers to loading the library into memory in a manner that makes it
inaccessible to any application other than the application that loaded it. DFC achieves sandboxing by
using a standard BOF class loader and separate class loaders for each module. The class loaders try to
load classes first, before delegating to the usual hierarchy of Java class loaders.

In addition to installing the modules in a repository, you must also install the JAR file for a module
interface classes on each client machine running DFC, and the file must be specified in the client
CLASSPATH environment variable.

BOF modules are delivered dynamically to client applications when the module is needed. The
delivery mechanism relies on local caching of modules, on client machines. DFC does not load TBOs,
aspects, or simple modules into the cache until an application tries to use them. After a module is
loaded, DFC checks for updates to the modules in the local cache whenever an application tries to
use a module or after the interval specified by the dfc.bof.cache.currency_check_interval property in
the dfc.properties file. The default interval value is 30 seconds. If a module has changed, only the
changed parts are updated in the cache.

The location of the local cache is specified in the dfc.properties file, in the dfc.data.cache_dir property.
The default value is the cache subdirectory of the directory specified in the dfc.data.dir property. All
applications that use a particular DFC installation share the cache.

TheDocumentum Foundation Classes Development Guide has instructions for how to create BOF modules
of the various types and how to set up and enable the BOF development mode. The Documentum
Composer documentation has instructions for packaging and deploying modules and information
about deploying the interface classes to a client machine.

Service-based objects

A service-based object (SBO) is a module that implements a service for multiple object types. For
example, if you want to implement a service that automatically handles property validation for a

EMC Documentum Content Server Version 6.7 Fundamentals Guide 77

Object Type and Instance Manipulations and Customizations

variety of document subtypes, you would use an SBO. You can also use SBOs to implement utility
functions to be called by TBOs or to retrieve items from external sources, for example, email messages.

An SBO associates an interface with an implementation class. SBOs are stored in the global registry,
in a folder under /System/Modules/SBO. The name of the folder is the name of the SBO. The name of
the SBO is typically the name of the interface.

Type-based objects

A type-based object (TBO) associates a custom object type that extends a Documentum system object
type with an implementation class that extends the appropriate DFC class. For example, suppose you
want to add some validation behavior to a specific document subtype. You would create a TBO for
that subtype with an implementation class that extends IDfDocument, adding the validation behavior.

Because TBOs are specific to an object type, they are stored in each repository that contains the
specified object type. They are stored in a folder under the /System/Modules/TBO. The folder name is
the name of the TBO, which is typically the name of the object type for which it was created.

Aspects

An aspect is a BOF module that customizes behavior or records metadata or both for an instance of
an object type.

You can attach an aspect to any object of type dm_sysobject or its subtypes. You can also attach an
aspect to custom-type objects if the type has no supertype and you have issued an ALTER TYPE
statement to modify the type to allow aspects.

An object can have multiple aspects attached, but can not have multiple instances of one aspect
attached. That is, given object X and aspects a1, a2, and a3, you can attach a1, a2, and a3 to object X,
but you cannot attach any of the aspects to object X more than once.

To attach instance-specific metadata to an object, you can define properties for an aspect.

The Documentum Content Server DQL Reference describes the syntax and use of the ALTER TYPE
statement.

Note: Replication of objects with aspects is not supported.

Aspect properties

After you create an aspect, you can define properties for the aspect using Documentum Composer or
the ALTER ASPECT statement. Properties of an aspect can be dropped or modified after they are
added. Changes to an aspect that add, drop, or modify a property affect objects to which the aspect
is currently attached.

Note: You cannot define properties for aspects whose names contain a dot (.). For example, if the
aspect name is "com.mycompany.policy", you can not define properties for that aspect.

78 EMC Documentum Content Server Version 6.7 Fundamentals Guide

Object Type and Instance Manipulations and Customizations

Aspect properties are not fulltext-indexed by default. If you want to include the values in the index,
you must use explicitly identify which properties you want indexed. You can use Documentum
Composer or ALTER ASPECT to do this. The Documentum Content Server DQL Reference describes the
syntax and use of the ALTER ASPECT statement.

Implementation of aspect properties

Aspect properties are stored in internal object types. When you define properties for an aspect,
Content Server creates an internal object type that records the names and definitions of those
properties. The name of the internal type is derived from the type object ID and is in the format:
dmi_type_id. Content Server creates and manages these internal object types. The implementation
of these types ensures that the properties they represent appear to client applications as standard
properties of the object type to which the aspect is attached.

At the time you add properties to an aspect, you can choose to optimize performance for fetching
or querying those properties by including the OPTIMIZEFETCH keyword in the ALTER ASPECT
statement. That keyword directs Content Server to store all the aspect properties and their values in
the property bag of any object to which the aspect is attached, if the object has a property bag.

Default aspects

Default aspects are aspects that are defined for a particular object type using the ALTER TYPE
statement. If an object type has a default aspect, each time a user creates an instance of the object type
or a subtype of the type, the aspects are attached to that instance.

An object type may have multiple default aspects. An object type inherits all the default aspects
defined for its supertypes, and may also have one or more default aspects defined directly for itself.
All of a type default aspects are applied to any instances of the type.

When you add a default aspect to a type, the newly added aspect is only associated with new
instances of the type or subtype created after the addition. Existing instances of the type or its
subtypes are not affected.

If you remove a default aspect from an object type, existing instances of the type or its subtypes are
not affected. The aspect remains attached to the existing instances.

The default_aspects property in an object type dmi_type_info object records those default aspects
defined directly for the object type. At runtime, when a type is referenced by a client application,
DFC stores the type inherited and directly defined default aspects in memory. The in-memory cache
is refreshed whenever the type definition in memory is refreshed.

Simple modules

A simple module customizes or adds a behavior that is specific to a repository version. For example,
you may want to customize a workflow or lifecycle behavior that is different for different repository
versions. A simple module is similar to an SBO, but does not implement the IDfService interface.
Instead, it implements the IDfModule interface.

EMC Documentum Content Server Version 6.7 Fundamentals Guide 79

Object Type and Instance Manipulations and Customizations

Simple modules associate an interface with an implementation class. They are stored in each
repository to which they apply, and are stored in /System/Modules. The folder name is the name
of the module.

80 EMC Documentum Content Server Version 6.7 Fundamentals Guide

Chapter 6
Security Services

This chapter includes the following topics:
• Overview, page 81

• Repository security, page 84

• Users and groups, page 84

• User authentication, page 87

• Password encryption, page 88

• Application-level control of SysObjects, page 89

• User privileges, page 90

• Object-level permissions, page 91

• Table permits, page 93

• Folder security, page 94

• ACLs, page 94

• Auditing and tracing, page 96

• Signature requirement support, page 97

• Privileged DFC, page 104

• Encrypted file store storage areas, page 106

• Digital shredding, page 107

Overview
The security features supported by Content Server maintain system security and the integrity of the
repository. They also provide accountability for user actions. Content Server supports:
• Standard security features

• Trusted Content Severvices security features

EMC Documentum Content Server Version 6.7 Fundamentals Guide 81

Security Services

Standard security features

A Content Server installation supports numerous standard security features, as listed in the following
table.

Table 3.

Feature Description

User authentication User authentication is the verification that the user is a valid
repository user. User authentication occurs automatically, regardless
of whether repository security is active. User authentication, page
87, describes user authentication in more detail.

Password encryption Password encryption protects passwords stored in a file. Content
Server automatically encrypts the passwords it uses to connect to
third-party products, such as an LDAP directory server or the
RDBMS, and the passwords used by internal jobs to connect to
repositories. Content Server also supports encryption of other
passwords through methods and a utility. Password encryption,
page 88, provides more information about password encryption.

Application-level control of
SysObjects

Application-level control of SysObjects is an optional feature
that you can use in client applications to ensure that only
approved applications can handle particular documents or
objects. Application-level control of SysObjects, page 89, describes
application level control of objects in more detail.

User privileges User privileges define what special functions, if any, a user can
perform in a repository. For example, a user with Create Cabinet
user privileges can create cabinets in the repository. User privileges,
page 90, contains information about user privileges.

Object-level permissions Object-level permissions define which users and groups can access a
SysObject and which level of access those users have. Object-level
permissions, page 91, contains information about object-level
permissions.

Table permits Table permits are a set of permits applied only to registered tables,
RDBMS tables that have been registered with Content Server. Table
permits, page 93, describes table permits.

Dynamic groups Dynamic groups are groups whose membership can be controlled
at runtime.

Access Control Lists (ACLs) Object-level permissions are assigned using ACLs. Every SysObject
in the repository has an ACL. The entries in the ACL define the
access to the object. ACLs, page 94, describes ACLs.

Folder security Folder security is an adjunct to repository security. Folder security,
page 94, describes folder security.

Auditing and tracing
facilities

Auditing and tracing are optional features that you can use to
monitor the activity in your repository. Auditing and tracing, page
96, provides an overview of the auditing and tracing facilities.

82 EMC Documentum Content Server Version 6.7 Fundamentals Guide

Security Services

Feature Description

Support for simple electronic
signoffs and digital
signatures

Content Server supports three options for electronic
signatures. Support for simple signoffs, which use the
IDfPersistentObject.signoff method, and for digital signatures,
which is implemented using third-party software in a client
application, are provided as standard features of Content Server.
Support for the third option, using the IDfSysObject.addESignature
method, is only available with a Trusted Content Services license,
and is not available on the Linux platform. Signature requirement
support, page 97, discusses all three options supporting signature
requirements.

Secure Socket Layer (SSL)
communications between
Content Server and the client
library (DMCL) on client
hosts

When you install Content Server, the installation procedure creates
two service names for Content Server. One represents a native,
nonsecure port and the other a secure port. You can then configure
the server and clients, through the server config object and dmcl.ini
files, to use the secure port.

Privileged Documentum
Foundation Classes (DFC)

This feature allows DFC to run under a privileged role, which
gives escalated permissions or privileges for a specific operation.
Privileged DFC, page 104, describes privileged DFC in detail.

Users and groups, page 84, contains information about users and groups, including dynamic
groups. The Documentum Content Server Administration and Configuration Guide has more information
about setting the connection mode for servers and configuring clients to request a native or secure
connection.

Trusted Content Services security features

Installing Content Server with a Trusted Content Services license adds additional security options.

The following table lists the security features supported by a Trusted Content Services license.

Table 4.

Feature Description

Encrypted file store storage
areas

Using encrypted file stores provides a way to ensure that content
stored in a file store is not readable by users accessing it from the
operating system. Encryption can be used on content in any format
except rich media stored in a file store storage area. The storage
area can be a standalone storage area or it can be a component of
a distributed store. Encrypted file store storage areas, page 106,
describes encrypted storage areas in detail.

Digital shredding of content
files

Digital shredding provides a final, complete way of removing
content from a storage area by ensuring that deleted content files
can not be recovered by any means. Digital shredding, page 107,
provides a description of this feature.

EMC Documentum Content Server Version 6.7 Fundamentals Guide 83

Security Services

Feature Description

Electronic signature
support using the
IDfSysObject.addESignature
method

The addESignature method is used to implement an electronic
signature requirement through Content Server. The method creates
a formal signature page and adds that page as primary content
(or a rendition) to the signed document. The signature operation
is audited, and each time a new signature is added, the previous
signature is verified first. Signature requirement support, page 97,
describes how electronic signatures are supported by addESignature
work.

Note: Electronic signatures are not supported on the Linux platform.

Ability to add, modify, and
delete the additional types
of entries in an ACL

The types of entries that you can manipulate in an ACL when you
have a TCS license are:
• AccessRestriction and ExtendedRestriction

• RequiredGroup and RequiredGroupSet

• ApplicationPermit and Application Restriction

These types of entries provide maximum flexibility in configuring
access to objects. For example, if an ACL has a RequiredGroup
entry, any user trying to access an object controlled by that ACL
must be a member of the group specified in the RequiredGroup
entry. ACLs, page 94, provides more information about the permit
types that you can define with a Trusted Content Services license.

Repository security
The repository security setting controls whether object-level permissions, table permits, and folder
security are enforced. The setting is recorded in the repository in the security_mode property in the
docbase config object. The property is set to ACL, which turns on enforcement when a repository is
created. Unless you have explicitly turned security off by setting security_mode to none, object-level
permissions and table permits are always enforced.

Users and groups
Users and groups are the foundation of many of the security features. For example, users must be
active users in a repository, satisfy user authentication and, after they establish repository sessions,
must have appropriate object-level permissions to access documents and other SysObjects in the
repository.

This section provides an overview of how users and groups are implemented.

84 EMC Documentum Content Server Version 6.7 Fundamentals Guide

Security Services

Users

This section introduces repository users.

A repository user is an actual person or a virtual user who is defined as a user in the repository. A
virtual user is a repository user who does not exist as an actual person.

Repository users have two states, active and inactive. An active user can connect to the repository
and work. An inactive user is not allowed to connect to the repository.

Repository implementation of users

Users are represented in the repository as dm_user objects. The user object can represent an actual
individual or a virtual person. The ability to define a virtual user as a repository user is a useful
capability. For example, suppose you want an application to process certain user requests and
want to dedicate an inbox to those requests. You can create a virtual user and register that user to
receive events arising from the requests. The application can then read that user inbox to obtain and
process the requests.

The properties of a user object record information that allows Content Server to manage the user
access to the repository and to communicate with the user when necessary. For example, the
properties define how the user is authenticated when the user requests repository access. They also
record the user state (active or inactive), the user email address (allowing Content Server to send
automated emails when needed), and the user home repository (if any).

The Documentum Content Server System Object Reference describes the properties defined for the
dm_user object type.

Local and global users

In a federated distributed environment, a user is either a local user or a global user. A local user is
managed from the context of the repository in which the user is defined. A global user is a user
defined in all repositories participating in the federation and managed from the federation governing
repository.

The Documentum Content Server Administration and Configuration Guide has more information about
users in general and instructions about creating local users. The Documentum Content Server
Distributed Configuration Guide has information for creating and managing global users.

Groups

Groups are sets of users or groups or a mixture of both. They are used to assign permissions or client
application roles to multiple users. There are several classes of groups in a repository. A group
class is recorded in its group_class property. For example, if group_class is “group,” the group is a
standard group, used to assign permissions to users and other groups.

EMC Documentum Content Server Version 6.7 Fundamentals Guide 85

Security Services

A group, like an individual user, can own objects, including other groups. A member of a group
that owns an object or group can manipulate the object just as an individual owner. The group
member can modify or delete the object.

Additionally, a group can be a dynamic group. Membership in a dynamic group is determined at
runtime. Dynamic groups provide a layer of security by allowing you to control dynamically who
Content Server treats as a member of a group.

There are several types of groups, as listed below.
• Standard groups:

A standard group consists of a set of users. The users can be individual users or other groups or
both. A standard group is used to assign object-level permissions to all members of the group.
For example, you might set up a group called engr and assign Version permission to the engr
group in an ACL applied to all engineering documents. All members of the engr group then have
Version permission on the engineering documents.

Standard groups can be public or private. When a group is created by a user with Sysadmin
or Superuser privileges, the group is public by default. If a user with Create Group privileges
creates the group, it is private by default. You can override these defaults after a group is created
using the ALTER GROUP statement. The Documentum Content Server DQL Reference describes
how to use ALTER GROUP.

• Role groups:

A role group contains a set of users or other groups or both that are assigned a particular role
within a client application domain. A role group is created by setting the group_class property to
role and the group_name property to the role name.

• Module role groups:

A module role group is a role group that is used by an installed BOF module. It represents a role
assigned to a module of code, rather than a particular user or group. Module role groups are used
internally. The group_class value for these groups is module role.

• Privileged groups:

A privileged group is a group whose members are allowed to perform privileged operations
even though the members do not have the privileges as individuals. A privileged group has a
group_class value of privilege group.

• Domain groups:

A domain group represents a particular client application domain. A domain group contains a set
of role groups corresponding to the roles recognized by the client application.

• Dynamic groups:

A dynamic group is a group, of any group class, with a list of potential members. A setting in the
group definition defines whether the potential members are treated as members of the group or
not when a repository session is started. Depending on that setting, an application can issue a
session call to add or remove a user from the group when the session starts.

A nondynamic group cannot have a dynamic group as a member. A dynamic group can include
other dynamic groups as members or nondynamic groups as members. However, if a nondynamic

86 EMC Documentum Content Server Version 6.7 Fundamentals Guide

Security Services

group is a member, the members of the nondynamic group are treated as potential members of
the dynamic group.

• Local and global groups:

In a federated distributed environment, a group is either a local group or a global group. A local
group is managed from the context of the repository in which the group is defined. A global
group is a group defined in all repositories participating in the federation and managed from the
federation governing repository. The Documentum Content Server Administration and Configuration
Guide has instructions about creating local groups. The Documentum Content Server Distributed
Configuration Guide has complete information for creating and managing global groups.

Role and domain groups are used by client applications to implement roles within an application.
The two kinds of groups are used together to achieve role-based functionality. Content Server does
not enforce client application roles.

For example, suppose you write a client application called report_generator that recognizes three
roles: readers (users who read reports), writers (users who write and generate reports), and
administrators (users who administer the application). To support the roles, you create three role
groups, one for each role. The group_class is set to role for these groups and the group names are the
names of the roles: readers, writers, and administrators. Then, create a domain group by creating a
group whose group_class is domain and whose group name is the name of the domain. In this case,
the domain name is report_generator. The three role groups are the members of the report_generator
domain group.

When a user starts the report_generator application, the application examines its associated domain
group and determines the role group to which the user belongs. The application then performs only
the actions allowed for members of that role group. For example, the application customizes the
menus presented to the user depending on the role to which the user is assigned.

Note: Content Server does not enforce client application roles. It is the responsibility of the client
application to determine if there are role groups defined for the application and apply and enforce
any customizations based on those roles.

The Documentum Content Server Administration and Configuration Guide has more information about
groups in general.

User authentication
User authentication is the procedure by which Content Server ensures that a particular user is an
active and valid user in a repository.

Content Server authenticates the user whenever a user or application attempts to open a repository
connection or reestablish a timed-out connection. The server checks that the user is a valid, active
repository user. If not, the connection is not allowed. If the user is a valid, active repository user,
Content Server authenticates the user name and password.

Users are also authenticated when they:
• Assume an existing connection

• Change their password

EMC Documentum Content Server Version 6.7 Fundamentals Guide 87

Security Services

• Perform an operation that requires authentication before proceeding

• Sign-off an object electronically

Content Server supports a variety of mechanisms for user authentication, including authentication
against the operating system, against an LDAP directory server, using a plug-in module, or using a
password stored in the repository.

There are several ways to configure user authentication, depending on your choice of authentication
mechanism. For example, if you are authenticating against the operating system, you can write
and install your own password checking program. If you use an LDAP directory server, you can
configure the directory server to use an external password checker or to use a secure connection
with Content Server. If you use a plug-in module, you can use the module provided with Content
Server or write and install a custom module.

The Documentum system provides one authentication plug-in. The plug-in implements Netegrity
SiteMinder and supports web-based single sign-on.

To protect the repository, you can enable a feature that limits the number of failed authentication
attempts. If the feature is enabled and a user exceeds the limit, the user account is deactivated in
the repository.

The Documentum Content Server Administration and Configuration Guide has more information about
user authentication options and procedures for implementing them, and etting up authentication
failure limits.

Documentum Content Server tracks software usage by recording login times. The Content Server
global registry contains a record of the first and the latest login time for each user of each application
that connects to Content Server. Content Server periodically generates basic reports to indicate
usage. These reports are available to the Content Server administrator. In addition, EMC provides a
complimentary virtual appliance, EMC Asset Management and Planning (AMP), that can produce
more detailed reports about EMC software usage. The Documentum Content Server Administration and
Configuration Guide contains more information about usage tracking reports.

Password encryption
Password encryption is the automatic process used by Content Server to protect certain passwords.

The passwords used by Content Server to connect to third-party products, such as an LDAP directory
server or the RDBMS, as well as those used by many internal jobs to connect to a repository, are
stored in files in the installation. To protect these passwords, Content Server automatically encrypts
them. Decrypting the passwords occurs automatically also. When an encrypted password is passed
as an argument to a method, the DFC decrypts the password before passing the arguments to
Content Server.

Client applications can use password encryption for their own password by using the DFC method
IDfClient.encryptPassword. The method allows you to use encryption in your applications and
scripts. Use encryptPassword to encrypt passwords used to connect to a repository. All the methods
that accept a repository password accept a password encrypted using the encryptPassword method.
The DFC will automatically perform the decryption.

Passwords are encrypted using the Administration Encryption Key (AEK). The AEK is installed
during Content Server installation. After encrypting a password, Content Server also encodes the

88 EMC Documentum Content Server Version 6.7 Fundamentals Guide

Security Services

encrypted string using Base64 before storing the result in the appropriate password file. The final
string is longer than the clear text source password.

The Documentum Content Server Administration and Configuration Guide provides complete information
about administering password encryption. The associated Javadocs contain more information about
encryptPassword.

Application-level control of SysObjects
In some business environments, such as regulated environments, it is essential that some documents
and other SysObjects be manipulated only by approved client applications. Application-level control
of SysObjects is a Content Server feature that allows client applications to assert ownership of
particular objects and, consequently, prohibit users from modifying or manipulating those objects
through other applications.

Application-level control is independent of repository security. Even if repository security is turned
off, client applications can still enforce application-level control of objects. Application-level control,
if implemented, is enforced on all users except superusers. Application-level control is implemented
through application codes.

Each application that requires control over the objects it manipulates has an application code. The
codes are used to identify which application has control of an object and to identify which controlled
objects can be accessed from a particular client.

An application sets an object a_controlling_app property to its application code to identify the object
as belonging to the application. Once set, the property can only be modified by that application or
another that knows the application code.

To identify to the system which objects it can modify, an application sets the dfc.application_code
key in the client config object or the application_code property in the session config object when the
application is started. (Setting the property in the client config object, rather than the session config
object, provides performance benefits, but affects all sessions started through that DFC instance.) The
key and the property are repeating. On start-up, an application can add multiple entries for the key
or set the property to multiple application codes if users are allowed to modify objects controlled by
multiple applications through that particular application.

When a non-superuser accesses an object, Content Server examines the object a_controlling_app
property. If the property has no value, the user access is determined solely by ACL permissions. If the
property has a value, Content Server compares the value to the values in the session application_code
property. If a match is found, the user is allowed to access the object at the level permitted by the
object ACL. If a match is not found, Content Server examines the default_app_permit property
in the docbase config object. The user is granted access to the object at the level defined in that
property (Read permission by default) or at the level defined by the object ACL, whichever is the
more restrictive. Additionally, if a match is not found, the user is never allowed extended permissions
on the object, regardless of the permission provided by the default repository setting or the ACL.

EMC Documentum Content Server Version 6.7 Fundamentals Guide 89

Security Services

User privileges
Content Server supports a set of user privileges that determine what special operations a user can
perform in the repository. There are two types of user privileges: basic and extended. The basic
privileges define the operations that a user can perform on SysObjects in the repository. The extended
privileges define the security-related operations the user can perform.

User privileges are always enforced whether repository security is turned on or not.

Basic user privileges

The following table lists the basic user privileges.

Table 5.

Level Name Description

0 None User has no special privileges.

1 Create Type User can create object types.

2 Create Cabinet User can create cabinets.

4 Create Group User can create groups.

8 Sysadmin User has System Administration privileges.

16 Superuser User has Superuser privileges.

The basic user privileges are additive, not hierarchical. For example, granting Create Group to
a user does not give the user Create Cabinet or Create Type privileges. If you want a user to have
both privileges, you must explicitly give the user both privileges.

Typically, the majority of users in a repository have None as their privilege level. Some users,
depending on their job function, will have one or more of the higher privileges. A few users will
have either Sysadmin or Superuser privileges.

User privileges do not override object-level permissions when repository security is turned on.
However, a superuser always has at least Read permission on any object and can change the
object-level permissions assigned to any object.

Applications and methods that are executed with Content Server as the server always have Superuser
privileges.

Extended user privileges

The following table lists the extended user privileges.

90 EMC Documentum Content Server Version 6.7 Fundamentals Guide

Security Services

Table 6.

Level Name Description

8 Config Audit User can execute the methods to start and stop
auditing.

16 Purge Audit User can remove audit trail entries from the
repository.

32 View Audit User can view audit trail entries.

The extended user privileges are not hierarchical. For example, granting a user Purge Audit privilege
does not confer Config Audit privilege also.

Repository owners, superusers, and users with the View Audit permission can view all audit trail
entries. Other users in a repository can view only those audit trail entries that record information
about objects other than ACLs, groups, and users.

Only repository owners and superusers can grant and revoke extended user privileges, but they can
not grant or revoke these privileges for themselves.

The Documentum Content Server Administration and Configuration Guide contains a complete discussion
and instructions on assigning privileges.

Object-level permissions
Object-level permissions are access permissions assigned to every SysObject (and SysObject subtype)
in the repository. They are defined as entries in ACL objects. The entries in the ACL identify users
and groups and define their object-level permissions to the object with which the ACL is associated.

Each SysObject (or SysObject subtype) object has an associated ACL. For most sysObject subtypes,
the permissions control the access to the object. For dm_folder, however, the permissions are not used
to control access unless folder security is enabled. In such cases, the permissions are used to control
specific sorts of access, such as the ability to link a document to the folder.

ACLs, page 94, describes ACLs in more detail. Folder security, page 94, provides more information
about folder security. The associated Javadocs for the IDfSysObject.link and IDfSysObject.unlink
methods contain a description of privileges necessary to link or unlink an object.

There are two kinds of object-level permissions: base permissions and extended permissions.

Base object-level permissions

The following table lists the base permissions..

Table 7.

Level Permission Description

1 None No access is permitted.

EMC Documentum Content Server Version 6.7 Fundamentals Guide 91

Security Services

Level Permission Description

2 Browse The user can look at property values, but not at
associated content.

3 Read The user can read content, but not update it.

4 Relate The user can attach an annotation to the object.

5 Version The user can version the object, but cannot
overwrite the existing version.

6 Write The user can write and update the object.

Write permission confers the ability to overwrite
the existing version.

7 Delete The user can delete the object.

These permissions are hierarchical. For example, a user with Version permission also has the access
accompanying Read and Browse permissions. Or, a user with Write permission also has the access
accompanying Version permission.

Extended object-level permissions

The following table lists the extended permissions.

Table 8.

Permission Description

Change Location In conjunction with the appropriate base object-level
permissions, allows the user to move an object from one
folder to another.

All users having at least Browse permission on an object
are granted Change Location permission by default for
that object.

Note: Browse permission is not adequate to move an
object.

Change Ownership The user can change the owner of the object.

Change Permission The user can change the basic permissions of the object.

Change State The user can change the document lifecycle state of the
object.

Delete Object The user can delete the object. The delete object
extended permission is not equivalent to the base Delete
permission. Delete Object extended permission does not
grant Browse, Read, Relate, Version, or Write permission.

92 EMC Documentum Content Server Version 6.7 Fundamentals Guide

Security Services

Permission Description

Execute Procedure The user can run the external procedure associated with
the object.

All users having at least Browse permission on an object
are granted Execute Procedure permission by default for
that object.

Change Folder Links Allows a user to link an object to a folder or unlink an
object from a folder.

The permission must be defined in the ACL associated
with the folder.

The extended permissions are not hierarchical. You must assign each explicitly.

Default permissions

Object owners, because they have Delete permission on the objects they own by default, also have
Change Location and Execute Procedure permissions on those objects. By default, superusers have
Read permission and all extended permissions except Delete Object on any object.

Table permits
The table permits control access to the RDBMS tables represented by registered tables in the
repository. Table permits are only enforced when repository security is on. To access an RDBMS table
using DQL, you must have:
• At least Browse access for the dm_registered object representing the RDBMS table

• The appropriate table permit for the operation that you want to perform

Note: Superusers can access all RDBMS tables in the database using a SELECT statement regardless
of whether the table is registered or not.

There are five levels of table permits, described in the following table.

Table 9.

Level Permit Description

0 None No access is permitted

1 Select The user can retrieve data from
the table.

2 Update The user can update existing
data in the table.

EMC Documentum Content Server Version 6.7 Fundamentals Guide 93

Security Services

Level Permit Description

4 Insert The user can insert new data
into the table.

8 Delete The user can delete rows from
the table.

The permits are identified in the dm_registered object that represents the table, in the
owner_table_permit, group_table_permit, and world_table_permit properties.

The permits are not hierarchical. For example, assigning the permit to insert does not confer the
permit to update. To assign more than one permit, you add the integers representing the permits
you want to assign, and set the appropriate property to the total. For example, if you want to assign
both insert and update privileges as the group table permit, set the group_table_permit property to 6,
the sum of the integer values for the update and insert privileges.

Folder security
Folder security is a supplemental level of repository security. When folder security is turned on, for
some operations the server checks and applies permissions defined in the ACL associated with the
folder in which an object is stored or on the primary folder of the object. These checks are in addition
to the standard object-level permission checks associated with the object ACL. In new repositories,
folder security is turned on by default.

Folder security does not prevent users from working with objects in a folder. It provides an extra
layer of security for operations that involve linking or unlinking, such as creating a new object,
moving an object, deleting an object, and copying an object.

Folder security is turned on and off at the repository level, using the folder_security property in the
docbase config object.

The Documentum Content Server Administration and Configuration Guide contains complete information
about folder security, including a list of the extra checks it imposes.

ACLs
An Access Control List (ACL) is the mechanism that Content Server uses to impose object-level
permissions on SysObjects. An ACL has one or more entries that identify a user or group and the
object-level permissions accorded that user or group by the ACL. Another name for an ACL is a
permission set. An ACL is a set of permissions that apply to an object.

Each SysObject has an ACL. The ACL assigned to a SysObject is used to control access to that object.
For folders, the assigned ACL serves additional functions. If folder security is enabled, the ACL
assigned to the folder sets the folder security permissions. If the default ACL for the Content Server is
configured as Folder, then newly created objects in the folder are assigned the folder ACL.

An ACL is represented in the repository as an object of type dm_acl. ACL entries are recorded in
repeating properties in the object. Each ACL is uniquely identified within the repository by its name
and domain. (The domain represents the owner of the ACL.) When an ACL is assigned to an object,
the object acl_name and acl_domain properties are set to the name and domain of the ACL.

94 EMC Documentum Content Server Version 6.7 Fundamentals Guide

Security Services

After an ACL is assigned to an object, the ACL can be changed. You can modify the ACL itself or you
can remove it and assign a different ACL to the object.

ACLs are typically created and managed using Documentum Administrator. However, you can also
create and manage them through DFC or Document Query Language (DQL).

ACL entries

The entries in the ACL determine which users and groups can access the object and the level of access
for each. There are several types of ACL entries:
• AccessPermit and ExtendedPermit

• AccessRestriction and ExtendedRestriction

• RequiredGroup and RequiredGroupSet

• ApplicationPermit and ApplicationRestriction

AccessPermit and ExtendedPermit entries grant the base and extended permissions. Creating,
modifying, or deleting AccessPermit and ExtendedPermit entries is supported by all Content Servers.

The remaining entry types provide extended capabilities for defining access. For example, an
AccessRestriction entry restricts a user or group access to a specified level even if that user or
group is granted a higher level by another entry. You must have installed Content Server with a
Trusted Content Services license to create, modify, or delete any entry other than an AccessPermit or
ExtendedPermit entry.

Note: A Content Server enforces all ACL entries regardless of whether the server was installed with a
Trusted Content Services license or not. The TCS license only affects the ability to create, modify,
or delete entries.

The Documentum Content Server Administration and Configuration Guide contains detailed descriptions
of the type of entries you can place in an ACL and instructions for creating ACLs. Assigning ACLs,
page 138, describes the options for assigning ACLs to objects.

Categories of ACLs

ACLs are either external or internal ACLs:
• External ACLs are created explicitly by users. The name of an external ACL is determined by the
user. External ACLs are managed by users, either the user who creates them or superusers.

• Internal ACLs are created by Content Server. Internal ACLs are created in a variety of situations.
For example, if a user creates a document and grants access to the document to HenryJ, Content
Server assigns an internal ACL to the document. (The internal ACL is derived from the default
ACL with the addition of the permission granted to HenryJ.) The names of internal ACL begin
with dm_. Internal ACLs are managed by Content Server.

The external and internal ACLs are further characterized as public or private ACLs:
• Public ACLs are available for use by any user in the repository. Public ACLs created by the
repository owner are called system ACLs. System ACLs can only be managed by the repository

EMC Documentum Content Server Version 6.7 Fundamentals Guide 95

Security Services

owner. Other public ACLs can be managed by their owners or a user with Sysadmin or Superuser
privileges.

• Private ACLs are created and owned by a user other than the repository owner. However, unlike
public ACLs, private ACLs are available for use only by their owners, and only their owners
or a superuser can manage them.

Template ACLs

A template ACL is an ACL that can be used in many contexts. Template ACLs use aliases in place of
user or group names in the entries. The aliases are resolved when the ACL is assigned to an object. A
template ACL allows you to create one ACL that you can use in a variety of contexts and applications
and ensure that the permissions are given to the appropriate users and groups. Appendix A, Aliases,
provides information about aliases

Auditing and tracing
Auditing and tracing are two security tools that you can use to track operations in the repository.

Auditing

Auditing is the process of recording the occurrence of system and application events in the
repository. Events are operations performed on objects in a repository or something that happens in
an application. System events are events that Content Server recognizes and can audit. Application
events are user-defined events. They are not recognized by Content Server and must be audited by
an application.

Content Server audits a large set of events by default. For example, all successful addESignature
events and failed attempts to execute addESignature events are audited. Similarly, all executions of
methods that register or unregister events for auditing are themselves audited.

You can also audit many other operations. For example, you can audit:
• All occurrences of an event on a particular object or object type

• All occurrences of a particular event, regardless of the object on which it occurs

• All workflow-related events

• All occurrences of a particular workflow event for all workflows started from a given process
definition

• All executions of a particular job

There are several methods in the IDfAuditTrailManager interface that can be used to request auditing.
For example, the registerEventForType method starts auditing a particular event for all objects of a
specified type. Typically, you must identify the event you want to audit and the target of the audit.
The event can be either a system event or an application (user-defined) event. The target can be a
particular object, all objects of a particular object type, or objects that satisfy a particular query.

96 EMC Documentum Content Server Version 6.7 Fundamentals Guide

Security Services

The audit request is stored in the repository in registry objects. Each registry object represents one
audit request.

Issuing an audit request for a system event initiates auditing for the event. If the event is an
application event, the application is responsible for checking the registry objects to determine
whether auditing is requested for the event and, if so, create the audit trail entry.

Users must have Config Audit privileges to issue an audit request.

The records of audited events are stored in the repository as entries in an audit trail. The entries
are objects of dm_audittrail, dm_audittrail_acl, or dm_audittrail_group. Each entry records the
information about one occurrence of an event. The information is specific to the event and can
include information about property values in the audited object.

The Documentum Content Server Administration and Configuration Guide describes auditing, including
a list of those events that are audited by default, how to initiate auditing, and what information is
stored in an audit trail record.

Tracing

Tracing is an feature that logs information about operations that occur in Content Server and DFC.
The information that is logged depends on which tracing functionality is turned on.

Content Server and DFC support multiple tracing facilities. On Content Server, you can turn on
tracing for a variety of server features, such as LDAP operations, content-addressed storage area
operation, and operations on SysObjects. The jobs in the administration tool suite also generate
trace files for their operations.

DFC has a robust tracing facility that allows you to trace method operations and RPC calls. The
facility allows you to configure many options for the generated trace files. For example, you can trace
by user or thread, specify stack depth to be traced, and define the format of the trace file.

The Documentum Content Server DQL Reference has reference information for the SET_OPTIONS
and MODIFY_TRACE administration methods. The Documentum Content Server Administration and
Configuration Guide describes all the jobs in the administration tool suite.

Signature requirement support
Many business processes have signature requirements for one or more steps in a process. Similarly,
some lifecycle states can require a signature before an object can move to the next state. For example,
a budget request can need an approval signature before the money is disbursed. Users can be
required to sign standard operating procedures (SOPs) to indicate that they have read the procedures.
Or, a document can require an approval signature before the document is published on a web site.

Content Server supports signature requirements with three options:
• Electronic signatures, page 98

• Digital signatures, page 103

• Simple sign-offs, page 103

EMC Documentum Content Server Version 6.7 Fundamentals Guide 97

Security Services

Electronic signatures are generated and managed by Content Server. The feature is supported by
two methods: IDfSysObject.addESignature and IDfSysObject.verifyESignature. Use this option if
you require a rigorous signature implementation to meet regulatory requirements. You must have a
Trusted Content Services license to use this option. Electronic signatures are not supported on the
Linux platform.

Digital signatures are electronic signatures in formats such as PDKS #7, XML signature, or
PDF signature. Digital signatures are generated by third-party products called when an
addDigitalSignature method is executed. Use this option if you want to implement strict signature
support in a client application.

Simple sign-offs are the least rigorous way to supply an electronic signature. Simple sign-offs are
implemented using the IDfPersistentObject.signoff method. This method authenticates a user signing
off a document and creates an audit trail entry for the dm_signoff event.

Electronic signatures

An electronic signature is a signature recorded in formal signature page generated by Content
Server and stored as part of the content of the object. Electronic signatures are generated when an
application issues an IDfSysObject.addESignature method.

Electronic signatures are the most rigorous signature requirement that Content Server supports.
The electronic signature feature requires a Trusted Content Server license and is supported on all
platforms.

Overview of Implementation

Electronic signatures are generated by Content Server when an application or user issues an
addESignature method. Signatures generated by addESignature are recorded in a formal signature
page and added to the content of the signed object. The method is audited automatically, and the
resulting audit trail entry is signed by Content Server. The auditing feature cannot be turned off. If
an object requires multiple signatures, before allowing the addition of a signature, Content Server
verifies the preceding signature. Content Server also authenticates the user signing the object.

All the work of generating the signature page and handling the content is performed by Content
Server. The client application is only responsible for recognizing the signature event and issuing the
addESignature method. A typical sequence of operations in an application using the feature is:
1. A signature event occurs and is recognized by the application as a signature event.

A signature event is an event that requires an electronic signature on the object that participated
in the event. For example, a document check-in or lifecycle promotion might be a signature event.

2. In response, the application asks the user to enter a password and, optionally, choose or enter a
justification for the signature.

3. After the user enters a justification, the application can call the createAudit method to create an
audit trail entry for the event.

This step is optional, but auditing the event that triggered the signature is common.

4. The application calls addESignature to generate the electronic signature.

98 EMC Documentum Content Server Version 6.7 Fundamentals Guide

Security Services

After addESignature is called, Content Server performs all the operations required to generate the
signature page, create the audit trail entries, and store the signature page in the repository with the
object. You can add multiple signatures to any particular version of a document. The maximum
number of allowed signatures on a document version is configurable.

Electronic signatures require a template signature page and a method (stored in a dm_method
object) to generate signature pages using the template. The Documentum system provides a default
signature page template and signature generation method that can be used on documents in PDF
format or documents that have a PDF rendition. You can customize the electronic signature support
in a variety of ways. For example, you can customize the default template signature page, create
your own template signature page, or provide a custom signature creation method for use with a
custom template.

The addESignature method

When an application or user issues an IDfSysObject.addESignature method, Content Server performs
the following operations:
1. Authenticates the user and verifies that the user has at least Relate permission on the document

to be signed.

If a user name is passed in the addESignature method arguments, that user must be the same as
the session user issuing the addESignature method.

2. Verifies that the document is not checked out.

A checked out document cannot be signed by addESignature.

3. Verifies that the pre_signature hash argument, if any, in the method, matches a hash of the
content in the repository.

4. If the content has been previously signed, the server:

• Retrieves all the audit trail entries for the previous dm_addesignature events on this content.

• Verifies that the most recent audit trail entry is signed (by Content Server) and that the
signature is valid.

• Verifies that the entries have consecutive signature numbers.

• Verifies that the hash in the audit trail entry matches the hash of the document content.

5. Copies the content to be signed to a temporary directory location and calls the signature creation
method. The signature creation method:

• Generates the signature page using the signature page template and adds the page to the
content.

• Replaces the content in the temporary location with the signed content.

6. If the signature creation method returns successfully, the server replaces the original content in
the repository with the signed copy.

EMC Documentum Content Server Version 6.7 Fundamentals Guide 99

Security Services

If the signature is the first signature applied to that particular version of the document, Content
Server appends the original, unsigned content to the document as a rendition with the page
modifier set to dm_sig_source.

7. Creates the audit trail entry recording the dm_addesignature event.

The entry also includes a hash of the newly signed content.

You can trace the operations of addESignature and the called signature creation method.

The Documentum system provides a default signature page template and a default signature creation
method with Content Server so you can use the electronic signature feature with no additional
configuration. The only requirement for using the default functionality is that documents to be signed
must be in PDF format or have a PDF rendition associated with their first primary content page.

Default signature page template

The default signature page template is a PDF document generated from a Microsoft Word document.
Both the PDF template and the source Microsoft Word document are installed when Content Server
is installed. They are installed in %DM_HOME%\bin ($DM_HOME/bin). The PDF file is named
sigpage.pdf and the Microsoft Word file is named sigpage.doc.

In the repository, the Microsoft Word document that is the source of the PDF template is an object of
type dm_esign_template. It is named Default Signature Page Template and is stored in
Integration/Esignature/Templates

The PDF template document is stored as a rendition of the Microsoft Word document. The page
modifier for the PDF rendition is dm_sig_template.

The default template allows up to six signatures on each version of a document signed using that
template.

Default signature creation method

The default signature creation method is a Docbasic method named esign_pdf.ebs, stored in
%DM_HOME%\bin ($DM_HOME/bin). The method uses the PDF Fusion library to generate
signature pages. The PDF Fusion library and license is installed during Content Server
installation. The Fusion libraries are installed in %DM_HOME%\fusion ($DM_HOME/fusion).
The license is installed in the Microsoft Windows directory on Microsoft Windows hosts and in
$DOCUMENTUM/share/temp on UNIX platforms.

The signature creation method uses the location object named SigManifest to locate the Fusion
library. The location object is created during repository configuration.

The signature creation method checks the number of signatures supported by the template page. If
the maximum number is not exceeded, the method generates a signature page and adds that page to
the content file stored in the temporary location by Content Server. The method does not read the
content from the repository or store the signed content in the repository.

100 EMC Documentum Content Server Version 6.7 Fundamentals Guide

Security Services

Default content handling

If you are using the default signature creation method, the content to be signed must be in PDF
format. The content can be the first primary content page of the document or it can be a rendition of
the first content page.

When the method creates the signature page, it appends or prepends the signature page to the
PDF content. (Whether the signature page is added at the front or back of the content to be signed
is configurable.) After the method completes successfully, Content Server adds the content to the
document:
• If the signature is the first signature on that document version, the server replaces the original
PDF content with the signed content and appends the original PDF content to the document as a
rendition with the page modifier dm_sig_source.

• If the signature is a subsequent addition, the server simply replaces the previously signed PDF
content with the newly signed content.

Audit trail entries

Content Server automatically creates an audit trail entry each time an addESignature method is
successfully executed. The entry records information about the object being signed, including its
name, object ID, version label, and object type. The ID of the session in which it was signed is also
recorded. (This can be used in connection with the information in the dm_connect event for the
session to determine what machine was used when the object was signed.)

Content Server uses the generic string properties in the audit trail entry to record information about
the signature. The following table lists the use of those properties for a dm_addesignature event.

Table 10.

Property Information stored

string_1 Name of the user who signed the object

string_2 The justification for the signature

string_3 The signature number, the name of the method used to generate
the signature, and a hash of the content prior to signing. The hash
value is the value provided in the pre_signatureHash argument of the
addESignature method.

The information is formatted in the following manner:

sig_number/method_name/pre_signature hash argument

EMC Documentum Content Server Version 6.7 Fundamentals Guide 101

Security Services

Property Information stored

string_4 Hash of the primary content page 0. The information also records
the hash algorithm and the format of the content. The information is
formatted in the following manner:

hash_algorithm/format_name/hash

string_5 Hash of the signed content. The information also records the hash
algorithm and the format of the content. The information is formatted
in the following manner:

hash_algorithm/format_name/hash

If the signed content was added to the document as primary content,
then the value in string_5 is the same as the string_4 value.

Customizing signatures

If you are using the default electronic signature functionality, signing content in PDF format, you
can customize the signature page template. You can add information to the signature page, remove
information, or just change its look by changing the arrangement, size, and font of the elements on
the page. You can also change whether the signature creation method adds the signature page at
the front or back of the content to be signed.

If you want to embed a signature in content that is not in PDF format, you must use a custom
signature creation method. You can also create a custom signature page template for use by the
custom signature creation method, although using a template is not required.

The Documentum Content Server Administration and Configuration Guide has complete information
about customizing electronic signatures and tracing the use of electronic signatures.

Signature verification

Electronic signatures added by addEsignature are verified by the verifyESignature method. The
method finds the audit trail entry that records the latest dm_addesignature event for the document
and performs the following checks:
• Calls the IDfAuditTrailManager.verifyAudit method to verify the Content Server signature on
the audit trail entry.

• Checks that the hash values of the source content and signed content stored in the audit trail entry
match those of the source and signed content in the repository.

• Checks that the signatures on the document are consecutively numbered.

Only the most recent signature is verified. If the most recent signature is valid, previous signatures
are guaranteed to be valid.

102 EMC Documentum Content Server Version 6.7 Fundamentals Guide

Security Services

Digital signatures

Digital signatures are electronic signatures, in formats such as PKCS #7, XML Signature, or PDF
Signature, that are generated and managed by client applications. The client application is responsible
for ensuring that users provide the signature and for storing the signature in the repository.
The signature can be stored as primary content or renditions. For example, if the application is
implementing digital signatures based on Microsoft Office XP, the signatures are typically embedded
in the content files and the files are stored in the repository as primary content files for the documents.
If Adobe PDF signatures are used, the signature is also embedded in the content file, but the file is
typically stored as a rendition of the document, rather than primary content.

Content Server supports digital signatures with a property on SysObjects and the addDigitalSignature
method. The property is a Boolean property called a_is_signed to indicate whether the object is
signed. The addDigitalSignature method generates an audit trail entry recording the signing. The
event name for the audit trail entry is dm_adddigsignature. The information in the entry records who
signed the document, when it was signed, and a reason for signing, if one was provided.

It is possible to require Content Server to sign the generated audit trail entries. Because the
addDigitalSignature method is audited by default, there is no explicit registry object for the event.
However, if you want Content Server to sign audit trail entries for dm_adddigsignature events, you
can issue an explicit method requesting auditing for the event.

The Documentum Content Server Administration and Configuration Guide provides more information
about Content Server signatures on audit trail entries. The associated Javadocs provide information
about methods to request auditing for the dm_adddigsignature event, in the IDfAuditTrailManager
interface.

Simple sign-offs

Simple sign-offs authenticate the user signing off the object and record information about the sign-off
in an audit trial entry. A simple sign-off is useful in situations in which the sign-off requirement is
not rigorous. For example, you may want to use a simple sign-off when team members are required
to sign a proposal to indicate approval before the proposal is sent to upper management. Simple
sign-offs are the least rigorous way to satisfy a signature requirement.

Simple sign-offs are implemented using a IDfPersistentObject.signoff method. The method accepts a
user authentication name and password as arguments. When the method is executed, Content Server
calls a signature validation program to authenticate the user. If authentication succeeds, Content
Server generates an audit trail entry recording the sign-off. The entry records what was signed, who
signed it, and some information about the context of the signing. Using sign-off does not generate an
actual electronic signature. The audit trail entry is the only record of the sign-off.

You can use a simple sign-off on any SysObject or SysObject subtype. A user must have at least Read
permission on an object to perform a simple sign-off on the object.

You can customize a simple sign-off by creating a custom signature validation program.

The Documentum Content Server Administration and Configuration Guide provides instructions for
creating a custom signature validation program. The addociated Javadocs provide information
on the IDfPersistentObject.signoff usage notes.

EMC Documentum Content Server Version 6.7 Fundamentals Guide 103

Security Services

Privileged DFC
Privileged DFC is the term used to refer to DFC instances that are recognized by Content Servers
as privileged to invoke escalated privileges or permissions for a particular operation. In some
circumstances, an application may need to perform an operation that requires higher permissions or
a privilege than is accorded to the user running the application. In such circumstances, a privileged
DFC can request the use of a privileged role to perform the operation. The operation is encapsulated
in a privileged module invoked by the DFC instance.

Supporting privileged DFC is a set of privileged group, privileged roles, and the ability to define
type-based objects and simple modules as privileged modules, as follows:
• Privileged groups are groups whose members are granted a particular permission or privileged
automatically. You can add or remove users from these groups.

• Privileged roles are groups defined as role groups that can be used by DFC to give the DFC an
escalated permission or privilege required to execute a privileged module. Only DFC can add or
remove members in those groups.

• Privileged modules are modules that use one or more escalated permissions or privileges to
execute.

By default, each DFC is installed with the ability to request escalated privileges enabled. However, to
use the feature, the DFC must have a registration in the global registry. That registration information
must be defined in each repository in which the DFC will exercise those privileges.

Note: In some workstation environments, it may also be necessary to manually modify the Java
security policy files to use privileged DFC. The Documentum Content Server Administration and
Configuration Guide provides details.

You can disable the use of escalated privileges by a DFC instance. This is controlled by the
dfc.privilege.enable key in the dfc.properties file.

The dfc.name property in the dfc.properties file controls the name of the DFC instance.

The Documentum Content Server Administration and Configuration Guide contains procedures and
instructions for configuring privileged DFC.

Privileged DFC registrations

Three objects are used to register a DFC instance for privileged roles:
• Client registration object

• Public key certificate object

• Client rights object

Each installed DFC has an identity, with a unique identifier extracted from the PKI credentials. The
first time an installed DFC is initialized, it creates its PKI credentials and publishes its identity to the
global registry known to the DFC. In response, a client registration object and a public key certificate
object are created in the global registry. The client registration object records the DFC instance
identity. The public key certificate object records the certificate used to verify that identity.

104 EMC Documentum Content Server Version 6.7 Fundamentals Guide

Security Services

The PKI credentials for a DFC are stored by default in a file named dfc.keystore in the same directory
as the dfc.properties file. You can change the file location and name if you want, by setting the
dfc.security.keystore.file key in the dfc.properties file.

The first time a DFC instance is initialized, it creates its own PKI credentials and publishes its identity
to the global registry. For subsequent startups, the DFC instance checks for the presence of its
credentials. If they are not found or are not accessible-for instance, when a password has changed-the
DFC re-creates the credentials and republishes its identity to the global registry if privileged DFC is
enabled in the dfc.properties file. Republishing the credentials causes the creation of another client
registration object and public key certificate object for the DFC instance. Deleting dfc.keystore causes
the DFC instance to register again, and the first registration becomes invalid. Re-creating the DFC
credentials also invalidates the existing client rights, and client rights objects must be created again
for each repository. The Documentum Administrator User Guide contains information on creating
client rights objects.

If DFC finds its credentials, the DFC may or may not check to determine if its identity is established in
the global registry. Whether that check occurs is controlled by the dfc.verify_registration key in the
dfc.properties file. That key is false by default, which means that on subsequent initializations, DFC
does not check its identity in the global registry if the DFC finds its credentials.

A client rights object records the privileged roles that a DFC instance can invoke. It also records the
directory in which a copy of the instance public key certificate is located. Client rights objects are
created manually, using Documentum Administrator, after installing the DFC instance. A client rights
object must be created in each repository in which the DFC instance exercises those roles. Creating
the client rights object automatically creates the public key certificate object in the repository.

Client registration objects, client rights objects, and public key certificate objects in the global registry
and other repositories are persistent. Stopping the DFC instance does not remove those objects.
The objects must be removed manually if the DFC instance associated with them is removed or if
its identity changes.

If the client registration object for a DFC instance is removed from the global registry, you can not
register that DFC as a privileged DFC in another repository. Existing registrations in repositories
continue to be valid, but you can not register the DFC in a new repository.

If the client rights objects are deleted from a repository but the DFC instance is not removed, errors are
generated when the DFC attempts to exercise an escalated privilege or invoke a privileged module.

Recognizing a privileged DFC instance

At runtime, Content Server must have a way to determine whether a particular DFC instance is a
privileged DFC and, if so, what privileged roles that DFC can use. To identify itself as a privileged
DFC when a DFC instance wants to use a privileged role, the request is sent with digitally signed
information that identifies the instance. Content Server uses this information to retrieve the client
rights object and public key certificate for the instance. Using that information, Content Server
verifies that the DFC instance has the rights to use that role to perform the requested operation.

EMC Documentum Content Server Version 6.7 Fundamentals Guide 105

Security Services

Using approved DFC instances only

It is possible to configure a repository to accept connection requests only from DFC instances that
are successfully authenticated through their client registration objects. If you configure a repository
in that manner, its Content Servers accept connection requests only from DFC instances that have a
valid client rights object in the repository. This behavior is controlled by the approved_clients_only
property in the docbase config object.

A repository default behavior is to accept connection requests from all DFC instances, regardless of
whether or not they have a client rights object in the repository.

Encrypted file store storage areas
Encrypted file store storage areas are an optional security feature. They are available only if you have
installed Content Server with a Trusted Content Services license.

An encrypted file store storage area is a file store storage area that contains encrypted content files. If
you installed Content Server with a Trusted Content Services license, you can designate any file store
storage area as an encrypted file store. The file store can be a standalone storage area or it can be
a component of a distributed store.

Note: If a distributed storage area has multiple file store components, the components can be a
mix of encrypted and unencrypted.

A file store storage area is designated as encrypted or unencrypted when you create the storage area.
You cannot change the encryption designation after you create the area.

When you store content in an encrypted file store storage area, the encryption occurs automatically.
Content is encrypted by Content Server when the file is saved to the storage area. The encryption is
performed using a file store encryption key. Each encrypted storage area has its own file store key.
The key is encrypted and stored in the crypto_key property of the storage area object (dm_filestore
object). It is encrypted using the repository encryption key.

Similarly, decryption occurs automatically when the content is fetched from the storage area.

Encrypted content can be full-text indexed. However, the index itself is not encrypted. If you are
storing nonindexable content in an encrypted storage area and indexing renditions of the content, the
renditions are not encrypted unless you designate their storage area as an encrypted storage area.

You can use dump and load operations on encrypted file stores if you include the content files in the
dump file.

Note: The encryption key is 192 bits in length and is used with the Triple DES-EDE-CBC algorithm.

The Documentum Content Server Administration and Configurtaion Guide has more information about
the repository encryption key and about dump and load operations.

106 EMC Documentum Content Server Version 6.7 Fundamentals Guide

Security Services

Digital shredding
Digital shredding is an optional feature available for file store storage areas if you have installed
Content Server with a Trusted Content Services license. Using the feature ensures that content
in shredding-enabled storage areas is removed from the storage area in a way that makes
recovery virtually impossible. When a user removes a document whose content is stored in a
shredding-enabled file store storage area, the orphan content object is immediately removed from the
repository and the content file is immediately shredded.

Digital shredding uses the capabilities of the underlying operating system to perform the shredding.
The shredding algorithm is in compliance with DOD 5220.22-M (NISPOM, National Security
Industrial Security Program Operating Manual), option d. This algorithm overwrites all addressable
locations with a character, then its complement, and then a random character.

Digital shredding is supported for file store areas if they are standalone storage areas. You can
also enable shredding for file store storage areas that are the targets of linked store storage areas.
Shredding is not supported for these storage areas if they are components of a distributed storage area.

Digital shredding is not supported for distributed storage areas, nor for the underlying components.
It is also not supported for blob, turbo, and external storage areas.

EMC Documentum Content Server Version 6.7 Fundamentals Guide 107

Security Services

108 EMC Documentum Content Server Version 6.7 Fundamentals Guide

Chapter 7
Content Management Services

This chapter includes the following topics:
• Document objects, page 109

• Document content, page 110

• Versioning, page 116

• Immutability, page 121

• Concurrent access control, page 123

• Document retention and deletion, page 125

• Documents and lifecycles, page 128

• Documents and full-text indexing, page 129

Document objects
Documents have an important role in most enterprises. They are a repository for knowledge. Almost
every operation or procedure uses documents in some way. In the Documentum system, documents
are represented by dm_document objects, a subtype of dm_sysobject.

SysObjects are the supertype, directly or indirectly, of all object types in the hierarchy that can have
content. SysObject properties store information about the object version, the content file associated
with the object, security permissions on the object, and other important information.

The SysObject subtype most commonly associated with content is dm_document.

You can use a document object to represent an entire document or only a portion of a document. For
example, a document can contain text, graphics, or tables.

A document object can be either a simple document or a virtual document.

• simple document

A simple document is a document with one or more primary content files. Each primary content
file associated with a document is represented by a content object in the repository. All content
objects in a simple document have the same file format.

• virtual document

EMC Documentum Content Server Version 6.7 Fundamentals Guide 109

Content Management Services

A virtual document is a container for other document objects, structured in an ordered hierarchy.
The documents contained in a virtual document hierarchy can be simple documents or other
virtual documents. A virtual document can have any number of component documents, nested to
any level.

Using virtual documents allows you to combine documents with a variety of formats into one
document. You can also use the same document in more than one parent document. For example,
you can place a graphic in a simple document and then add that document as a component to
multiple virtual documents.

Chapter 8, Virtual Documents, describes virtual documents.

Document content
Document content is the text, graphics, video clips, and so forth that make up the content of a
document. All content in a repository is represented by content objects. All content associated with a
document is either primary content or a rendition.

Content objects

A content object is the connection between a document object and the file that actually stores the
document content. A content object is an object of type dmr_content. Every content file in the
repository, whether in a repository storage area or external storage, has an associated content object.
The properties of a content object record important information about the file, such as the documents
to which the content file belongs, the format of the file, and the storage location of the file.

Content Server creates and manages content objects. The server automatically creates a content object
when you add a file to a document if that file is not already represented by a content object in the
repository. If the file already has a content object in the repository, the server updates the parent_id
property in the content object. The parent_id property records the object IDs of all documents to
which the content belongs.

Typically, there is only one content object for each content file in the repository. However, if you have
a Content Storage Services license, you can configure the use of content duplication checking and
prevention. This feature is used primarily to ensure that numerous copies of duplicate content, such
as an email attachment, are not saved into the storage area. Instead, one copy is saved and multiple
content objects are created, one for each recipient.

Primary content

Primary content refers to the content that is added to the first content file added to a document. It
defines the document primary format. Any other content added in that same format is also called
primary content.

Each primary content file in a document has a page number. The page number is recorded in the
page attribute of the file’s content object. This is a repeating attribute. If the content file is part of

110 EMC Documentum Content Server Version 6.7 Fundamentals Guide

Content Management Services

multiple documents, the attribute has a value for each document. The file can be a different page in
each document.

Renditions

A rendition is a representation of a document that differs from the original document only in its
format or some aspect of the format. The first time you add a content file to a document, you
specify the content file format. This format represents the primary format of the document. You can
create renditions of that content using converters supported by Content Server or through EMC
Documentum Media Transformation Services, an optional product that handles rich media formats
such as jpeg and audio and video formats.

Page numbers are used to identify the primary content that is the source of a rendition.

Converters allows you to:
• Transform one file format to another file format.

• Transform one graphic image format to another graphic image format.

Some of the converters are supplied with Content Server, while others must be purchased separately.
You can use a converter that you have written, or one that is not on the current list of supported
converters.

When you ask for a rendition that uses one of the converters, Content Server saves and manages
the rendition automatically.

EMC Documentum provides a suite of additional products that perform specific transformations. For
example, Media Transformation Services creates two renditions each time a user creates and saves a
document with a rich media format:
• A thumbnail rendition

• A default rendition that is specific to the primary content format

Additionally, Media Transformation Services supports the use of the TRANSCODE_CONTENT
administration method to request additional renditions.

Rendition formats and characteristics

A rendition format indicates what type of application can read or write the rendition. For example, if
the specified format is maker, the file can be read or written by Adobe FrameMaker, a desktop
publishing application.

A rendition format can be the same format as the primary content page with which the rendition is
associated. However, in such cases, you must assign a page modifier to the rendition, to distinguish it
from the primary content page file. You can also create multiple renditions in the same format for a
particular primary content page. Page modifiers are also used in that situation to distinguish among
the renditions. Page modifiers are user-defined strings, assigned when the rendition is added to
the primary content.

Content Server is installed with a wide range of formats. Installing EMC Documentum Media
Transformation Services provides an additional set of rich media formats. You can modify or delete

EMC Documentum Content Server Version 6.7 Fundamentals Guide 111

Content Management Services

the installed formats or add new formats. Refer to the Documentum Content Server Administration and
Configuration Guide for instructions on obtaining a list of formats and how to modify or add a format.

Each time you add a content file to an object, Content Server records the content’s format in a set of
properties in the content object for the file. This internal information includes:
• Resolution characteristics

• Encapsulation characteristics

• Transformation loss characteristics

This information, put together, gives a full format specification for the rendition. It describes the
format’s screen resolution, any encoding the data has undergone, and the transformation path taken
to achieve that format.

• Supported conversions on Microsoft Windows platforms, page 113, describes the supported
format conversions on Windows platforms.

• Supported conversions on UNIX platforms, page 113, describes the supported format conversions
on UNIX platforms.

• , contains information about using a converter that you have written or that is not on our
supported list.

• Documentum Media Transformation Services Administration Guide has information about Media
Transformation Services and how to create renditions using TRANSCODE_CONTENT.

• The Documentum Content Server DQL Reference contains reference information for
TRANSCODE_CONTENT .

Generated renditions

• Automatic renditions

When an application requests a rendition, the application specifies the rendition of the file. If the
requested rendition exists in the repository, Content Server will deliver it to the application. If
there is no rendition in that format, but Content Server can create one, it will do so and deliver the
automatically generated rendition to the user.

For example, suppose you want to view a document whose content is in plain ASCII text.
However, you want to see the document with line breaks, for easier viewing. To do so, the
application issues a getFile and specifies that it wants the content file in crtext format. This format
uses carriage returns to end lines. Content Server will automatically generate the crtext rendition
of the content file and deliver that to the application.

The Content Server transformation engine always uses the best transformation path available.
When you specify a new format for a file, the server reads the descriptions of available conversion
programs from the convert.tbl file. The information in this table describes each converter, the
formats that it accepts, the formats that it can output, the transformation loss expected, and
the rendition characteristics that it affects. The server uses these descriptions to decide the best
transformation path between the current file format and the requested format.

However, note that the rendition that you create may differ in resolution or quality from the
original. For example, suppose you want to display a GIF file with a resolution of 300 pixels

112 EMC Documentum Content Server Version 6.7 Fundamentals Guide

Content Management Services

per inch and 24-bits of color on a low-resolution (72 pixels per inch) black and white monitor.
Transforming the GIF file to display on the monitor results in a loss of resolution.

• User-generated renditions

At times you may want to use a rendition that cannot be generated by Content Server. In such
cases, you can create the file outside of Documentum and add it to the document using an
addRendition method in the IDfSysObject interface.

To remove a rendition, use a removeRendition method. You must have at least Write permission
on the document to remove a rendition of a document.

Supported conversions on Microsoft Windows platforms

Content Server supports conversions between the three types of ASCII text files. The following table
lists the acceptable ASCII text input formats and the obtainable output formats.

Table 11.

Input format Description of input format Output formats

crtext ASCII text file with carriage
return line feed (for Microsoft
Windows clients)

text mactext

text ASCII text file (for UNIX
clients)

crtext mactext

mactext ASCII text file (for Apple
Macintosh clients)

text crtext

Supported conversions on UNIX platforms

On UNIX, Content Server supports format conversion by using the converters in the
$DM_HOME/convert directory. This directory contains the following subdirectories:
• filtrix

• pmbplus

• pdf2text

• psify

• scripts

• soundkit

• troff

Additionally, Content Server uses UNIX utilities to perform conversions.

You can also purchase and install document converters. Documentum provides demonstration
versions of Filtrix converters, which transform structured documents from one word processing
format to another. The Filtrix converters are located in the $DM_HOME/convert/filtrix directory. To

EMC Documentum Content Server Version 6.7 Fundamentals Guide 113

Content Management Services

make these converters fully operational, you must contact Blueberry Software, Inc., and purchase a
separate license.

You can also purchase and install Frame converters from Adobe Systems Inc. If you install the Frame
converters in the Content Server bin path, the converters are incorporated automatically when you
start the Documentum system. The server assumes that the conversion package is found in the UNIX
bin path of the server account and that this account has the FMHOME environment variable set
to the FrameMaker home.

PBM image converters

To transform images, the server uses the PBMPLUS package available in the public domain.
PBMPLUS is a toolkit that converts images from one format to another. This package has four parts:
• PBM - For bitmaps (1 bit per pixel)

• PGM - For gray-scale images

• PPM - For full-color images

• PNM - For content-independent manipulations on any of the other three formats and external
formats that have multiple types.

The parts are upwardly compatible. PGM reads both PBM and PGM and writes PGM. PPM reads
PBM, PGM, and PPM, and writes PPM. PNM reads all three and, in most cases, writes the same type
as it read. That is, if it reads PPM, it writes PPM. If PNM does convert a format to a higher format, it
issues a message to inform you of the conversion.

The PBMPLUS package is located in the $DM_HOME/convert/pbmplus directory. The source code
for these converters is found in the $DM_HOME/unsupported/pbmplus directory.

The following table lists the acceptable input formats for PBMPLUS.

Table 12.

Input format Description

gem Digital Research image file

gif General Interchange Format

macp Apple MacPaint file

pcx PCPaint file (Microsoft Windows)

pict Apple Macintosh standard graphics file

rast SUN raster image file

tiff TIFF graphic file

xbm xbitmap file (x.11 Windowing system definition)

The following table lists the acceptable output formats for the PBMPLUS package.

Table 13.

Output format Description

gem Digital Research image file

114 EMC Documentum Content Server Version 6.7 Fundamentals Guide

Content Management Services

Output format Description

gif General Interchange Format

macp Apple MacPaint file

pcx PCPaint file (Microsoft Windows)

lj HP LaserJet

ps PostScript file

pict Apple Macintosh standard graphics file

rast SUN raster image file

tiff TIFF graphic file

xbm xbitmap file (X.11Windowing system definition)

Miscellaneous converters

Content Server also uses UNIX utilities to provide some miscellaneous conversion capabilities. These
utilities include tools for converting to and from Windows DOS format, for converting text into
PostScript, and for converting troff and man pages into text. They also include tools for compressing
and encoding files.

The following table lists the acceptable input formats for UNIX conversion utilities.

Table 14.

Input format Description

crtext ASCII text file with carriage return line feed (for
PCs)

man Online UNIX manual

ps PostScript file

text ASCII text file

troff UNIX text file

The following table lists the acceptable output formats for UNIX conversion utilities.

Table 15.

Output format Description

crtext ASCII text file with carriage return line feed (for
PCs)

ps PostScript file

text UNIX text file

EMC Documentum Content Server Version 6.7 Fundamentals Guide 115

Content Management Services

Connecting source documents and renditions

A rendition can be connected to its source document through a content object or a relation object.

Renditions created by Content Server or AutoRenderPro™ are always connected through a content
object. For these renditions, the rendition property in the content object is set to indicate that the
content file represented by the content object is a rendition. The page property in the content object
identifies the primary content page with which the rendition is associated.

Renditions created by the media server can be connected to their source either through a content
object or using a relation object. The object used depends on how the source content file is
transformed. If the rendition is connected using a relation object, the rendition is stored in the
repository as a document whose content is the rendition content file. The document is connected to
its source through the relation object.

Documentum Media Transformation Services Administration Guide describes EMC Documentum Media
Transformation Services.

Translations

Content Server contains support for managing translations of original documents using relationships.

Managing translations, page 143, has more information about setting up translation relationships.

For more information

• The Documentum Content Server Administration and Configuration Guide has complete information
about the content checking and duplication feature and about the features supported by the
Content Storage Services license.

Versioning
Content Server provides comprehensive versioning services for all SysObjects except folders and
cabinets and their subtypes. Folder and cabinet SysObject subtypes cannot be versioned.

Versioning is an automated process that creates a historical record of a document. Each time you
check in or branch a document or other SysObject, Content Server creates a new version of the object
without overwriting the previous version. All the versions of a particular document are stored in
a virtual hierarchy called a version tree. Each version on the tree has a numeric version label and,
optionally, one or more symbolic version labels.

116 EMC Documentum Content Server Version 6.7 Fundamentals Guide

Content Management Services

Version labels

Version labels are recorded in the r_version_label property defined for the dm_sysobject object type.
This is a repeating property. The first index position (r_version_label[0]) is reserved for an object
numeric version label. The remaining positions are used for storing symbolic labels.

Version labels are used to uniquely identify a version within a version tree. There are several
kinds of labels.

• Numeric version labels

The numeric version label is a number that uniquely identifies the version within the version
tree. The numeric version label is generally assigned by the server and is always stored in the
first position of the r_version_label attribute (r_version_label[0]). By default, the first time you
save an object, the server sets the numeric version label to 1.0. Each time you check out the object
and check it back in, the server creates a new version of the object and increments the numeric
version label (1.1, 1.2, 1.3, and so forth). The older versions of the object are not overwritten. If you
want to jump the version level up to 2.0 (or 3.0 or 4.0), you must do so explicitly while checking
in or saving the document.

Note: If you set the numeric version label manually the first time you check in an object, you can
set it to any number you wish, in the format n.n, where n is zero or any integer value.

• Symbolic version labels

A symbolic version label is either system- or user-defined. Using symbolic version labels lets you
provide labels that are meaningful to applications and the work environment.

Symbolic labels are stored starting in the second position (r_version_label[1]) in the r_version_label
property. To define a symbolic label, define it in the argument list when you check in or save
the document.

An alternative way to define a symbolic label is to use an IDfSysObject.mark method. A mark
method assigns one or more symbolic labels to any version of a document. For example, you can
use a mark method, in conjunction with an unmark method, to move a symbolic label from
one document version to another.

A document can have any number of symbolic version labels. Symbolic labels are case sensitive
and must be unique within a version tree.

• The CURRENT label

The symbolic label CURRENT is the only symbolic label that the server can assign to a document
automatically. When you check in a document, the server assigns CURRENT to the new version,
unless you specify a label. If you specify a label (either symbolic or implicit), then you must also
explicitly assign the label CURRENT to the document if you want the new version to carry the
CURRENT label. For example, the following checkin call assigns the labels inprint and CURRENT
to the new version of the document being checked in:
IDfId newSysObjId = sysObj.checkin(false, "CURRENT,inprint");

If you remove a version that carries the CURRENT label, the server automatically reassigns
the label to the parent of the removed version.

Because both numeric and symbolic version labels are used to access a version of a document,
Content Server ensures that the labels are unique across all versions of the document. The server

EMC Documentum Content Server Version 6.7 Fundamentals Guide 117

Content Management Services

enforces unique numeric version labels by always generating an incremental and unique sequence
number for the labels.

Content Server also enforces unique symbolic labels. If a symbolic version label specified with a
checkin, save, or mark method matches a symbolic label already assigned to another version of the
same object, then the existing label is removed and the label is applied to the version indicated by
the checkin, save, or mark method.

Note: Symbolic labels are case sensitive. Two symbolic labels are not considered the same if their cases
differ, even if the word is the same. For example, the labels working and Working are not the same.

Version trees

A version tree refers to an original document and all of its versions. The tree begins with the original
object and contains all versions of the object derived from the original.

To identify which version tree a document belongs to, the server uses the document i_chronicle_id
property value. This property contains the object ID of the original version of the document root of
the version tree. Each time you create a new version, the server copies the i_chronicle_id value
to the new document object. If a document is the original object, the values of r_object_id and
i_chronicle_id are the same.

To identify the place of a document on a version tree, the server uses the document numeric version
label.

Branching

A version tree is often a linear sequence of versions arising from one document. However, you can
also create branches. The figure below shows a version tree that contains branches.

118 EMC Documentum Content Server Version 6.7 Fundamentals Guide

Content Management Services

Figure 6.

The numeric version labels on versions in branches always have two more digits than the version at
the origin of the branch. For example, looking at the preceding figure, version 1.3 is the origin of two
branches. These branches begin with the numeric version labels 1.3.1.0 and 1.3.2.0. If a branch off
version 1.3.1.2 were created, the number of its first version would be 1.3.1.2.1.0.

Branching takes place automatically when you check out and then check back in an older version of a
document because the subsequent linear versions of the document already exist and the server cannot
overwrite a previously existing version. You can also create a branch by using the IDfSysObject.branch
method instead of the checkout method when you get the document from the repository.

When you use a branch method, the server copies the specified document and gives the copy a
branched version number. The method returns the IDfID object representing the new version. The
parent of the new branch is marked immutable (unchangeable).

After you branch a document version, you can make changes to it and then check it in or save it. If
you use a checkin method, you create a subsequent version of your branched document. If you use a
save method, you overwrite the version created by the branch method.

A branch method is particularly helpful if you want to check out a locked document.

Removing versions

Content Server provides two ways to remove a version of a document. If you want to remove only
one version, use a IDfPersistentObject.destroy method. If you want to remove more than one version,
use a IDfSysObject.prune method.

EMC Documentum Content Server Version 6.7 Fundamentals Guide 119

Content Management Services

With a prune method, you can prune an entire version tree or only a portion of the tree. By default,
prune removes any version that does not belong to a virtual document and does not have a symbolic
label.

To prune an entire version tree, identify the first version of the object in the method arguments. (The
object ID of the first version of an object is found in the i_chronicle_id property of each subsequent
version.) Query this property if you need to obtain the object ID of the first version of an object.

To prune only part of the version tree, specify the object ID of the version at the beginning of the
portion you want to prune. For example, to prune the entire tree, specify the object ID for version 1.0.
To prune only version 1.3 and its branches, specify the object ID for version 1.3.

You can also use an optional argument to direct the method to remove versions that have symbolic
labels. If the operation removes the version that carries the symbolic label CURRENT, the label is
automatically reassigned to the parent of the removed version.

When you prune, the system does not renumber the versions that remain on the tree. The system
simply sets the i_antecedent_id property of any remaining version to the appropriate parent.

For example, look at the following figure. Suppose the version tree shown on the left is pruned,
beginning the pruning with version 1.2 and that versions with symbolic labels are not removed.
The result of this operation is shown on the right. Notice that the remaining versions have not
been renumbered.

Figure 7.

120 EMC Documentum Content Server Version 6.7 Fundamentals Guide

Content Management Services

Changeable versions

You can modify the most recent version on any branch of a version tree. For instance, in the , you
can modify the following versions:
• 1.3

• 1.3.1.2

• 1.3.2.1

• 1.1.1.1

The other versions are immutable. However, you can create new, branched versions of immutable
versions.

Immutability
Immutability is a characteristic that defines an object as unchangeable. An object is marked
immutable if one of the following occurs:
• The object is versioned or branched.

• An IDfSysObject.freeze method is executed against the object.

• The object is associated with a retention policy that designates controlled documents as immutable.

Effects of a checkin or branch method

When a user creates a new version of a document (or any SysObject or SysObject subtype), Content
Server sets the r_immutable_flag property to TRUE in the old version. Users can no longer change the
old version content or most of its property values.

Effects of a freeze method

Use a freeze method when you want to mark an object as immutable without creating a version of
the object. When you freeze an object, users can no longer change its content, its primary storage
location, or many of its properties. The content, primary storage location, and the frozen properties
remain unchangeable until you explicitly unfreeze the object.

Note: A freeze method cannot be used to stop workflows. If you want to suspend a workflow,
use an IDfWorkflow.haltAll method.

When you freeze an object, the server sets the following properties of the object to TRUE:
• r_immutable_flag

This property indicates whether the object is changeable. If set to TRUE, you cannot change the
object content, primary storage location, or most of its properties.

• r_frozen_flag

EMC Documentum Content Server Version 6.7 Fundamentals Guide 121

Content Management Services

This property indicates whether the r_immutable_flag property was set to TRUE by an explicit
freeze method call.

If the object is a virtual document, the method sets additional properties and offers the option of
freezing the components of any snapshot associated with the object.

To unfreeze an object, use an IDfSysObject.unfreeze method. Unfreezing an object resets the
r_frozen_flag attribute to FALSE. If the object has not been previously versioned, then unfreezing
it also resets the r_immutable_flag to FALSE. The method has an argument that, if set to TRUE,
unfreezes the components of a snapshot associated with the object.

Freezing a document, page 161, describes the additional attributes that are set when a virtual
document is frozen.

Unfreezing a document, page 162, describes how unfreezing affects a virtual document.

Effects of a retention policy

When a document is associated with a retention policy that is defined to make all documents it
controls immutable, the document r_immutable_flag property is set to TRUE.

Attributes that remain changeable

Some properties are changeable even when an object r_immutable_flag property is set to TRUE. Users
or applications can change the following properties:
• r_version_label (only symbolic labels, not the numeric label)

• i_folder_id (the object can be linked or unlinked to folders and cabinets)

• the security attributes (acl_domain, acl_name, owner_name, group_name, owner_permit,
group_permit, world_permit)

• a_special_app

• a_compound_architecture

• a_full_text (requires Sysadmin or Superuser privileges)

• a_storage_type

The server can change the following attributes:
• a_archive

• i_isdeleted

• i_vstamp

• r_access_date

• r_alias_set_id

• r_aspect_name

• r_current_state

122 EMC Documentum Content Server Version 6.7 Fundamentals Guide

Content Management Services

• r_frozen_flag

• r_frzn_assembly_cnt

• r_policy_id

• r_immutable_flag

• i_reference_cnt

• r_policy_id

• r_resume_state

A data dictionary attribute defined for the dm_dd_info type provides additional control over
immutability for objects of type dm_sysobject or any subtypes of SysObject. The attribute is called
ignore_immutable. When set to TRUE for a SysObject-type attribute, the attribute is changeable even
if the r_immutable_flag for the containing object instance is set to TRUE.

The Documentum Content Server DQL Reference contains instructions for using the ALTER TYPE
statement to set or change data dictionary attributes.

Concurrent access control
In a multiuser environment, a document management system must provide some means to ensure
the integrity of documents by controlling concurrent access to documents. Content Server provides
three locking strategies for SysObjects:
• Database-level locking

• Repository-level locking

• Optimistic locking

Database-level locking

Database-level locking places a physical lock on an object in the RDBMS tables. Access to the object is
denied to all other users or database connections.

Database locking is only available in an explicit transaction-a transaction opened with an explicit
method or statement issued by a user or application. For example, the DQL BEGINTRAN statement
starts an explicit transaction. The database lock is released when the explicit transaction is committed
or aborted.

A system administrator or superuser can lock any object with a database-level lock. Other users must
have at least Write permission on an object to place a database lock on the object. Database locks are
set using the IDfPersistentObject.lock method.

Database locks provide a way to ensure that deadlock does not occur in explicit transactions and
that save operations do not fail due to version mismatch errors.

If you use database locks, using repository locks is not required unless you want to version an object.
If you do want to version a modified object, you must place a repository-level lock on the object also.

EMC Documentum Content Server Version 6.7 Fundamentals Guide 123

Content Management Services

Repository-level locking

Repository-level locking occurs when a user or application checks out a document or object. When
a checkout occurs, Content Server sets the object r_lock_owner, r_lock_date, and r_lock_machine
properties. Until the lock owner releases the object, the server denies access to any user other than
the owner.

Use repository-level locking in conjunction with database-level locking in explicit transactions if you
want to version an object. If you are not using an explicit transaction, use repository-level locking
whenever you want to ensure that your changes can be saved.

To use a checkout method, you must have at least Version permission for the object or have superuser
privileges.

Repository locks are released by check-in methods (IDfSysObject.checkin or IDfSysObject.checkinEx).
A check-in method creates a new version of the object, removes the lock on the old version, and gives
you the option to place a lock on the new version.

If you use a save method to save your changes, you can choose to keep or relinquish the repository
lock on the object. Save methods, which overwrite the current version of an object with the changes
you made, have an argument that allows you to direct the server to hold the repository lock.

A cancelCheckOut method also removes repository locks. This method cancels a checkout. Any
changes you made to the document are not saved to the repository.

Optimistic locking

Optimistic locking occurs when you use a fetch method to access a document or object. It is called
optimistic because it does not actually place a lock on the object. Instead, it relies on version stamp
checking when you issue the save to ensure that data integrity is not lost. If you fetch an object and
change it, there is no guarantee your changes will be saved.

When you fetch an object, the server notes the value in the object i_vstamp attribute. This value
indicates the number of committed transactions that have modified the object. When you are finished
working and save the object, the server checks the current value of the object i_vstamp property
against the value that it noted when you fetched the object. If someone else fetched (or checked out)
and saved the object while you were working, the two values will not match and the server does not
allow you to save the object.

Additionally, you cannot save a fetched object if someone else checks out the object while you are
working on it. The checkout places a repository lock on the object.

For these reasons, optimistic locking is best used when:
• There are a small number of users on the system, creating little or no contention for desired objects.

• There are only a small number of noncontent-related changes to be made to the object.

Object-level permissions, page 91, introduces the object-level permissions.

User privileges, page 90, introduces user privileges.

124 EMC Documentum Content Server Version 6.7 Fundamentals Guide

Content Management Services

Document retention and deletion
A document remains in the repository until an authorized user (the owner or another privileged user)
deletes the document. However, if business or compliance rules require the document to be retained
for a specific length of time, you can ensure that it is not deleted within that period by applying
retention to the document. If a document (or any other content-containing SysObject) is under
retention control, it may only be deleted under special conditions.

Content Server supports two ways to apply retention:
• Retention policies

Retention policies are part of the larger retention services provided by Retention Policy Services.
These services allow you to manage the entire life of a document, including its disposition after
the retention period expires. Consequently, documents associated with an active retention policy
are not automatically deleted when the retention period expires. Instead, they are held in the
repository until you impose a formal disposition or use a privileged delete to remove them.

Using retention policies requires a Retention Policy Services license. If Content Server is installed
with that license, you can define and apply retention policies through Retention Policy Services
Administrator (an administration tool that is similar to, but separate from, Documentum
Administrator). Retention policies can be applied to documents in any storage area type.

Using retention policies is the recommended way to manage document retention.

• Content-addressed storage area retention periods

If you are using content-addressed storage areas, you can configure the storage area to enforce
a retention period on all content files stored in that storage area. The period is either explicitly
specified by the user when saving the associated document or applied as a default by the Centera
host system.

Retention policies

A retention policy defines how long an object must be kept in the repository. The retention period
can be defined as an interval or a date. For example, a policy might specify a retention interval of
five years. If so, then any object to which the policy is applied is held for five years from the date
on which the policy is applied. If a date is set as the retention period, then any object to which the
policy is applied is held until the specified date.

A retention policy is defined as either a fixed or conditional policy. If the retention policy is a fixed
policy, the defined retention period is applied to the object when the policy is attached to the object.
For example, suppose a fixed retention policy defines a retention period of five years. If you attach
that policy to an object, the object is held in the repository for five years from the date on which
the policy was applied.

If the retention policy is a conditional policy, the retention period is not applied to the object until
the event occurs. Until that time, the object is held under an infinite retention (that is, the object is
retained indefinitely). After the event occurs, the retention period defined in the policy is applied
to the object. For example, suppose a conditional retention policy requires employment records to
be held for 10 years after an employee leaves a company. This conditional policy is attached to all
employment records. The records of any employee are retained indefinitely until the employee leaves

EMC Documentum Content Server Version 6.7 Fundamentals Guide 125

Content Management Services

the company. At that time, the conditional policy takes effect and the employee records are marked
for retention for 10 years from the date of termination.

You can apply multiple retention policies to an object. In general, the policies can be applied at
any time to the object.

The date an object retention expires is recorded in an object i_retain_until property. However, if there
are conditional retention policies attached to the object, the value in that property is null until the
condition is triggered. If there are multiple conditional retention policies attached to the object, the
property is updated as each condition is triggered if the triggered policy retention period is further
in the future than the current value of i_retain_until. However, Content Server ignores the value,
considering the object under infinite retention, until all conditions are triggered.

A policy can be created for a single object, a virtual document, or a container such as a folder. If the
policy is created for a container, all the objects in the container are under the control of the policy.

An object can be assigned to a retention policy by any user with Read permission on the object or any
user who is a member of either the dm_retention_managers group or the dm_retention_users group.
These groups are created when Content Server is installed. They have no default members.

Policies apply only to the specific version of the document or object to which they are applied. If the
document is versioned or copied, the new versions or copies are not controlled by the policy unless
the policy is explicitly applied to them. Similarly, if a document under the control of a retention
policy is replicated, the replica is not controlled by the policy. Replicas may not be associated with a
retention policy.

Storage-based retention periods

Storage-based retention periods are applied to content files stored in a content-addressed storage
area. The period may be specified by the user or application that saves the document containing the
file or it may be assigned based on a default period defined in the storage area.

Behavior if both a retention policy and storage-based
retention apply

If a retention policy is assigned to a document and the document content is stored in a
content-addressed storage area, the retention period furthest in the future is applied to the document.
The retention value associated with the file content address is set to the date furthest in the future.

Similarly, the property i_retain_until is set to the date furthest in the future. For example, suppose
a document created on April 1, 2005 is stored in a content-addressed storage area and assigned to
a retention policy. The retention policy specifies that it must be held for five years. The expiration
date for the policy is May 31, 2010. The content-addressed storage area has a default retention period
of eight years. The expiration date for the storage-based retention period is May 31, 2013. Content
Server will not allow the document to be deleted (without using a forced deletion) until May 31, 2013.
The i_retain_until property is set to May 31, 2013.

If the retention policy is a conditional retention policy, the property value is ignored until the event
occurs and the condition is triggered. At that time, the property is set to the retention value defined

126 EMC Documentum Content Server Version 6.7 Fundamentals Guide

Content Management Services

by the conditional policy. If multiple conditional retention policies apply, the property is updated as
each is triggered if the triggered policy retention period is further in the future than the value already
recorded in i_retain_until. However, Content Server ignores the value in i_retain_until all the policies
are triggered. Until all conditional policies are triggered, the object is held in infinite retention.

Deleting documents under retention

Deleting documents associated with an active retention policy or with unexpired retention periods
in a content-addressed storage area requires special operations:
• To delete a document associated with an active retention policy, you must perform a privileged
deletion.

• To delete a document with an unexpired retention period stored in a content-addressed storage
area, you must perform a forced deletion.

If a document is controlled by a retention policy and its content is stored in retention-enabled
content-addressed storage area, you may be required to use both a privileged deletion and a forced
deletion to remove the document.

• Privileged deletions

Use a privileged deletion to remove documents associated with an active retention policy.
Privileged deletions succeed if the document is not subject to any holds imposed through the
Retention Policy Manager. You must be a member of the dm_retention_managers group and have
Superuser privileges to perform a privileged deletion.

• Forced deletions

Forced deletions remove content with unexpired retention periods from retention-enabled
content-addressed storage areas. You must be a superuser or a member of the
dm_retention_managers group to perform a forced deletion.

The force delete request must be accompanied by a Centera profile that gives the requesting user
the Centera privileges needed to perform a privileged deletion on the Centera host system. The
Centera profile must be defined prior to the request. For information about defining a profile,
contact the Centera system administrator at your site.

A forced deletion removes the document from the repository. If the content is not associated with
any other documents, a forced deletion also removes the content object and associated content
file immediately. If the content file is associated with other SysObjects, the content object is
simply updated to remove the reference to the deleted document. The content file is not removed
from the storage area.

Similarly, if the content file is referenced by more than one content object, the file is not removed
from the storage area. Only the document and the content object that connects that document to
the content file are removed.

EMC Documentum Content Server Version 6.7 Fundamentals Guide 127

Content Management Services

Deleting versions and renditions

As documents are checked out and in to the repository, the version tree for the document grows. If you
want to remove older versions of a document, and those versions do not have an unexpired retention
period, you can use a destroy or prune method, or the Version Management administration tool.

You can remove unneeded renditions using the Rendition Management administration tool.

Retention in distributed environments

In a distributed environment, document content can be saved to a repository from a remote location,
through a Branch Office Caching Server (BOCS), using either a synchronous or an asynchronous
write operation. In a synchronous write operation, the content is saved to the appropriate storage
area immediately. In an asynchronous write operation, the content is parked on the BOCS and
written to the storage area at a later time. In both options, the document metadata is saved to the
repository immediately.

Regardless of whether the content is written synchronously or asychronously, if the document is
under retention, retention is enforced as soon as the document metadata is saved to the repository.

• Retention policies, page 125, describes retention policies. For more information about retention
policies and their use, refer to Documentum Administrator online help.

• The Documentum Content Server Administration and Configuration Guide has information about:
— Content-addressed storage areas

— How retention periods in a content-addressed storage area are defined and how they are
implemented internally

— Enabling the use of a Centera profile for a forced deletion

— The Version Management tool

— The Rendition Management tool

• Removing versions, page 119, describes using destroy or prune in detail.

Documents and lifecycles
Lifecycles represent the stages in the life of a document. A lifecycle consists of a linear sequence of
states. Each state has associated entry criteria and actions that must be performed before an object can
enter the state.

After you create a document, you can attach it to any lifecycle that is valid for the document object
type. Only a user with the Change State extended permission can move the document from one
state to another.

128 EMC Documentum Content Server Version 6.7 Fundamentals Guide

Content Management Services

Documents and full-text indexing
All objects of type SysObject or SysObject subtypes are full-text indexed. The values of the object
properties and content, if it has content, are indexed. Properties defined for any aspects associated
with an object are not indexed unless those properties are defined for indexing in the aspect definition.

You can turn off indexing of object content or properties in several ways:
• Set the property a_full_text of an object type to false. The properties are indexed but not the
content. You must have Sysadmin or Superuser privileges to change the value to F.

• Set enable indexing to false in Documentum Administrator to turn off indexing events for specific
object types. Properties are indexed.

• Turn off indexing for specific formats by setting the can_index property to false. Properties are
indexed.

• Use xPlore index agent filters to filter out content and metadata for specific types or repository
paths.

Creating document objects
The most commonly created SysObject is a document or a document subtype. End users typically use
a Documentum client application, such as WebPublisher or Webtop, to create documents or to import
documents created in an external editor. For information about using an EMC Documentum client
product to create documents, or other SysObjects, refer to the documentation for that product. For
information about creating documents or other SysObjects programmatically, refer to theDocumentum
Foundation Classes Development Guide. This section provides some important conceptual information
about certain properties and the management of new SysObjects.

The owner_name property identifies the user or group who owns an object.

By default, an object is owned by the user who creates the object. However, you can assign ownership
to another user or a group by setting the owner_name property. To change the object owner, you
must be a superuser, the current owner of the object, or a user with Change Owner permission.

The default_folder property records the name of the primary location for an object. The primary
location is the repository cabinet or folder in which the server stores a new object the first time the
object is saved into the repository. Although this location is sometimes referred to as the primary
cabinet for the object, it can be either a cabinet or a folder.

The home cabinet of a user is the default primary location for a new document (or any other
SysObject) a user creates. It is possible to specify a different location programmatically by setting the
default_folder property or linking the object to a different location.

After you define a primary location for a object, it is not necessary to define the location again each
time you save the object.

EMC Documentum Content Server Version 6.7 Fundamentals Guide 129

Content Management Services

Adding content

When users create a SysObject using a Documentum client, adding content is a seamless operation.
Creating a new document using Web Publisher or Webtop typically invokes an editor that allows
users to create the content for the document as part of creating the object. If you are creating the object
using an application or DQL, you must create the content before creating the object and then add the
content to the object. You can add the content before or after you save the object.

Content can be a file or a block of data in memory. The method used to add the content to the object
depends on whether the content is a file or data block.

The first content file added to an object determines the primary format for the object. The format is set
and recorded in the a_content_type property of the object. Thereafter, all content added to the object
as primary content must have the same format as that first primary content file.

Note: If you discover that the a_content_type property is set incorrectly for an object, it is not
necessary to re-add the content. You can check out the object, reset the property, and save (or check
in) the object.

After you create content, you can add more content by appending a new file to the end of the the
object, or you can insert the file into the list.

The content can be a file or a block of data, but it must reside on the same machine as the client
application.

Renditions are typically copies of the primary content in a different format. You can add as many
renditions of primary content as needed.

You cannot use DQL to add a file created on a Macintosh machine to an object. You must use a DFC
method. Older Macintosh-created files have two parts: a data fork (the actual text of the file) and a
resource fork. The DFC, in the IDfSysObject interface, includes methods that allow you to specify
both the content file and its resource fork when adding content to a document.

Storing content

Documentum supports a variety of storage area options for storing content files. The files can be
stored in a file system, in content-addressable storage, on external storage devices, or even within
the RDBMS, as metadata. For the majority of documents, the storage location of their content files is
typically determined by site administration policies and rules. These rules are enforced by using
content assignment policies or by the default storage algorithm. End users and applications create
documents and save or import them into the repository without concern for where they are stored.
Exceptions to business rules can be assigned to a specific storage area on a one-by-one basis as
they are saved or imported into the repository.

This section provides an overview of the ways in which the storage location for a content file is
determined.

130 EMC Documentum Content Server Version 6.7 Fundamentals Guide

Content Management Services

Content assignment policies
Note: Content assignment policies are a feature of Content Storage Services. This set of services is
separately licensed. A Content Server must be installed with a Content Storage Services license to
use this feature.

Content assignment policies let you fully automate assigning content to file stores and
content-addressed storage areas.

A content assignment policy contains one or more rules, expressed as conditions such as
content_size>10,000 (bytes) or format=’gif’. Each rule is associated with a file store or content
addressed storage area. When a policy is applied to a document, the document is tested against each
rule. When the document satisfies a rule, its content is stored in the storage area associated with
the rule and the remaining rules are ignored.

Content assignment polices can only assign content to file store storage areas or content-addressed
storage areas. Policies are enforced by DFC-based client applications (5.2.5 SP2 and higher), and are
applied to all new content files, whether created by a save or import into the repository or a checkin
operation.

Default storage allocation

The default storage algorithm uses values in a document associated object, format object, or type
definition to determine where to assign the content for storage.

The default storage algorithm is used when:
• Storage policies are not enabled

• Storage policies are enabled but a policy does not exist for an object type or for any of the type
supertypes

• A content file does not satisfy any of the conditions in the applicable policy

• Content is saved with a retention date

Explicitly assigning a storage area

You can override a storage policy or the default storage algorithm by explicitly setting the
a_storage_type attribute for an object before you save the object to the repository.

Setting content properties and metadata for
content-addressed storage

Content-addressed storage areas allow you to store metadata, including a value for a retention
period, with each piece of content in the system. Each of the storage system metadata fields that
you want to set when content is stored is identified in the ca store object and in the content object
representing the content file.

EMC Documentum Content Server Version 6.7 Fundamentals Guide 131

Content Management Services

When a content file is saved to content-addressed storage, the metadata values are stored first in the
content object and then copied into the storage area. Only those metadata fields that are defined in
both the content object and the ca store object are copied to the storage area.

In the content object, the properties that record the metadata are:

• content_attr_name • content_attr_num_ value

• content_attr_value • content_attr_date_ value

• content_attr_data_type

These are repeating properties. When a setContentAttrs method or a SET_CONTENT_ATTRS
administration method is issued, the name and value pairs identified in the parameter argument
are stored in these content properties. The name is placed in content_attr_name and the value is
stored in the property corresponding to the field datatype. For example, suppose a setContentAttrs
method identified title=DailyEmail as a name and value pair. The method would append "title" to
the list of field names in content_attr_name and store "DailyEmail" in content_attr_value in the
corresponding index position. If title is already listed in content_attr_name, the value currently
stored in content_attr_value would be overwritten.

In a ca store object, the properties that identify the metadata are:
• a_content_attr_name

This is a list of the metadata fields in the storage area to be set.

• a_retention_attr_name

This identifies the metadata field that contains the retention period value.

When setContentAttrs executes, the metadata name and value pairs are stored first in the content
object properties. Then, the plug-in library is called to copy them from the content object to the
storage system metadata fields. Only those fields that are identified in both content_attr_name in the
content object and in either a_content_attr_name or a_retention_attr_name in the storage object are
copied to the storage area.

If a_retention_attr_required is set to T (TRUE) in the ca store object, the user or application must
specify a retention period for the content when saving the content. That is accomplished by including
the metadata field identified in the a_retention_attr_name property of the storage object in the list of
name and value pairs when setting the content properties.

If a_retention_attr_required is set to F (FALSE), then the content is saved using the default retention
period, if one is defined for the storage area. However, the user or application can overwrite the
default by including the metadata field identified in the a_retention_attr_name property of the
storage object when setting the content properties.

The value for the metadata field identified in a_retention_attr_name can be a date, a number, or a
string. For example, suppose the field name is "retain_date" and content must be retained in storage
until January 1, 2016. The setContentAttrs parameter argument would include the following name
and value pair:
'retain_date=DATE(01/01/2016)'

You can specify the date value using any valid input format that does not require a pattern
specification. Do not enclose the date value in single quotes.

To specify a number as the value, use the following format:

132 EMC Documentum Content Server Version 6.7 Fundamentals Guide

Content Management Services

'retain_date=FLOAT(number_of_seconds)'

For example, the following sets the retention period to 1 day (24 hours):
'retain_date=FLOAT(86400)'

To specify a string value, use the following format:
'retain_date="number_of_seconds"'

The string value must be numeric characters that Content Server can interpret as a number of
seconds. If you include characters that cannot be translated to a number of seconds, Content Server
sets the retention period to 0 by default, but does not report an error.

When using administration methods to set the metadata, use a SET_CONTENT_ATTRS to set the
content object attributes and a PUSH_CONTENT_ATTRS to copy the metadata to the storage system.

Setcontentattrs must be executed after the content is added to the SysObject and before the object is
saved to the repository. SET_CONTENT_ATTRS and PUSH_CONTENT_ATTRS must be executed
after the object is saved to the repository.

Document objects and Access Control Lists

An Access Control List (ACL), specifies access permissions for an object. The standard entries can
give a user or group any of the basic access permissions, extended permissions or both. With a
Trusted Content Services license, you can also add entries that restrict access for specific users or
groups and entries that specify permissions recognized only by specific applications.

Each object of type SysObject or SysObject subtype has one ACL that controls access to that object.
The server automatically assigns a default ACL to a new SysObject if you do not explicitly assign an
ACL to the object when you create it. If a new object is stored in a room (a secure area in a repository)
and is governed by that room, the ACL assigned to the object is the default ACL for that room.

The ACL associated with an object is identified by two properties of the SysObject: acl_name and
acl_domain. The acl_name is the name of the ACL and acl_domain records the owner of the ACL.

• , contains information about creating and adding renditions.

• Assigning ACLs, page 138, contains information about setting permissions for a SysObject.

• The Documentum Content Server Administration and Configuration Guide has information about:
— The implementation and use of the options for determining where content is stored

— The behavior and implementation of content assignment policies and creating them

— How the default storage algorithm behaves

— Configuring a storage area to require a retention period for content stored in that area

Modifying document objects
This section contains information about modifying existing documents and other SysObjects.

EMC Documentum Content Server Version 6.7 Fundamentals Guide 133

Content Management Services

The ability to modify a SysObject is controlled by object-level permissions and whether the object is
under the control of a retention policy. Additionally, the ability to modify an object can be affected
by application-defined roles.

Object-level permissions are defined in ACLs. Each SysObject has an associated ACL object that
defines the access permissions for that object. The entries in the ACL define who can access the
object and the operations allowed for those having access. Users with Superuser privileges can
always access a SysObject because a superuser always has at least Read permission on SysObjects
and has the ability to modify ACLs.

If the object is under the control of a retention policy, users cannot overwrite the content regardless
of their permissions. Documents controlled by a retention policy may only be versioned or copied.
Additionally, some retention policies set documents under their control as immutable. In that case,
users can change only some of the document attributes.

Application-level control of access to a particular object is accomplished using role groups. These
groups control which applications users can use to modify a document.

You cannot modify the content of objects that are included in a frozen (unchangeable) snapshot or
that have the r_immutable_flag attribute set to TRUE. Similarly, most attributes of such objects
are also unchangeable.

Accessing a document in the repository

Before a user or application can modify a SysObject, the object must be obtained from the repository.
There are three options for obtaining an object from the repository:
• A lock method

• A checkOut method

• A fetch method

These methods retrieve the object metadata from the repository. Retrieving the object content
requires a separate method. However, you must execute a lock, checkOut, or fetch before retrieving
the content files.

A lock method provides database-level locking. A physical lock is placed on the object at the RDBMS
level. You can use database-level locking only if the user or application is in an explicit transaction. If
you want to version the object, you must also issue a checkOut method after the object is locked.

Checking out a document places a repository lock on the object. A repository lock ensures that while
you are working on a document, no other user can make changes to that document. Checking out a
document also offers you two alternatives for saving the document when you are done. You need
Version or Write permission to check out a document.

Use a fetch method when you want to read but not change an object. The method does not place either
a repository or database lock on the object. Instead, the method uses optimistic locking. Optimistic
locking does not restrict access to the object, and only guarantees that one user cannot overwrite the
changes made by another. Consequently, it is possible to fetch a document, make changes, and not be
able to save those changes. In a multiuser environment, it is generally best to use the fetch method
only to read documents or if the changes you want to make will take a very short time.

To use fetch, you need at least Read permission to the document. With Write permission, you can use
a fetch method in combination with a save method to change and save a document version.

134 EMC Documentum Content Server Version 6.7 Fundamentals Guide

Content Management Services

After you have checked out or fetched the document, you can change the attributes of the document
object or add, replace, or remove primary content. To change the object current primary content,
retrieve the content file first.

Modifying single-valued attributes

If you modify the value of a single-valued attribute, the new value overwrites the old value.

In DFC, most attributes have a specific set method that sets the attribute. For example, if you wanted
to set the subject attribute of a document, you call the setSubject method. There is also a generic set
method that you can use to set any attribute.

Modifying repeating attributes

You can modify a repeating attribute by adding additional values, replacing current values, or
removing values.

When you add a value, you can append it to the end of the values in the repeating property or you
can replace an existing value. If you remove a value, all the values at higher index positions within
the property are adjusted to eliminate the space left by the deleted value. For example, suppose
a keywords property has 4 values:
keywords[0]=engineering
keywords[1]=productX
keywords[2]=metal
keywords[3]=piping

If you removed productX, the values for metal and piping are moved up and the keywords property
now contains the following:
keywords[0]=engineering
keywords[1]=metal
keywords[2]=piping

Performance tip for repeating attributes

The time it takes the server to append or insert a value for a repeating property increases in direct
proportion to the number of values in the property. Consequently, if you want to define a repeating
property for a type and you expect that property to hold hundreds or thousands of values, it is
recommended that you create an RDBMS table to hold the values instead and then register the table.
When you query the type, you can issue a SELECT statement that joins the type and the table.

Adding content

There are several methods in the IDfSysObject interface for adding content.

EMC Documentum Content Server Version 6.7 Fundamentals Guide 135

Content Management Services

Adding additional primary content

A document can have multiple primary content files, but all the files must have the same format.
When you add an additional primary content files, you specify the file page number, rather than
its format.

The page number must be the next number in the object sequence of page numbers. Page numbers
begin with zero and increment by one. For example, if a document has three primary content files,
they are numbered 0, 1, and 2. If you add another primary content file, you must assign it page
number 3.

If you fail to include a page number, the server assumes the default page number, which is 0. Instead
of adding the file to the existing content list, it replaces the content file previously in the 0 position.

Replacing an existing content file

To replace a primary content file, use an insertFile or insertContent method. Alternative acceptable
methods are setFileEx or setContentEx. The new file must have the same format as the other primary
content files in the object.

Whichever method you use, you must identify the page number of the file you want to replace in
the method call. For example, suppose you want to replace the current table of contents file in a
document referenced as mySysObject and the current table of contents file is page number 2. The
following call replaces that file in the object "mySysObject":
mySysObject.insertFile("toc_new",2)

Removing content from a document

To remove a content file from a document, use a removeContent method. You must specify the
page number of the content you want to remove. If you remove a content file from the middle of a
multi-paged document, the remaining pages are automatically renumbered.

You cannot remove a content page if the content has a rendition with the keep flag set to true and the
page is not the last remaining page in the document.

Sharing a content file

Multiple objects can share one content file. You can bind a single content file to any number of objects.
Content files are shared using a bindFile method. After a content file is saved as a primary content file
for a particular object, you can use a bindFile method to add the content file as primary content to any
number of other objects. The content file can have different page numbers in each object.

However, all objects that share the content must have the same value in their a_content_type
attributes. If an object to which you are binding the content has no current primary content, the
bindFile method sets the target document a_content_type attribute to the format of the content file.

136 EMC Documentum Content Server Version 6.7 Fundamentals Guide

Content Management Services

Regardless of how many objects share the content file, the file has one content object in the repository.
The documents that share the content file are recorded in the parent_id attribute of the content object.

Writing changes to the repository

The following methods write changes to the repository:
• checkin

• checkinEx

• save

• saveLock

Checkin and checkinEx methods

Use checkin or checkinEx to create a new version of a object. You must have at least Version
permission for the object. The methods work only on checked-out documents.

The checkinEx method is specifically for use in applications. It has four arguments an application
can use for its specific needs. Refer to the Javadocs for details.

Both methods return the object ID of the new version.

Save and saveLock methods

Use a save or saveLock method when you want to overwrite the version that you checked out or
fetched. To use either, you must have at least Write permission on the object. A save method works
on either checked-out or fetched objects. A saveLock method works only on checked-out objects.

If the document has been signed using addESignature, using save to overwrite the signed version
invalidates the signatures and will prohibit the addition of signatures on future versions.

• Attributes that remain changeable, page 122, contains a list of the changeable properties in
immutable objects.

• Application-level control of SysObjects, page 89, describes application-level control of SysObjects.

• Concurrent access control, page 123, describes the types of locks and locking strategies in detail.

• The CREATE OBJECT and UPDATE OBJECT statements are described in the Documentum Content
Server DQL Reference.

Managing permissions
Access permissions for an object of type SysObject or its subtypes are controlled by the ACL
associated with the object. Each object has one associated ACL. An ACL is assigned to each SysObject

EMC Documentum Content Server Version 6.7 Fundamentals Guide 137

Content Management Services

when the SysObject is created. That ACL can be modified or replaced as needed, as the object moves
through its lifecycle.

The default ACLs

If a user or application creates and saves a new object without explicitly assigning an ACL or
permissions to the object, Content Server assigns a default ACL. The ACL designated as the default
ACL is recorded in the server config object of the Content Server, in the default_acl property. The
designated ACL can be any of the following ACLs:
• The ACL associated with the object primary folder

An object primary folder is the folder in which the object is first stored when it is created. If
the object was placed directly in a cabinet, the server uses the ACL associated with the cabinet
as the folder default.

• The ACL associated with the object creator

Every user object has an ACL. It is not used to provide security for the user but only as a potential
default ACL for any object created by the user.

• The ACL associated with the object type

Every object type has an ACL associated with its type definition. You can use that ACL as a
default ACL for any object of the type.

In a newly configured repository, the default_acl property is set to the value identifying the user ACL
as the default ACL. You can change the setting through Documentum Administrator.

Template ACLs

A template ACL is identified by a value of 1 in the acl_class property of its dm_acl object. A Template
ACL typically uses aliases in place of actual user or group names in the access control entries in
the ACL. When the template is assigned to an object, Content Server resolves the aliases to actual
user or group names.

Template ACLs are used to make applications, workflows, and lifecycles portable. For example, an
application that uses a template ACL could be used by a variety of departments within an enterprise
because the users or groups within the ACL entries are not defined until the ACL is assigned to
an actual document.

Assigning ACLs

When you create a document or other object, you can:
• Assign a default ACL (either explicitly or allow the server to choose)

138 EMC Documentum Content Server Version 6.7 Fundamentals Guide

Content Management Services

A Content Server automatically assigns the designated default ACL to new objects if the user or
application does not explicitly assign a different ACL or does not explicitly grant permissions to
the object.

• Assign an existing nondefault ACL

A document owner or a superuser can assign any private ACL that you own or any public ACL,
including any system ACL, to the document.

If the application is designed to run in multiple contexts with each having differing access
requirements, assigning a template ACL is recommended. The aliases in the template are resolved
to real user or group names appropriate for the context in the new system ACL.

To assign an ACL, set the acl_name and, optionally, the acl_domain attributes. You must set the
acl_name attribute. When only the acl_name is set, Content Server searches for the ACL among
the ACLs owned by the current user. If none is found, the server looks among the public ACLs.

If acl_name and acl_domain are both set, the server searches the given domain for the ACL. You
must set both attributes to assign an ACL owned by a group to an object.

• Generate a custom ACL for the object

Generating custom ACLs

Custom ACLs are created by using a grantPermit or revokePermit method against an object to define
access control permissions for the object. There are four common situations that generate a custom
ACL:
• Granting permissions to a new object without assigning an ACL

The server creates a custom ACL when you create a SysObject and grants permissions to it, but
does not explicitly associate an ACL with the object.

The server bases the new ACL on the default ACL identified in the default_acl property of the
server config object. It copies that ACL, makes the indicated changes, and then assigns the
custom ACL to the object.

• Modifying the ACL assigned to an new object

The server creates a custom ACL when you create a SysObject, associate an ACL with the object,
and then modify the access control entries in the ACL before saving the object. To identify the
ACL to be used as the basis for the custom ACL, use a useACL method.

The server copies the specified ACL, applies the changes to the copy, and assigns the new ACL to
the document.

• Using grantPermit when no default ACL is assigned

The server creates a custom ACL when you create a new document, direct the server not to assign
a default ACL, and then use a grantPermit method to specify access permissions for the document.
In this situation, the object’s owner is not automatically granted access to the object. If you create a
new document this way, be sure to set the owner’s permission explicitly.

To direct the server not to assign a default ACL, you issue a useacl method that specifies none
as an argument.

EMC Documentum Content Server Version 6.7 Fundamentals Guide 139

Content Management Services

The server creates a custom ACL with the access control entries specified in the grantPermit
methods and assigns the ACL to the document. Because the useacl method is issued with none as
an argument, the custom ACL is not based on a default ACL.

• Modifying the current, saved ACL

If you fetch an existing document and change the entries in the associated ACL, the server creates
a new custom ACL for the document that includes the changes. The server copies the document’s
current ACL, applies the specified changes to the copy, and then assigns the new ACL to the
document.

A custom ACL name is created by the server and always begins with dm_. Generally, a custom ACL
is only assigned to one object. However, a custom ACL can be assigned to multiple objects.

The Content Server Administration and Configuration Guide and Documentum Foundation Classes
Development Guide contain more information on ACLs.

Rooms and ACL assignments

Objects that are created in or moved to a collaborative room are assigned the default ACL for that
room. Similarly, if you move an object to a room, the current ACL is removed and the default ACL for
the room is applied.

If the object is moved out of the room, Content Server removes the default room ACL and assigns a
new ACL:
• If the user moving the object out of the room is the object owner, Content Server assigns the
default ACL defined in the repository configuration to the object.

• If the user moving the object out of the room is not the object owner, Content Server assigns
the object owner default ACL to the object.

Removing permissions

At times, you might need to remove user access or extended permissions to a document. For example,
an employee might leave a project or be transferred to another location. A variety of situations can
make it necessary to remove user permissions.

You must be the owner of the object, a superuser, or have Change Permit permission to change the
entries in an object’s ACL.

You must have installed Content Server with a Trusted Content Services license to revoke any of
the following permit types:
• AccessRestriction or ExtendedRestriction

• RequiredGroup or RequiredGroupSet

• ApplicationPermit or ApplicationRestriction

When you remove user access or extended permissions, you can either:
• Remove permissions to one document

140 EMC Documentum Content Server Version 6.7 Fundamentals Guide

Content Management Services

To remove permissions to a document, call the IDfSysobject revokePermit method against the
document. The server copies the ACL, changes the copy, and assigns the new ACL to the
document. The original ACL is not changed. The new ACL is a custom ACL.

• Remove permissions to all documents using a particular ACL

To remove permissions to all documents associated with the ACL, you must alter the ACL. To do
that, call the IDfACL revokePermit method against the ACL. Content Server modifies the specified
ACL. Consequently, the changes affect all documents that use that ACL.

Use a revokePermit method to remove object-level permissions. That method is defined for both the
IDfACL and IDfSysObject interfaces.

Each execution of revokePermit removes a specific entry. If you revoke an entry whose permit type is
AccessPermit without designating the specific base permission to be removed, the AccessPermit entry
is removed, which also removes any extended permissions for that user or group. If you designate a
specific base permission level, only that permission is removed but the entry is not removed if there
are extended permissions identified in the entry.

If the user or group has access through another entry, the user or group retains that access permission.
For example, suppose janek has access as an individual and also as a member of the group engr in a
particular ACL. If you issue a revokePermit method for janek against that ACL, you remove only
janek’s individual access. The access level granted through the engr group is retained.

Replacing an ACL

It is possible to replace the ACL assigned to an object with another ACL. To do so requires at least
Write permission on the object. Users typically replace an ACL using facilities provided by a client
interface. To replace the ACL programmatically, reset the object attributes acl_name, acl_domain, or
both. These two attributes identify the ACL assigned to an object.

• The Documentum Content Server Administration and Configuration Guide describes the types of
ACLs, types of entries, and how to create ACLs and the entries.

Managing content across repositories
In a multirepository installation, users are not limited to working only with the objects found in the
repository to which they connect when they open a session (the local repository). Within a session,
users can also work with objects in the remote repositories, the other repositories in the distributed
configuration. For example, they might create a virtual document in the local repository and add
a document from a remote repository as a component. Or, they might find a remote document in
their inbox when they start a session with the local repository.

Like other users, applications can also work with remote objects. After an application opens a session
with a repository, it can work with remote objects by opening a session with the remote repository or
by working with the mirror or replica object in the current repository that refers to the remote object.
Mirror objects and replica objects are implemented as reference links.

A reference link is a pointer in one repository to an object in another repository. A reference link is a
combination of a dm_reference object and a mirror object or a dm_reference object and a replica object.

EMC Documentum Content Server Version 6.7 Fundamentals Guide 141

Content Management Services

A mirror object is an object in one repository that mirrors an object in another repository. The term
mirror object describes the object function. It is not a type name. For example, if you check out a
remote document, the system creates a document in the local repository that is a mirror of the remote
document. The mirror object in the local repository is an object of type dm_document.

Mirror objects only include the original object attribute data. When the system creates a mirror object,
it does not copy the object content to the local repository.

Note: If the repository in which the mirror object is created is running on Sybase, values in some
string attributes may be truncated in the mirror object. The length definition of some string attributes
is shortened when a repository is implemented on Sybase.

Replicas are copies of an object. Replicas are generated by object replication jobs. A replication job
copies objects in one repository to another. The copies in the target repository are called replicas.

• The Documentum Content Server Distributed Configuration Guide has complete information about:
— Reference links and the underlying architecture that supports them

— How operations on mirror objects and replicas are handled

— Object replication

Relationships between objects
A relationship is a formal association between two objects in the repository. One object is designated
as the parent and one object is designated as the child. Before you can connect two objects in a
relationship, the relationship must be described in the repository. Types of relationships are defined
in dm_relation_type objects and instances of relationship types are recorded in dm_relation objects.

The definition of the relationship, recorded in the dm_relation_type object, names the relationship
and defines some characteristics, such as the security applied to the relationship and the behavior if
one of the objects involved in an instance of the relationship is deleted from the repository.

A relation object identifies the two objects involved in the relationship and the type of relationship.
Relation objects also have some attributes that you can use to manage andmanipulate the relationship.

System-defined relationships

Installing Content Server installs a set of system-defined relationships. For example, annotations are
implemented as a system-defined relationship between a SysObject, generally a document, and a note
object. Another system-defined relationship is DM_TRANSLATION_OF, used to create a relationship
between a source document and a translated version of the document.

You can obtain the list of system-defined relationships by examining the dm_relation_type objects in
the repository. The relation name of system-defined relationships begin with dm_.

142 EMC Documentum Content Server Version 6.7 Fundamentals Guide

Content Management Services

User-defined relationships

You can create custom relationships. Additionally, the dm_relation object type can be subtyped, so
that you can create relationships between objects that record business-specific information, if needed.

User-defined relationships are not managed by Content Server. The server only enforces security
for user-defined relationships. Applications must provide or invoke user-written procedures to
enforce any behavior required by a user-defined relationship. For example, suppose you define a
relationship between two document subtypes that requires a document of one subtype to be updated
automatically when a document of the other subtype is updated. The server does not perform this
kind of action. You must write a procedure that determines when the first document is updated and
then updates the second document.

• The Documentum Content Server System Object Reference has information about relationships,
including instructions for creating relationship types and relationships between objects.

• Managing translations, page 143, describes how the system-defined translation relationship
can be used.

• Annotation relationships, page 144, describes annotations and how to work with them.

Managing translations
Documents are often translated into multiple languages. Content Server supports managing
translations with two features:
• The language_code attribute defined for SysObjects

• The built-in relationship functionality

The language_code attribute allows you identify the language in which the content of a document
is written and the document country of origin. Setting this attribute will allow you to query for
documents based on their language. For example, you might want to find the German translation of
a particular document or the original of a Japanese translation.

Translation relationships

You can also use the built-in relationship functionality to create a translation relationship between
two SysObjects. Such a relationship declares one object (the parent) the original and the second
object (the child) a translation of the original. Translation relationships have a security type of child,
meaning that security is determined by the object type of the translation. A translation relationship
has the relation name of DM_TRANSLATION_OF.

When you define the child in the relationship, you can bind a specific version of the child to
relationship or bind the child by version label. To bind a specific version, you set the child_id
property of the dm_relation object to object ID of the child. To bind by version label, you set the
child_id attribute to the chronicle ID of the version tree that contains the child, and the child_label to
the version label of the translation. The chronicle ID is the object ID of the first version on the version

EMC Documentum Content Server Version 6.7 Fundamentals Guide 143

Content Management Services

tree. For example, if you want the APPROVED version of the translation to always be associated with
the original, set child_id to the translation chronicle ID and child_label to APPROVED.

• The Documentum Content Server System Object Reference has more information about:
— Recommended language and country codes

— Properties defined for the relation object type

Annotation relationships
Annotations are comments that a user attaches to a document (or any other SysObject or SysObject
subtype). Throughout document development, and often after it is published, people might want to
record editorial suggestions and comments. For example, several managers might want to review
and comment on a budget. Or perhaps several marketing writers working on a brochure want
to comment on each other’s work. In situations such as these, the ability to attach comments to
a document without modifying the original text is very helpful.

Annotations are implemented as note objects, which are a SysObject subtype. The content file
you associate with the note object contains the comments you want to attach to the document.
After the note object and content file are created and associated with each other, you use the
IDfNote.addNoteEx method to associate the note with the document. A single document can have
multiple annotations. Conversely, a single annotation can be attached to multiple documents.

When you attach an annotation to a document, the server creates a relation object that records and
describes the relationship between the annotation and the document. The relation object parent_id
attribute contains the document object ID and its child_id attribute contains the note object ID. The
relation_name attribute contains dm_annotation, which is the name of the relation type object that
describes the annotation relationship.

You can create, attach, detach, and delete annotations. For instructions, see the Content Server
Administration and Configuration Guide.

Object operations and annotations

This section describes how annotations are affected by common operations on the objects to which
they are attached.
• Save, Check In, and Saveasnew:

If you want to keep the annotations when you save, check in, or copy a document, the
permanent_link attribute for the relation object associated with the annotation must be set to
TRUE. This flag is FALSE by default.

• Destroy:

Destroying an object that has attached annotations automatically destroys the relation objects that
attach the annotations to the object. The note objects that are the annotations are not destroyed.

Note: The dm_clean utility automatically destroys note objects that are not referenced by any
relation object, that is, any that are not attached to at least one object.

• Object replication:

144 EMC Documentum Content Server Version 6.7 Fundamentals Guide

Content Management Services

If the replication mode is federated, then any annotations associated with a replicated object are
replicated also.

• The Documentum Content Server System Object Reference has a complete description of relation
objects, relation type objects, and their attributes.

• The associated Javadocs have more information about the addNote and removeNote methods in
the IDfSysObject interface.

EMC Documentum Content Server Version 6.7 Fundamentals Guide 145

Content Management Services

146 EMC Documentum Content Server Version 6.7 Fundamentals Guide

Chapter 8
Virtual Documents

This chapter describes virtual documents and how to work with them.

The chapter covers the following topics:
• Overview, page 147

• Virtual document assembly and binding, page 152

• Defining component assembly behavior, page 153

• Copy behavior, page 155

• Creating virtual documents, page 156

• Assembling a virtual document, page 156

• Snapshots, page 159

• Frozen virtual documents and snapshots, page 161

• Obtaining information about virtual documents, page 162

Overview
This section describes virtual documents, a feature supported by Content Server that allows you to
create documents with varying formats.

Users create virtual documents using the Virtual Document Manager, a graphical user interface that
allows them to build and modify virtual documents. However, if you want to write an application
that creates or modifies a virtual document with no user interaction, you must use DFC.

Although the components of a virtual document can be any SysObject or SysObject subtype except
folders, cabinets, or subtypes of folders or cabinets, the components are often simple documents. Be
sure that you are familiar with the basics of creating and managing simple documents, described in
Chapter 7, Content Management Services, before you begin working with virtual documents.

A virtual document is a hierarchically organized structure composed of component documents. The
components of a virtual document are of type dm_sysobject, or a subtype of dm_sysobject (but
excluding cabinets and folders). Most commonly, the components are of type dm_document or a
subtype. The child components of a virtual document can be simple documents (that is, nonvirtual
documents), or they can themselves be virtual documents. Content server does not impose any
restrictions on the depth of nesting of virtual documents.

EMC Documentum Content Server Version 6.7 Fundamentals Guide 147

Virtual Documents

Note: A compound document (for example, an OLE or XML document) cannot be a child in a virtual
document.

The root of a virtual document is version-specific and identified by an object identity (on Content
Server, an r_object_id). The child components of a virtual document are not version-specific, and
are identified by an i_chronicle_id. The relationship between a parent component and its children
are defined in containment objects (dmr_containment), each of which connects a parent object to a
single child object. The order of the children of the parent object is determined by the order_no
property of the containment object.

The figure below illustrates these relationships.

Figure 8.

The version of the child component is determined at the time the virtual document is assembled. A
virtual document is assembled when it is retrieved by a client, and when a snapshot of the virtual
document is created. The assembly is determined at runtime by a binding algorithm governed by
metadata set on the dmr_containment objects.

Use of virtual documents

Virtual documents provide a way to combine multiple documents in multiple formats into a single
document. Each component exists as an independent object in the repository. Virtual documents
allow users to:

• Share document components in multiple virtual documents to manage content redundancy.
When a changed component is checked in, the change is reflected in all virtual documents that
include the component.

• Combine different types of related content into the same document (as an organizational tool).

148 EMC Documentum Content Server Version 6.7 Fundamentals Guide

Virtual Documents

• Increase flexibility of user access (multiple users can simultaneously check out and maintain
different parts of the virtual document).

• Save snapshots of the virtual document that reflect the state of all components at the time the
snapshot is created.

For some content types, such as Microsoft Word files and XML files used in XML applications, virtual
documents are patched as they are retrieved to a client, and flattened into a single document. In other
cases, the individual components of the virtual documents are retrieved as separate files.

Implementation

This section briefly describes how virtual documents are implemented within the EMC Documentum
system.

The components of a virtual document are associated with the containing document by containment
objects. Containment objects contain information about the components of a virtual document.
Each time you add a component to a virtual document, a containment object is created for that
component. Containment objects store the information that links a component to a virtual document.
For components that are themselves virtual documents, the objects also store information that the
server uses when assembling the containing document.

You can associate a particular version of a component with the virtual document or you can associate
the entire component version tree with the virtual document. Binding the entire version tree to
the virtual document allows you to select which version is included at the time you assemble the
document. This feature provides flexibility, letting you assemble the document based on conditions
specified at assembly time.

The components of a virtual document are ordered within the document. By default, the order is
managed by the server. The server automatically assigns order numbers when you add or insert a
component.

If you bypass the automatic numbering provided by the server, you can use your own numbers. The
insertPart, updatePart, and removePart methods allow you to specify order numbers. However, if
you define order numbers, you must also perform the related management operations. The server
does not manage user-defined ordering numbers.

The number of direct components contained by a virtual document is recorded in the document’s
r_link_cnt property. Each time you add a component to a virtual document, the value of this property
is incremented by 1.

The r_is_virtual_doc property is an integer property that helps determine whether EMCDocumentum
client applications treat the object as a virtual document. If the property is set to 1, the client
applications always open the document in the Virtual Document Manager. The property is usually
set to 1 when you use the Virtual Document Manager to add the first component to the containing
document. Programmatically, you can set it using the IDfSysObject.setIsVirtualDocument method.
You can set the property for any SysObject subtype except folders, cabinets, and their subtypes.

However, clients will also treat an object as a virtual document if r_is_virtual_doc is set to 0, and
r_link_cnt is greater than 0. A document is not a virtual document only when both properties are set
to 0. If either property is not 0, the object is treated as a virtual document.

EMC Documentum Content Server Version 6.7 Fundamentals Guide 149

Virtual Documents

Versioning

You can version a virtual document and manage its versions just as you do a simple document.

Deleting virtual documents and components

Deleting a virtual document version also removes the containment objects and any assembly objects
associated with that version.

By default, Content Server does not allow you to remove an object from the repository if the object
belongs to a virtual document. This ensures that the referential integrity of virtual documents is
maintained. This behavior is controlled by the compound_integrity property in the server config
object of the server. By default, this property is TRUE, which prohibits users from destroying any
object contained in a virtual document.

If you set this property to FALSE, users can destroy components of unfrozen virtual documents.
However, users can never destroy components of frozen virtual documents, regardless of the setting
of compound_integrity.

You must have SysAdmin or superuser privileges to set the compound_integrity property.

Assembling the virtual document

Content Server supports conditional assembly and snapshots for virtual documents. Both are features
that allow you to see the document as an assembled whole.

• Conditional assembly:

Assembling a virtual document selects a set of the document components for publication or
some other operation, such as viewing or copying. Conditional assembly lets you identify which
components to include. You can include all the components or only some of them. If a component
version tree is bound to the virtual document, you can choose not only whether to include the
component in the document but also which version of the component to include.

If a selected component is also a virtual document, the component descendants can also be
included. Whether descendants are included is controlled by two properties in the containment
objects.

• Snapshots:

Snapshots provide a way of persistently storing the results of virtual document assembly. The
snapshot records the exact components of the virtual document at the time the snapshot was
created, using version-specific object identities to represent each node.

Snapshots are stored in the repository as a set of assembly objects (dm_assembly) associated with
a dm_sysobject. Each assembly object in a snapshot represents one node of the virtual document,
and connects a parent document with a specific version of a child document.

The figure below illustrates assembly relationships.

150 EMC Documentum Content Server Version 6.7 Fundamentals Guide

Virtual Documents

Figure 9.

Virtual documents and content files

Typically, virtual documents do not have content files. However, because a virtual document is
created from a SysObject or SysObject subtype, any virtual document can have content files in
addition to component documents. If you do associate a content file with a virtual document, the
file is managed just as if it belonged to a simple document and is subject to the same rules. For
example, like the content files belonging to a simple document, all content files associated with a
virtual document must have the same format.

XML support

XML documents are supported as virtual documents in Content Server. When you import or create
an XML document using the DFC, the document is created as a virtual document. Other documents
referenced in the content of the XML document as entity references or links are automatically brought
into the repository and stored as directly contained components of the virtual document.

The connection between the parent and the components is defined in two properties of containment
objects: a_contain_type and a_contain_desc. DFC uses the a_contain_type property to indicate
whether the reference is an entity or link. It uses the a_contain_desc to record the actual identification
string for the child.

These two properties are also defined for the dm_assembly type, so applications can correctly create
and handle virtual document snapshots using the DFC.

To reference other documents linked to the parent document, you can use relationships of type
xml_link.

Virtual documents with XML content are managed by XML applications, which define rules for
handling and chunking the XML content.

EMC Documentum Content Server Version 6.7 Fundamentals Guide 151

Virtual Documents

Virtual documents and retention policies

You can associate a virtual document with a retention policy. Retention policies control an object’s
retention in the repository. They are applied using Retention Policy Services.

If a virtual document is subject to a retention policy, you cannot add, remove, or rearrange its
components.

• Versioning, page 116, describes how versioning is handled for documents.

• Defining component assembly behavior, page 153, has more information about the properties that
control conditional assembly for contained virtual documents.

• Assembling a virtual document, page 156, has more information about the process of assembling
a virtual document.

• Snapshots, page 159, has information about creating and working with snapshots.

• Virtual document assembly and binding, page 152, describes how early and late binding work.

• The XML Application Development Guide describes XML applications and how to create and
manage them.

Virtual document assembly and binding
A virtual document is assembled when it is retrieved by a client, and when a snapshot of the virtual
document is created and stored in the repository.

Each virtual document node can be early or late bound.

• In early binding, the binding label is set on the containment object when the node is created
and stored persistently. The binding label is stored in the version_label property of the
dmr_containment object.

• In late binding, the version of the node is determined at the time the virtual document is
assembled, using a "preferred version" or late binding label passed at runtime. If the version_label
property of the dmr_containment object is empty or null, then the node is late bound.

The logic that controls the assembly of the virtual document at the time it is retrieved is determined
by settings on the containment objects. The table below describes the binding logic.

API term Content Server property Description

binding version_label The early binding label of the virtual document
node. If empty, then the node is late bound.

overrideLateBinding use_node_vers_label Override the late binding value for all
descendants of this node, using the early bound
label of this node.

includeBrokenBind-
ings

none (provided by client
API at runtime)

A broken binding occurs when there is no
version label on the node corresponding to the
lateBindingValue. If broken nodes are included,
uses the CURRENT version of the node.

The following diagram shows the decision process when assembling a virtual document node.

152 EMC Documentum Content Server Version 6.7 Fundamentals Guide

Virtual Documents

Figure 10.

Defining component assembly behavior
There are two properties in containment objects that control how components that are themselves
virtual documents behave when the components are selected for a snapshot. The properties
are use_node_ver_label and follow_assembly. In an application, they are set by arguments in
appendPart, insertPart, and updatePart methods.

EMC Documentum Content Server Version 6.7 Fundamentals Guide 153

Virtual Documents

use_node_ver_label

The use_node_ver_label property determines how the server selects late-bound descendants of
an early-bound component.

If a component is early bound and use_node_ver_label in its associated containment object is set to
TRUE, the server uses the component early bound version label to select all late-bound descendants
of the component. If another early bound component is found that has use_node_ver_label set to
TRUE, then that component label is used to resolve descendants from that point.

Late bound components that have no early bound parent or that have an early bound parent with
use_node_ver_label set to FALSE are chosen by the binding conditions specified in the SELECT
statement.

The figure below illustrates how use_node_ver_label works. In the figure, each component is
labeled as early or late bound. For the early bound components, the version label specified when
the component was added to the virtual document is shown. Assume that all the components in the
virtual document have use_node_ver_label set to TRUE.

Figure 11.

Component B is early bound-the specified version is the one carrying the approved version label
. Because Component B is early bound and use_node_ver_label is set to TRUE, when the server
determines which versions of the Component B late bound descendants to include, it will choose
the versions that have the approved symbolic version label. In our sample virtual document,
Component E is a late-bound descendant of Component B. The server will pick the approved version
of Component E for inclusion in the virtual document.

Descending down the hierarchy, when the server resolves the Component E late bound descendant,
Component F, it again chooses the version that carries the approved version label. All late-bound
descendant components are resolved using the version label associated with the early-bound parent
node until another early bound component is encountered with use_node_ver_label set to TRUE.

In the example, Component G is early bound and has use_node_ver_label set to TRUE. Consequently,
when the server resolves any late bound descendants of Component G, it will use the version label

154 EMC Documentum Content Server Version 6.7 Fundamentals Guide

Virtual Documents

associated with Component G, not the label associated with Component B. The early bound version
label for Component G is released. When the server chooses which version of Component H to use, it
picks the version carrying the released label.

Component C, although late bound, has no early bound parent. For this component, the server
uses the binding condition specified in the IN DOCUMENT clause to determine which version to
include. If the IN DOCUMENT clause does not include a binding condition, the server chooses the
version carrying the CURRENT label.

follow_assembly

The follow_assembly property determines whether the server selects component descendants using
the containment objects or a snapshot associated with the component.

If you set follow_assembly to TRUE, the server selects component descendants from the snapshot
associated with the component. If follow_assembly is TRUE and a component has a snapshot, the
server ignores any binding conditions specified in the SELECT statement or mandated by the
use_node_ver_label property.

If follow_assembly is FALSE or a component does not have a snapshot, the server uses the
containment objects to determine component descendants.

Copy behavior
When a user copies a virtual document, the server can make a copy of each component or it can create
an internal reference or pointer to the source component. (The pointer or reference is internal. It is not
an instance of a dm_reference object.) Which option is used is controlled by the copy_child property
in a component containment object. It is an integer property with three valid settings:
• 0, which means that the copy or reference choice is made by the user or application when the
copy operation is requested

• 1, which directs the server to create a pointer or reference to the component

• 2, which directs the server to copy the component

Whether the component is copied or referenced, a new containment object for the component linking
the component to the new copy of the virtual document is created.

Regardless of which option is used, when users open the new copy in the Virtual Document Manager,
all document components are visible and available for editing or viewing, subject to user access
permissions.

EMC Documentum Content Server Version 6.7 Fundamentals Guide 155

Virtual Documents

Creating virtual documents
Virtual documents are typically created using the Virtual Document Manager, a user interface
accessible through Webtop. They may also be created programmatically. The basic steps to create a
virtual document programmatically are:
1. Obtain the object that you want to use as a virtual document.

Folders and cabinets cannot be virtual documents.

2. Set the object’s r_is_virtual_doc property.

Setting this property is optional. If users are never going to open or work with the document,
setting this property is not necessary. However, setting it ensures that if users do work with the
document, the document behaves appropriately.

3. Add components to the object.

Two methods add components to a virtual document: IDfSysObject.appendPart
andIDfSysObject.insertPart. The appendPart method adds components to the end of the
ordered list of components that make up the virtual document. The insertPart method inserts
components into the ordered list of components at any location. Note that neither method sets
the r_is_virtual_doc property. They only increment the r_link_cnt property.

4. Save or check in the object.

The permissions required to write the object to the repository vary depending on how it was
obtained:
• If you created a new object, use a save method to put the object in the repository.

• If you used a fetch method to obtain the object, use a save method to save the changes to
the repository.

You must have Write permission on the virtual document to save the changes you made.

• If you used one of the checkout methods to obtain the object, use one of the checkin methods
to save your changes to the repository.

You must have at least Version permission on the virtual document to use checkin. If the
repository is running under folder security, you must also have Write permission on the
object’s primary cabinet or folder.

• Refer to the associated Javadocs for information about the methods used to add or remove
components or update a virtual document component.

• Defining component assembly behavior, page 153, describes how the user_node_ver_label and
follow_assembly properties affect assembly behavior.

• Copy behavior, page 155, describes the valid settings for the copy_child property.

Assembling a virtual document
Typically, users work on individual parts of a virtual document, retrieving them from the repository
as needed. However, eventually, they need to work with the parts as one document. The process

156 EMC Documentum Content Server Version 6.7 Fundamentals Guide

Virtual Documents

of selecting individual components to produce a virtual document is called assembling a virtual
document.

1. Use a SELECT statement to retrieve the object IDs of the components from the repository.

2. Use the object IDs to get the components from the repository.

After obtaining the components, the application can manipulate the components as needed.

In the context of an application, assembling a virtual document has two steps:

Which component objects are selected depends on the following:
• how the objects are bound to the virtual document

• the criteria specified in the SELECT statement (including the IN DOCUMENT clause late binding
condition, if any)

• for those components that are themselves virtual documents, how their assembly behavior
is defined

Using the SELECT statement SEARCH and WHERE clauses and the WITH option in the IN
DOCUMENT clause, you can assemble documents based on current business rules, needs, or
conditions.

For example, perhaps your company has an instruction manual that contains both general information
pertinent to all operating systems and information specific to particular operating systems. You
can put both the general information and the operating system-specific information in one virtual
document and use conditional assembly to assemble manuals that are operating system-specific.

The following SELECT statements use a WHERE clause to assemble two operating system-specific
manuals, one UNIX-specific, and the other VMS-specific:
SELECT "r_object_id" FROM "dm_document"
IN DOCUMENT ID('0900001204800001') DESCEND
WHERE ANY "keywords" = 'UNIX'

SELECT "r_object_id" FROM "dm_document"
IN DOCUMENT ID('0900001204800001') DESCEND
WHERE ANY "keywords" = 'VMS'

Notice that the virtual document identified in both IN DOCUMENT clauses is the same. Each
SELECT searches the same virtual document. However, the conditions imposed by the WHERE
clause restrict the returned components to only those that have the keyword UNIX or the keyword
VMS defined for them.

The use_node_ver_label and follow_assembly properties affect any components that are themselves
virtual documents. Both control how Content Server chooses the descendants of such components for
inclusion.

Processing the SELECT statement

This section describes the algorithm Content Server uses to process a SELECT statement to assemble
a virtual document. The information helps you to write a SELECT statement that chooses exactly
the components you want.

EMC Documentum Content Server Version 6.7 Fundamentals Guide 157

Virtual Documents

Content Server uses the following algorithm to process a SELECT statement:
1. The server applies the criteria specified in the SEARCH and WHERE clauses to the document

specified in the IN DOCUMENT clause. The order of application depends on how you write the
query. By default, the SEARCH clause is applied first. When a document meets the criteria in the
first clause applied to it, the server tests the document against the criteria in the second clause. If
the document does not meet the criteria in both clauses, the SELECT returns no results.

2. The server applies the criteria specified in the SEARCH and WHERE clauses to each direct
component of the virtual document. The order of application depends on how you write the
query. By default, the SEARCH clause is applied first. When a component meets the criteria
in the first clause applied to it, the server tests it against the criteria in the second clause. If a
component does not meet the criteria in both clauses, it is not a candidate for inclusion.

If a component is late bound, the SEARCH and WHERE clauses are applied to each version of the
component. Those versions that meet the criteria in both clauses are candidates for inclusion.

3. The binding condition in the WITH option is applied to any versions of late-bound components
that passed Step 2.

It is possible for more than one version to meet the condition specified by the WITH option.
In these cases, the server uses the NODESORT BY option to select a particular version. If
NODESORT BY option is not specified, the server includes the version having the lowest object
ID by default.

4. If the DESCEND keyword is specified, the server examines the descendants of each included
component that is a virtual document. It applies the criteria specified in the SEARCH and
WHERE clauses first.

For late-bound descendants, the SEARCH and WHERE clauses are applied to each version of the
component. Those versions that meet the criteria are candidates for inclusion.

5. For late-bound descendants, the server selects the version to include from the subset that passed
Step 4. The decision is based on the values of use_node_ver_label in the containment objects and
the binding condition specified in the WITH option of the IN DOCUMENT clause.

The resulting set of components comprises the assembled document.

The WITH option and the SEARCH and WHERE clauses are optional. For example, if you do not
specify the WITH option and the search encounters any late-bound components, the server takes
the version having the lowest object ID or, if NODESORT BY is specified, whichever is first in the
sorted order.

If you include an IN ASSEMBLY clause instead of an IN DOCUMENT clause, the server applies the
SEARCH and WHERE clauses to the components found in the specified snapshot. Similarly, if you
include the USING ASSEMBLIES option in the IN DOCUMENT clause or if the component has
follow_assembly set to TRUE, when the server finds a component that has a snapshot, it applies the
SEARCH and WHERE clauses to the objects in the component snapshot rather than recursively
searching the component hierarchy.

• Defining component assembly behavior, page 153, has more information about defining assembly
behavior for virtual documents.

• The Documentum Content Server DQL Reference describes the SELECT statement in detail.

158 EMC Documentum Content Server Version 6.7 Fundamentals Guide

Virtual Documents

Snapshots
A snapshot is a record of the virtual document as it existed at the time you created the snapshot.
Snapshots are a useful shortcut if you often assemble a particular subset of virtual document
components. Creating a snapshot of that subset of components lets you assemble the set quickly
and easily.

A snapshot consists of a collection of assembly objects. Each assembly object represents one
component of the virtual document. All the components represented in the snapshot are absolutely
linked to the virtual document by their object IDs.

Only one snapshot can be assigned to each version of a virtual document. If you want to define
more than one snapshot for a virtual document, you must assign the additional snapshots to other
documents created specifically for the purpose.

Creating a snapshot

Creating a snapshot of a virtual document requires at least Version permission for the virtual
document. Typically, snapshots are created through Virtual Document Manager. However, it is
possible to create them programmatically. The basic steps are:
1. Content Server uses an IDfSysObject.assemble method to select the components for the snapshot

and places them in a collection.

Note: If you include the interruptFreq argument in the assemble method, you cannot execute
the method inside an explicit transaction. (An explicit transaction is a transaction explicitly
opened by an application or user.)

2. Content Server executes an IDfSession.getLastCollection method to obtain the ID of the collection
holding the components.

3. Content Server executes an IDfCollection.next method to generate assembly objects for the
components.

4. When the next method returns a NULL value, Content Server executes an IDfCollection.close
method to close the collection.

The collection must be explicitly closed to complete the snapshot creation. If you close the
collection before all the components have been processed (that is, before assembly objects have
been created for all of them), the snapshot is not created.

Modifying snapshots

You can add or delete components (by adding or deleting the assembly object representing the
component) or you can modify an existing assembly object in a snapshot.

Any modification that affects a snapshot requires at least Version permission on the virtual document
for which the snapshot was defined.

EMC Documentum Content Server Version 6.7 Fundamentals Guide 159

Virtual Documents

Adding new assembly objects

If you add an assembly object to an snapshot programmatically, be sure to set the following properties
of the new assembly object:
• book_id, which identifies the topmost virtual document containing this component. Use the
document object ID.

• parent_id, which identifies the virtual document that directly contains this component. Use the
document object ID.

• component_id, which identifies the component. Use the component object ID.

• comp_chronicle_id, which identifies the chronicle ID of the component.

• depth_no, which identifies the depth of the component within the document specified in the
book_id.

• order_no, which specifies the position of the component within the virtual document. This
property has an integer datatype. You can query the order_no values for existing components to
decide which value you want to assign to a new component.

You can add components that are not actually part of the virtual document to the document snapshot.
However, doing so does not add the component to the virtual document in the repository. That
is, the virtual document r_link_cnt property is not incremented and a containment object is not
created for the component.

Deleting an assembly object

Deleting an assembly object only removes the component represented by the assembly object from
the snapshot. It does not remove the component from the virtual document. You must have at
least Version permission for the topmost document (the document specified in the assembly object
book_id property) to delete an assembly object.

To delete a single assembly object or several assembly objects, use a destroy method. Do not use
destroy to delete each object individually in an attempt to delete the snapshot.

Changing an assembly object

You can change the values in the properties of an assembly object. However, if you do, be very sure
that the new values are correct. Incorrect values can cause errors when you attempt to query the
snapshot. (Snapshots are queried using the USING ASSEMBLIES option of the SELECT statement IN
DOCUMENT clause.)

160 EMC Documentum Content Server Version 6.7 Fundamentals Guide

Virtual Documents

Deleting a snapshot

Use a IDfSysObject.disassemble method to delete a snapshot. This method destroys the assembly
objects that make up the snapshot. You must have at least Version permission for a virtual document
to destroy its snapshot.

Frozen virtual documents and snapshots
A frozen virtual document or snapshot is a document that has been explicitly marked as immutable
by an IDfSysObject.freeze method. Users cannot modify the content or properties of a frozen virtual
document or of the frozen snapshot components. Nor can they add or remove snapshot components.

Issuing the freeze method automatically freezes the target virtual document. Freezing the associated
snapshot is optional. If the document has multiple snapshots, only the snapshot actually associated
with the virtual document itself can be frozen. (The other snapshots, associated with simple
documents, are not frozen.)

If you want to freeze only the snapshot, you must freeze both the virtual document and the snapshot
and then explicitly unfreeze the virtual document.

Users are allowed to modify any components of the virtual document that are not part of the frozen
snapshot. Although users cannot remove those components from the document, they can change the
component content files or properties.

Freezing a document

Freezing sets the following properties of the virtual document to TRUE:
• r_immutable_flag

This property indicates that the document is unchangeable.

• r_frozen_flag

This property indicates that the r_immutable_flag was set by a freeze method (instead of a checkin
method).

If you freeze an associated snapshot, the r_has_frzn_assembly property is also set to TRUE.

Freezing a snapshot sets the following properties for each component in the snapshot:
• r_immutable_flag

• r_frzn_assembly_cnt

The r_frzn_assembly count property contains a count of the number of frozen snapshots that
contain this component. If this property is greater than zero, you cannot delete or modify the
object.

EMC Documentum Content Server Version 6.7 Fundamentals Guide 161

Virtual Documents

Unfreezing a document

Unfreezing a document makes the document changeable again.

Unfreezing a virtual document sets the following properties of the document to FALSE:
• r_immutable_flag

If the r_immutable_flag was set by versioning prior to freezing the document, then unfreezing
the document does not set this property to FALSE. The document remains unchangeable even
though it is unfrozen.

• r_frozen_flag

If you chose to unfreeze the document snapshot, the server also sets the r_has_frzn_assembly
property to FALSE.

Unfreezing a snapshot resets the following properties for each component in the snapshot:
• r_immutable_flag

This is set to FALSE unless it was set to TRUE by versioning prior to freezing the snapshot. In
such cases, unfreezing the snapshot does not reset this property.

• r_frzn_assembly_cnt

This property, which contains a count of the number of frozen snapshots that contain this
component, is decremented by 1.

Obtaining information about virtual documents
This section describes how to query a virtual document and how to obtain a path through a virtual
document to a particular component.

Querying virtual documents

To query a virtual document, use DQL just as you would to obtain information about any other object.
Documentum provides an extension to the SELECT statement that lets you query virtual documents
to get information about their components. This extension is the IN DOCUMENT clause. Used in
conjunction with the keyword DESCEND, this clause lets you:
• Identify all components contained directly or indirectly in a virtual document

• Assemble a virtual document

Use the IN DOCUMENT clause with the ID scalar function to identify a particular virtual document in
your query. The keyword DESCEND directs the server to search the virtual document full hierarchy.

Note: The server can search only the descendants of components that reside in the local repository.
If any components are reference links, the server cannot search the descendents of the referenced
documents.

For example, suppose you want to find every direct component of a virtual document. The following
SELECT statement does this:

162 EMC Documentum Content Server Version 6.7 Fundamentals Guide

Virtual Documents

SELECT "r_object_id","object_name" FROM "dm_sysobject"
IN DOCUMENT ID('virtual_doc_id')

This second example returns every component including both those that the document contains
directly and those that it contains indirectly.
SELECT "r_object_id" FROM "dm_sysobject"
IN DOCUMENT ID('virtual_doc_id') DESCEND

The VERSION clause lets you find the components of a specific version of a virtual document. The
server searches the version tree that contains the object specified in virtual_doc_id and uses (if found)
the version specified in the VERSION clause. For example:
SELECT "r_object_id" FROM "dm_sysobject"
IN DOCUMENT ID('virtual_doc_id') VERSION '1.3'

Obtaining a path to a particular component

If you are writing web-based applications, the ability to determine a path to a document within
a virtual document is very useful. One property (path_name) and methods in the IDfSysObject
interface provide this information.

The path_name property

The path_name property is defined for the assembly object type. When you create a snapshot for a
virtual document, the processing automatically sets each assembly object path_name property to a
list of the nodes traversed to arrive at the component represented by the assembly object. The list
starts with the top containing virtual document and works down to the component. Each node is
represented in the path by its object name, and the nodes are separated with forward slashes.

For example, suppose that Mydoc is a virtual document and that it has two directly contained
components, BrotherDoc and SisterDoc. Suppose also that BrotherDoc has two components,
Nephew1Doc and Nephew2Doc.

If a snapshot is created for Mydoc that includes all the components, each component will have an
assembly object. The path_name property values for these assembly objects would be:
• Mydoc, for the Mydoc component

• Mydoc/BrotherDoc, for the BrotherDoc component

• Mydoc/BrotherDoc/Nephew1Doc, for the Nephew1Doc component

• Mydoc/BrotherDoc/Nephew2Doc, for the Nephew2Doc component

• Mydoc/SisterDoc, for the SisterDoc component

The path_name property is set during the execution of the next method during assembly processing.
If the path is too long for the property length, the path is truncated from the end of the path.

Because a component can belong to multiple virtual documents, there may be multiple assembly
objects that reference a component. Use the assembly object book_id property to identify the virtual
document in which the path in path_name is found.

EMC Documentum Content Server Version 6.7 Fundamentals Guide 163

Virtual Documents

Using DFC

In DFC, use the IDfSysObject.vdmPath and IDfSysObject.vdmPathDQL methods to return the paths
to a document as a collection. Both methods have arguments that tell the method you want only the
paths found in a particular virtual document or only the shortest path to the document.

The vdmPathDQL method provides the greatest flexibility in defining the selection criteria of
late-bound versions found in the paths. The vdmPathDQL method also searches all components in
the paths for which the user has at least Browse permission.

With vdmPath, you can only identify version labels as the selection criteria for late-bound
components in the paths. Additionally, vdmPath searches only the components to which World has
at least Browse permission.

• The Documentum Content Server DQL Reference describes the ID function and its use.

• Creating a snapshot, page 159, describes assembly processing.

164 EMC Documentum Content Server Version 6.7 Fundamentals Guide

Chapter 9
Workflows

This chapter describes workflows, part of the process management services of Content Server.
Workflows allow you to automate business processes. The following topics are included:
• Overview, page 165

• Workflow definitions, page 168

• Validation and installation, page 180

• Package notes, page 184

• Attachments, page 186

• The workflow supervisor, page 186

• The workflow agent, page 186

• Instance states, page 187

• Typical workflow example, page 190

• Completed workflow reports, page 185

• Distributed workflow, page 199

Overview
A workflow is a sequence of activities that represents a business process, such as an insurance claims
procedure or an engineering development process. Workflows can describe simple or complex
business processes. Workflow activities can occur one after another, with only one activity in progress
at a time. A workflow can consist of multiple activities all happening concurrently. A workflow
might combine serial and concurrent activity sequences. You can also create a cyclical workflow, in
which the completion of an activity restarts a previously completed activity.

Implementation

Workflows are implemented as two separate parts: a workflow definition and a runtime instantiation
of the definition.

EMC Documentum Content Server Version 6.7 Fundamentals Guide 165

Workflows

The workflow definition is the formalized definition of the business process. A workflow definition
has two major parts, the structural, or process, definition and the definitions of the individual
activities. The structural definition is stored in a dm_process object. The definitions of individual
activities are stored in dm_activity objects. Storing activity and process definitions in separate
objects allows activity definitions to be used in multiple workflow definitions. When you design a
workflow, you can include existing activity definitions in addition to creating any new activity
definitions needed.

When a user starts a workflow, the server uses the definition in the dm_process object to create a
runtime instance of the workflow. Runtime instances of a workflow are stored in dm_workflow
objects for the duration of the workflow. When an activity starts, it is instantiated by setting
properties in the workflow object. Running activities may also generate work items and packages.
Work items represent work to be performed on the objects in the associated packages. Packages
generally contain one or more documents.

The following figure illustrates how the components of a workflow definition and runtime instance
work together.

Figure 12.

166 EMC Documentum Content Server Version 6.7 Fundamentals Guide

Workflows

Users can repeatedly perform the business process. It is based on a stored definition, and the essential
process is the same each time. Separating a workflow definition from its runtime instantiation allows
multiple workflows based on the same definition to run concurrently.

Template workflows

You can create a template workflow definition, a workflow definition that can be used in many
contexts. This is done by including activities whose performers are identified by aliases instead of
actual performer names. When aliases are used, the actual performers are selected at runtime.

For example, a typical business process for new documents has four steps: authoring the document,
reviewing it, revising it, and publishing the document. However, the actual authors and reviewers of
various documents will be different people. Rather than creating a new workflow for each document
with the authors and reviewers names hard-coded into the workflow, create activity definitions for
the basic steps that use aliases for the authors and reviewers names and put those definitions in one
workflow definition. Depending on how you design the workflow, the actual values represented by
the aliases can be chosen by the workflow supervisor when the workflow is started or later, by the
server when the containing activity is started.

Installing Content Server installs one system-defined workflow template. Its object name is
dmSendToList2. It allows a user to send a document to multiple users simultaneously. This template
is available to users of Desktop Client (through the File menu) and Webtop (through the Tools menu).

Process Builder and Workflow Manager

Content Server supports two user interfaces for creating and managing workflows: Process Builder
and Workflow Manager.

Workflow Manager (WFM) supports basic workflow functionality. Process Builder, which requires
an additional license, supports the basic functionality and additional features not supported by
WFM. The additional features supported in Process Builder are:
• Ability to define INITIATE and EXCEPTION activities

• Ability to associate a form with an activity.

• Global package definitions

• Ability to associate structured data with workflows, to allow metadata to be recorded and
managed as part of the workflow

• Ability to associate correlation sets with a workflow, to allow the workflow engine to communicate
with external applications at runtime

• Ability to conditionally define a performer for certain performer categories

• Enhanced workflow timer capabilities

• Work queues, to help manage work items

• XPath specifications in activity transition conditions

EMC Documentum Content Server Version 6.7 Fundamentals Guide 167

Workflows

• Email templates for workflow events

• Ability to add attachments to a running workflow

The additional features supported are called out and described in the appropriate sections. However,
complete descriptions of their use and implementation are found in the Business Process Manager
documentation.

Workflow definitions
A workflow definition consists of
• one process definition

• a set of activity definitions

• port and package definitions

The following sections provide some basic information about the components of a definition.

Process definitions

A process definition defines the structure of a workflow. The structure represents a picture of the
business process emulated by the workflow. Process definitions are stored as dm_process objects.
A process object has properties that identify the activities that make up the business process, a
set of properties that define the links connecting the activities, and a set of properties that define
the structured data elements and correlation sets that may be associated the workflow. It also has
properties that define some behaviors for the workflow when an instance is running.

Note: Structured data elements and correlation sets for a workflow may only be defined using
Business Processs Manager. Refer to that documentation for more information about these features.

Activity types in a process definition

Activities represent the tasks that comprise the business process. When you create a workflow
definition, you must decide how to model your business process in the sequence of activities that
make up a workflow structure.

Each activity in a workflow is defined as one of the following kinds of activities:
• Initiate

Initiate activities link to a Begin activity. These activities record how a workflow may be started.
For example, a workflow might have two Initiate activities, one that allows the workflow to be
started manually from Webtop, and one that allows the workflow to be started by submitting a
form. Initiate activities may only be linked to Begin activities. Initiate activities may only be
defined for a workflow using Process Builder.

• Begin

Begin activities start the workflow. A process definition must have at least one beginning activity.

168 EMC Documentum Content Server Version 6.7 Fundamentals Guide

Workflows

• Step

Step activities are the intermediate activities between the beginning and the end. A process
definition can have any number of Step activities.

• End

An End activity is the last activity in the workflow. A process definition can have only one
ending activity.

• Exception

An exception activity is associated with an automatic activity, to provide fault-handling
functionality for the activity. Each automatic activity can have one exception activity.

You can use activity definitions more than once in a workflow definition. For example, suppose
you want all documents to receive two reviews during the development cycle. You might design a
workflow with the following activities: Write, Review1, Revise, Review2, and Publish. The Review1
and Review2 activities can be the same activity definition.

An activity that can be used more than once is called a repeatable activity. Whether an activity is
repeatable is defined in the activity’s definition.

A repeatable activity is an activity that can be used more than once in a particular workflow. By
default, activities are defined as repeatable activities.

The repeatable_invoke property controls this feature. It is TRUE by default. To constrain an activity’s
use to only once in a workflow’s structure, the property must be set to FALSE.

In a process definition, the activities included in the definition are referenced by the object IDs of the
activity definitions. In a running workflow, activities are referenced by the activity names specified in
the process definition.

When you add an activity to a workflow definition, you must provide a name for the activity that is
unique among all activities in the workflow definition. The name you give the activity in the process
definition is stored in the r_act_name property. If the activity is used only once in the workflow
structure, you can use the name assigned to the activity when the activity was defined (recorded in
the activity’s object_name property). However, if the activity is used more than once in the workflow,
you must provide a unique name for each use.

Links

A link connects two activities in a workflow through their ports. A link connects an output port of
one activity to an input port of another activity. Think of a link as a one-way bridge between two
activities in a workflow.

An input port on a Begin activity participates in a link, but it can only connect to an output port of
an Initiate activity. Similarly, an output port of an Initiate activity may only connect to an input
port of a Begin activity.

Output ports on End activities are not allowed to participate in links.

Each link in a process definition has a unique name.

EMC Documentum Content Server Version 6.7 Fundamentals Guide 169

Workflows

Activity definitions

Activity definitions describe tasks in a workflow. Documentum implements activity definitions as
dm_activity objects. The properties of an activity object describe the characteristics of the activity,
including:
• How the activity is executed

• Who performs the work

• What starts the activity

• The transition behavior when the activity is completed

The definition also includes a set of properties that define the ports for the activities, the packages
that each port can handle, and the structured data that is accessible to the activity.

Manual and automatic activities

An activity is either a manual activity or an automatic activity.

Manual activities

A manual activity represents a task performed by an actual person or persons. Manual activities can
allow delegation or extension. Any user can create a manual activity.

Automatic activities

An automatic activity represents a task whose work is performed, on behalf of a user, by a script
defined in a method object. Automatic activities cannot be delegated or extended. Additionally, you
must have Sysadmin or superuser privileges to create an automatic activity.

If the method executed by the activity is a Java method, you can configure the activity so that the
method is executed by the dm_bpm servlet. This is a Java servlet dedicated to executing workflow
methods. To configure the method to execute in this servlet, you must set the a_special_app property
of the method object to a character string beginning with workflow. Additionally, the classfile of the
Java method must be in a location that is included in the classpath of the dm_bpm_servlet.

If a Java workflow method is not executed by the dm_bpm_servlet, it is executed by the Java method
server.

Note: The dm_server_config.app_server_name for the dm_bpm_servlet is do_bpm. The URL for
the servlet is in the app_server_uri property, at the corresponding index position as do_bpm in
app_server_name.

• Delegation and extension, page 172, describes delegation and extension.

• The Documentum Content Server Administration and Configuration Guide contains instructions for
creating a method for an automatic activity.

170 EMC Documentum Content Server Version 6.7 Fundamentals Guide

Workflows

Activity priorities

Priority values are used to designate the execution priority of an activity. Any activity may have a
priority value defined for it in a process definition that contains the activity. An activity assigned
to a work queue may have an additional priority assigned that is specific to the work queue. The
uses of these two priority values are different.

A work queue can be chosen as an activity performer only if the workflow definition was created in
Process Builder.

Use of the priority defined in the process definition

When you create a workflow definition in either WFM or Process Builder, you can set a priority for
each activity in the workflow. The priority value is recorded in the process definition and is only
applied to automatic tasks. Content Server ignores the value for manual tasks.

The workflow agent (the internal server facility that controls execution of automatic activities) uses
the priority values in r_act_priority to determine the order of execution for automatic activities.
When an automatic activity is instantiated, Content Server sends a notification to the workflow agent.
In response, the agent queries the repository to obtain information about the activities ready for
execution. The query returns the activities in priority order, highest to lowest.

Use of the work queue priority values

In Process Builder, you can set up work queues to automate the distribution of manual tasks to
appropriate performers. For more information about work queues, refer to the Process Builder
documentation or online Help. Every work item on a work queue is governed by a work queue policy
object. The work queue policy defines how the item is handled on the queue. Among other things,
the policy defines the priority of the work items on the queue. Every work item on a work queue is
assigned a priority value at runtime, when the work item is generated.

The priority assigned by a work queue policy does not affect or interact with a priority value assigned
to an activity in the process definition. Work queue policies are applied to manual activities, because
only manual activities can be placed on a work queue. The priority values in the process definition
are used by Content Server only for execution of automatic activities.

For more information about how the workqueue policy is handled at runtime, refer to Process
Builder documentation.

Process and activity definition states

There are three possible states for process and activity definitions: draft, validated, and installed.

A definition in the draft state has not been validated since it was created or last modified. A definition
in the validated state has passed the server’s validation checks, which ensure that the definition is
correctly defined. A definition in the installed state is ready for use in an active workflow.

EMC Documentum Content Server Version 6.7 Fundamentals Guide 171

Workflows

You cannot start a workflow from a process definition that is in the draft or validated state. The
process definition must be in the installed state. Similarly, you cannot successfully install a process
definition unless the activities it references are in the installed state.

Delegation and extension

Delegation and extension are features that you can set for manual activities.

Delegation allows the server or the activity performer to delegate the work to another performer. If
delegation is allowed, it can occur automatically or be forced manually.

Automatic delegation occurs when the server checks the availability of an activity performer or
performers and determines that the person or persons is not available. When this happens, the
server automatically delegates the work to the user identified in the user_delegation property of the
original performer user object.

If there is no user identified in user_delegation or that user is not available, automatic delegation fails.
When delegation fails, Content Server reassigns the work item based on the value in the control_flag
property of the activity object that generated the work item. If control_flag is set to 0 and automatic
delegation fails, the work item is assigned to the workflow supervisor. If control_flag is set to 1, the
work item is reassigned to the original performer. The server does not attempt to delegate the task
again. In either case, the workflow supervisor receives a DM_EVENT_WI_DELEGATE_F event.

Manual delegation occurs when an IDfWorkitem.delegateTask method is explicitly issued. Typically,
only the work item performer, the workflow supervisor, or a superuser can execute the method.
However, if the enable_workitem_mgmt key in the server.ini file is set to T (TRUE), any user can
issue a delegateTask method to delegate any work item.

If delegation is disallowed, automatic delegation is prohibited. However, the workflow supervisor or
a superuser can delegate the work item manually.

Extension

Extension allows the activity performer to identify a second performer for the activity after he or
she completes the activity the first time. If extension is allowed, when the original performers
complete activity work items, they can identify a second round of performers for the activity. The
server will generate new work items for the second round of performers. Only after the second
round of performers completes the work does the server evaluate the activity transition condition
and move to the next activity.

A work item can be extended only once. Programmatically, a work item is extended by execution
of an IDfWorkitem.repeat method.

If extension is disallowed, only the workflow supervisor or a superuser can extend the work item.

Activities with multiple performers performing sequentially (user category 9), cannot be extended.

172 EMC Documentum Content Server Version 6.7 Fundamentals Guide

Workflows

Performer choices

When you define a performer for an activity, you must first choose a performer category. Depending
on the chosen category, you may also be required to identify the performer also. If so, you can
either define the actual performer at that time or configure the activity to allow the performer to be
chosen at one of the following times:
• When the workflow is started

• When the activity is started

• When a previous activity is completed

If you choose to define the performer during the design phase, Process Builder allows you to either
name the performer directly for many categories or define a series of conditions and associated
performers. At runtime, the workflow engine determines which condition is satisfied and selects the
performer defined as the choice for that condition.

There are multiple options when choosing a performer category. Some options are supported for
both manual and automatic activities. Others are only valid choices for manual activities.

Task subjects

The task subject is a message that provides a work item performer with information about the work
item. The message is defined in the activity definition, using references to one or more properties. At
runtime, the actual message is constructed by substituting the actual property values into the string.
For example, suppose the task subject is defined as:
Please work on the {dmi_queue_item.task_name} task
(from activity number {dmi_queue_item.r_act_seqno})
of the workflow {dmi_workflow.object_name}.
The attached package is {dmi_package_r_package_name}.

Assuming that task_name is Review, r_act_seqno is 2, object_name is Engr Proposal, and
r_package_name is First Draft, at runtime the user sees:
Please work on the Review task
(from activity number 2) of the workflow Engr Proposal.
The attached package is First Draft.

The text of a task subject message is recorded in the task_subject property of the activity definition.
The text can be up to 255 characters and can contain references to the following object types and
properties:
• dm_workflow, any property

• dmi_workitem, any property

At runtime, references to dmi_workitem are interpreted as references to the work item associated
with the current task.

• dmi_queue_item, any property except task_subject

At runtime, references to dmi_queue_item are interpreted as references to the queue item
associated with the current task.

• dmi_package, any property

EMC Documentum Content Server Version 6.7 Fundamentals Guide 173

Workflows

The format of the object type and property references must be:
{object_type_name.property_name}

The server uses the following rules when resolving the string:
• The server does not place quotes around resolved object type and property references.

• If the referenced property is a repeating property, the server retrieves all values, separating them
with commas.

• If the constructed string is longer than 512 characters, the server truncates the string.

• If an object type and property reference contains an error, for example, if the object type or
property does not exist, the server does not resolve the reference. The unresolved reference
appears in the message.

The resolved string is stored in the task_subject property of the associated task queue item object.
Once the server has created the queue item, the value of the task_subject property in the queue item
will not change, even if the values in any referenced properties change.

Starting conditions

A starting condition defines the starting criteria for an activity. At runtime, the server will not start
an activity until the activity starting condition is met. A starting condition consists of a trigger
condition and, optionally, a trigger event.

The trigger condition is the minimum number of input ports that must have accepted packages. For
example, if an activity has three input ports, you may decide that the activity can start when two
of the three have accepted packages.

A trigger event is an event queued to the workflow. The event can be a system-defined event, such as
dm_checkin, or you can make up an event name, such as promoted or released. However, because
you cannot register a workflow to receive event notifications, the event must be explicitly queued to
the workflow using an IDfWorkflow.queue method.

Port and package definitions

Ports are used to move packages in the workflow from one activity to the next. Packages contain the
documents or other objects on which the work of the activity is performed. The definitions of both
ports and packages are stored in properties in activity definitions.

Port definitions

Each port in an activity participates in one link. A port’s type and the package definitions associated
with the port define the packages the activity can receive or send through the link. The types
of port include:
• Input

174 EMC Documentum Content Server Version 6.7 Fundamentals Guide

Workflows

An input port accepts a package as input for an activity. The package definitions associated with
an input port define what packages the activity accepts. Each input port is connected through a
link to an output port of a previous activity.

• Output

An output port sends a package from an activity to the next activity. The package definitions
associated with an output port define what packages the activity can pass to the next activity or
activities. Each output port is connected by a link to an input port of a subsequent activity.

• Revert

A revert port is a special input port that accepts packages sent back from a subsequent performer.
A revert port is connected by a link to an output port of a subsequent activity.

• Exception

An exception port is an output port that links an automatic activity to the input port of an
Exception activity. Exception ports do not participate in transitions. The port is triggered only
when the automatic activity fails. You must create the workflow definition using Process Builder
to define exception ports and Exception activities.

Package definitions

Documents are moved through a workflow as packages moving from activity to activity through the
ports. Packages are defined in properties of the activity definition.

Each port must have at least one associated package definition, and may have multiple package
definitions. When an activity is completed and a transition to the next activity occurs, Content Server
forwards to the next activity the package or packages defined for the activated output port.

If the package you define is an XML file, you can identify a schema to be associated with that file. If
you later reference the package in an XPath expression in route case conditions of a manual activity
for an automatic transition, the schema is used to validate the path. The XML file and the schema
are associated using a relationship.

The actual packages represented by package definitions are generated at runtime by the server as
needed and stored in the repository as dmi_package objects. You cannot create package objects
directly.

In Process Builder, you can define a package with no contents. This lets you design workflows that
allow an activity performer to designate the contents of the outgoing package at the time he or
she completes the activity.

Scope of a package definition

If you create the workflow using WorkflowManager, a package definition is associated with the input
and output port connected by the selected link (flow). In Workflow Manager, you must define the
package or packages for each link in the workflow.

If you are using Process Builder to create the workflow, a package definition is global. When you
define a package in Process Builder, the definition is assigned to all input and output ports in all
activities in the workflow. It is not necessary to define packages for each link individually.

EMC Documentum Content Server Version 6.7 Fundamentals Guide 175

Workflows

Note: Process Builder allows you to choose, for each activity, whether to make the package visible or
invisible to that activity. So, even though packages are globally assigned, if a package is not needed
for a particular activity, you can make it invisible to that activity. When the activity starts, the package
is ignored-none of the generated tasks will reference that package.

Package compatibility

The package definitions associated with two ports connected by a link must be compatible.

The two ports referenced by a link must meet the following criteria to be considered compatible:
• They must have the same number of package definitions.

For example, if ActA_OP1 is linked to ActB_IP2 and ActA_OP1 has two package definitions,
ActB_IP2 must have two package definitions.

• The object types of the package components must be related as subtypes or supertypes in the
object hierarchy. One of the following must be true:
— The outgoing package type is a supertype of the incoming package type.

— The outgoing package type is a subtype of the incoming package type.

— The outgoing package type and the incoming package type are the same.

• Package acceptance, page 176, describes how the implementation actually moves packages from
one activity to the next.

• The Documentum Process Builder documentation or online help describes how to use those
features, such as visibility and skill levels for packages, that are only available through
Documentum Process Builder.

Package acceptance

When packages arrive at an input port, the server checks the port definition to see if the packages
satisfy the port package requirements and verifies the number of packages and package types
against the port definition.

If the port definitions are satisfied, the input port accepts the arriving packages by changing the
r_act_seqno, port_name, and package_name properties of those packages.

The following figure illustrates this process.

176 EMC Documentum Content Server Version 6.7 Fundamentals Guide

Workflows

Figure 13.

In the figure, the output port named OUT1 of the source activity is linked to the input port named IN1
of the destination activity. OUT1 contains a package definition: Package A of type dm_document.

IN1 takes a similar package definition but with a different package name: Package B. When the
package is delivered from the port OUT1 to the port IN1 during execution, the content of the package
changes to reflect the transition:
• r_package_name changes from Package A to Package B

• r_port_name changes from OUT1 to IN1

• r_activity_seq changes from Seqno 1 to Seqno 2

• i_acceptance_date is set to the current time

In addition, at the destination activity, the server performs some bookkeeping tasks, including:
• Incrementing r_trigger_revert if the triggered port is a revert port

As soon as a revert port is triggered, the activity becomes active and no longer accepts any
incoming packages (from input or other revert ports).

• Incrementing r_trigger_input if the triggered port is an input port

As soon as this number matches the value of trigger_threshold in the activity definition, the
activity stops accepting any incoming packages (from revert or other input ports) and starts
its precondition evaluation.

• Setting r_last_performer

This information comes directly from the previous activity.

Packages that are not needed to satisfy the trigger threshold are dropped. For example, in the
following figure, Activity C has two input ports: CI1, which accepts packages P1 and P2, and CI2,
which accepts packages P1 and P3. Assume that the trigger threshold for Activity C is 1-that is, only
one of the two input ports must accept packages to start the activity.

EMC Documentum Content Server Version 6.7 Fundamentals Guide 177

Workflows

Suppose Activity A completes and sends its packages to Activity C before Activity B and that the
input port, CI1 accepts the packages. In that case, the packages arriving from Activity B are ignored.

Figure 14.

Transition behavior

When an activity is completed, a transition to the next activity or activities occurs. The transition
behavior defined for the activity defines when the output ports are activated and which output ports
are activated. Transition behavior is determined by:
• The number of tasks that must be completed to trigger the transition

By default, all generated tasks must be completed.

• The transition type

If the number of completed tasks you specify is greater than the total number of work items for an
activity, Content Server requires all work items for that activity to complete before triggering the
transition. An activity transition type defines how the output ports are selected when the activity
is complete. There are three types of transition:
— Prescribed

If an activity transition type is prescribed, the server delivers packages to all the output ports.
This is the default transition type.

— Manual

If the activity transition type is manual, the activity performers must indicate at runtime
which output ports receive packages.

— Automatic

178 EMC Documentum Content Server Version 6.7 Fundamentals Guide

Workflows

If the activity transition type is automatic, you must define one or more route cases for the
transition.

Warning and suspend timers

Content Server supports the following timers for workflow activities:
• Warning timers

The warning timers automate delivery of advisory messages to workflow supervisors and
performers when an activity is not started within a given period or is not completed within
a given period.

Warning timers are defined when the activity is defined.

There are two types of warning timer:
— Pre-timers

A pre-timer sends email messages if an activity is not started within a given time after the
workflow starts.

— Post-timers

A post-timer sends messages when an activity is not completed within a specified interval,
counting from the start of the activity.

• Suspend timers

A suspend timer automates the resumption of a halted activity.

Suspend timers are not part of an activity definition. They are defined by a method argument, at
runtime, when an activity is halted with a suspension interval.

Package control

Package control is an optional feature. It is a specific constraint on Content Server that stops the server
from recording package component object names specified in an addPackage or addAttachment
method in the generated package or wf attachment object. By default, package control is not enabled.
This means that if an addPackage or addAttachment method includes the component names as an
argument, the names are recorded in the r_component_name property of the generated package or wf
attachment object. If package control is enabled, Content Server sets the r_component_name property
to a single blank even if the component names are specified in the methods.

If the control is enabled at the repository level, the setting in the individual workflow definitions
is ignored. If the control is not enabled at the repository level, then you must decide whether to
enable it for an individual workflow.

If you want to reference package component names in the task subject for any activities in the
workflow, do not enable package control. Use package control only if you do not want to expose the
object names of package components.

EMC Documentum Content Server Version 6.7 Fundamentals Guide 179

Workflows

To enable package control in an individual workflow definition, set the package_control property to 1.

• The Documentum Content Server Administration and Configuration Guide describes how to enable or
disable package control at the repository level.

Validation and installation
Activity and process definitions must be validated and installed before users can start a workflow
based on the definitions.

To validate an activity or process definition requires either Relate permission on the process or
activity definition or Sysadmin or superuser privileges.

Validating process and activity definitions

Validating an activity definition verifies that:
• All package definitions are valid

• All objects referenced by the definition (such as a method object) are local

• The transition_eval_cnt, transition_max_output_cnt, and transition_flag properties have valid
values.

Validating a process definition verifies that:
• The referenced activities have unique names within the process

• There is at least one Begin activity and only one End activity

• There is a path from each activity to the End activity

• All referenced dm_activity objects exist and are in the validated or installed state and that they
are local objects

• All activities referenced by the link definitions exist

• The ports identified in the links are defined in the associated activity object

• There are no links that reference an input port of a Begin step and no links that reference an
output port of an End step

• The ports are connectable and that each port participates in only one link

The validation verifies that both ports handle the same number of pakcages and the package
definitions in the two ports are compatible.

180 EMC Documentum Content Server Version 6.7 Fundamentals Guide

Workflows

The method checks all possible pairs of output/input package definitions in the two ports. If any pair
of packages are incompatible, the connectivity test fails.

• Package compatibility, page 176, describes the rules for package compatibility.

Installing new process and activity definitions
Note: The information in this section applies to new process and activity definitions. If you are
re-installing a modified workflow definition that has running instances, do not use the information in
this section.

The process and activity definitions of a workflow definition must be installed before a workflow can
be started from the definition.

A process or activity definition must be in the validated state before you install it.

You can install activity definitions individually, before you install the process definition, or
concurrently with the process definition. You cannot install a process definition that contains
uninstalled activities unless you install the activities concurrently. If you install only the process, the
activities must be in the installed state.

Installing activity definitions and process definitions requires either:
• Relate permission on the process or activity definition

• Sysadmin or superuser privileges

• Refer to the associated Javadocs for information about the methods that install process and
activity definitions.

Workflow execution
Workflow execution is implemented with the following object types:
• dm_workflow

Workflow objects represent an instance of a workflow definition.

• dmi_workitem

When an activity starts, the server creates one or more work items for the activity.

• dmi_package

• dmi_queue_item

The server uses a queue item object to direct a work item to an inbox.

• dmi_wf_timer

EMC Documentum Content Server Version 6.7 Fundamentals Guide 181

Workflows

Workflow objects

Workflow objects are created when the workflow is started by an application or a user. Workflow
objects are subtypes of the persistent object type, and consequently, have no owner. However, every
workflow has a designated supervisor (recorded in the supervisor_name property). This person
functions much like the owner of an object, with the ability to change the workflow properties and its
state.

A workflow object contains properties that describe the activities in the workflow. These properties
are set automatically, based on the workflow definition, when the workflow object is created. They
are repeating properties, and the values at the same index position across the properties represent
one activity instance.

The properties that make up the activity instance identify the activity, its current state, its warning
timer deadlines (if any), and a variety of other information. As the workflow executes, the values
in the activity instance properties change to reflect the status of the activities at any given time
in the execution.

• The workflow supervisor, page 186, describes the workflow supervisor.

• The Documentum Content Server System Object Reference provides a full list of the properties that
make up an activity instance.

Work item and queue item objects

When an activity is started, the server creates one or more work items for the activity. A work item
represents a task assigned to the activity performer (either a person or an invoked method).

Work items are instances of the dmi_workitem object type. A work item object contains properties
that identify the activity that generated the work item and the user or method to perform the work,
record the state of the work item, and record information for management.

The majority of the properties are set automatically, when the server creates the work item. A few are
set at runtime. For example, if the activity performer executes a Repeat method to give the activity to
a second round of performers, the work item r_ext_performer property is set.

Work item objects are not directly visible to users. To direct a work item to an inbox, the server uses
a queue item object (dmi_queue_item). All work items for manual activities have peer queue item
objects.Work items for automatic activities do not have peer queue item objects.

How manual activity work items are handled

The first operation that must occur on a work item is acquisition.

Users typically acquire a work item by selecting and opening the associated Inbox task. Internally,
an acquire method is executed when a user acquires a work item. Acquiring a work item sets the
work item state to acquired.

Users who have acquired a work item are called performers. The performer can perform the required
work or delegate the work to another user if the activity definition allows delegation. The performer

182 EMC Documentum Content Server Version 6.7 Fundamentals Guide

Workflows

may also add or remove notes for the objects on which the work is performed. If the user performs
the work, at its completion, the user can designate additional performers for the task if the activity
definition allows extension.

All of these operations are supported internally using methods.

When a work item is finished, the performer indicates the completion through a client interface. Only
a work item performer, the workflow supervisor, or a user with Sysadmin or superuser privileges
can complete a work item.

Priority values

Each work item inherits the priority value defined in the process definition for the activity that
generated the work item. Content Server uses the inherited priority value of automatic activities, if
set, to prioritize execution of the automatic activities. Content Server ignores priority values assigned
to manual activities. A work item priority value can be changed at runtime.

Changing a work item priority generates an event that can be audited. Changing a priority value also
changes the priority value recorded in any queue item object associated with the work item.

Signing off manual work items

Frequently, a business process requires the performers to sign off the work they do. Content Server
supports three options to allow users to electronically sign off work items: electronic signatures,
digital signatures, or simple sign-offs. You can customize work item completion to use any of these
options.

• The Documentum Content Server System Object Reference lists the properties in the dmi_workitem
and dmi_queue_item object types.

• Signature requirement support, page 97, describes the options for signing off work items.

Package objects

Packages contain the objects on which the work is performed. Packages are implemented as
dmi_package objects. Package object properties:
• Identify the package and its contained objects

• Record the activity with which the package is associated

• Record when the package arrived at the activity

• Record information about any notes attached to the package

(At runtime, an activity performer can attach notes to packages, to pass information or instructions
to the persons performing subsequent activities.)

• Record whether the package is visible or invisible.

EMC Documentum Content Server Version 6.7 Fundamentals Guide 183

Workflows

If a particular skill level is required to perform the task associated with the package, that information
is stored in a dmc_wf_package_skill object. A wf package skill object identifies a skill level and a
package. The objects are subtypes of dm_relation and are related to the workflow, with the workflow
as the parent in the relationship. In this way, the information stays with the package for the life
of the workflow.

A single instance of a package does not move from activity to activity. Instead, the server
manufactures new copies of the package for each activity when the package is accepted and new
copies when the package is sent on.

Package notes

Package notes are annotations that users can add to a package. Notes are used typically to provide
instructions or information for a work item performer. A note can stay with a package as it moves
through the workflow or it can be available only in the work items associated with one activity.

If an activity accepts multiple packages, Content Server merges any notes attached to the accepted
packages.

If notes are attached to package accepted by a work item generated from an automatic activity, the
notes are held and passed to the next performer of the next manual task.

Notes are stored in the repository as dm_note objects.

Activity timers
There are three types of timers for an activity. An activity can have a
• Pre-timer that alerts the workflow supervisor if an activity has not started within a designated
number of hours after the workflow starts

• Post-timer that alerts the workflow supervisor if an activity has not completed within a designated
number of hours after the activity starts

• Suspend timer that automatically resumes the activity after a designated interval when the
activity is halted

Pre-timer instantiation

When a workflow instance is created from a workflow definition, Content Server determines
which activities in the workflow have pre-timers. For each activity with a pre-timer, it creates a
dmi_wf_timer object. The object records the workflow object ID, information about the activity,
the date and time at which to trigger the timer, and the action to take when the timer is triggered.
The action is identified through a module config object ID. Module config objects point to business
object modules stored in the Java method server.

If the activity is not started by the specified date and time, the timer is considered to be expired. Each
execution of the dm_WfmsTimer job finds all expired timers and invokes the dm_bpm_timer method
on each. Both the dm_WfmsTimer job and the dm_bpm_method are Java methods. The job passes the

184 EMC Documentum Content Server Version 6.7 Fundamentals Guide

Workflows

module config object ID to the method. The method uses the information in that object to determine
the action. The dm_bpm_method executes in the Java method server.

Post-timer instantiation

A post-timer is instantiated when the activity for which it is defined is started. When the activity
is started, Content Server creates a dmi_wf_timer object for the post-timer. The timer records the
workflow object ID, information about the activity, the date and time at which to trigger the timer,
and the action to take when the timer is triggered.

Suspend timer instantiation

A suspend timer is instantiated when a user or application halts an activity with an explicit
suspension interval. The interval is defined by an argument in the halt method. When the method is
executed, Content Server creates a dmi_wf_timer object that identifies the workflow, the activity, and
the date and time at which to resume the activity.

• Warning and suspend timers, page 179, describes each kind of timer.

Completed workflow reports
You can view reports about completed workflows using the Webtop Workflow Reporting tool. The
data includes information such as when the workflow was started, how it finished (normally or
aborted), when it was finished, and how long it ran. The report also provides similar information
for the activities in the completed workflows.

The data is generated by the dm_WFReporting job, which invokes the dm_WFReporting method.
The method examines audit trail entries for all workflow events for completed workflows. It collects
the information from these events and generates objects of type dmc_completed_workflow and
dmc_completed_workitem. Each object represents the data for one completed workflow or one
completed work item in a completed workflow. The Webtop Workflow Reporting tool uses the
information in the objects generated by the job to create its reports.

• The Documentum Content Server Administration and Configuration Guide has information about:
— Activating a job

— Starting auditing

• For information about accessing and using the Webtop Workflow Reporting tool, refer to the
Webtop documentation.

EMC Documentum Content Server Version 6.7 Fundamentals Guide 185

Workflows

Attachments
Attachments are objects that users attach to a running workflow or an uncompleted work item.
Typically, the objects support the work required by the workflow activities. For example, if a
workflow is handling an engineering proposal under development, a user might attach a research
paper supporting that proposal. Attachments can be added at any point in a workflow and can
be removed when they are no longer needed. After an attachment is added, it is available to the
performers of all subsequent activities.

Attachments can be added by the workflow creator or supervisor, a work item performer, or a user
with Sysadmin or superuser privileges. Users cannot add a note to an attachment.

Internally, an attachment is saved in the repository as a dmi_wf_attachment object. The wf attachment
object identifies the attached object and the workflow to which it is attached.

The workflow supervisor
Each workflow has a supervisor, who oversees execution of the entire workflow, receives any warning
messages generated by the workflow, and resolves problems or obstacles encountered during
execution. By default, the workflow supervisor is the person who creates the workflow. However, the
workflow’s creator can designate another user or a group as the workflow supervisor. (In such cases,
the creator has no special privileges for the workflow.)

A normal workflow execution proceeds automatically, from activity to activity as each performer
completes their work. However, the workflow’s supervisor can affect the execution if needed. For
example, the supervisor can change the workflow’s state or an activity’s state or manually delegate
or extend an activity.

Users with Sysadmin or Superuser user privileges can act as the workflow supervisor. In addition,
superusers are treated like the creator of a workflow and can change object properties, if necessary.
However, messages that warn about execution problems are sent only to the workflow supervisor,
not to superusers.

A workflow supervisor is recorded in the supervisor_name property of the workflow object.

The workflow agent
The workflow agent is the Content Server facility that controls the execution of automatic activities.
The workflow agent is installed and started with Content Server. It maintains a master session
and, by default, three worker sessions.

When Content Server creates an automatic activity, the server notifies the workflow agent. The
master session is quiescent until it receives a notification from Content Server or until a specified
sleep interval expires. When the master session receives a notification or the sleep interval expires,
the master session wakes up. It executes a batch update query to claim a set of automatic activities for
execution and then dispatches those activities to the execution queue. After all claimed activities
are dispatched, the master session goes to sleep until either another notification arrives or the sleep
interval expires again.

186 EMC Documentum Content Server Version 6.7 Fundamentals Guide

Workflows

You can change the configuration of the workflow agent by changing the number of worker sessions
and changing the default sleep interval. By default, there are three worker sessions and the sleep
interval is 5 seconds. You can configure the agent with up to 1000 worker sessions. There is no
maximum value on the sleep interval.

You can also trace the operations of the workflow agent or disable the agent. Disabling the workflow
agent stops the execution of automatic activities.

• The Documentum Content Server Administration and Configuration Guide has instructions on tracing
or disabling the workflowagent, as well as instructions on changing the number of worker
sessions and the sleep interval.

Instance states
This section describes:
• workflow states

A workflow current state is recorded in the r_runtime_state property of the dm_workflow object.

• activity states

• workitemstates

Workflow states

Every workflow instance exists in one of five possible states: dormant, running, finished, halted,
or terminated. A workflow current state is recorded in the r_runtime_state property of the
dm_workflow object.

The state transitions are driven by API methods or by the workflow termination criterion that
determines whether a workflow is finished.

The following figure illustrates the states.

Figure 15.

EMC Documentum Content Server Version 6.7 Fundamentals Guide 187

Workflows

When a workflow supervisor first creates and saves a workflow object, the workflow is in the
dormant state. When the Execute method is issued to start the workflow, the workflow state is
changed to running.

Typically, a workflow spends its life in the running state, until either the server determines that
the workflow is finished or the workflow supervisor manually terminates the workflow with the
IDfWorkflow.abort method. If the workflow terminates normally, its state is set to finished. If the
workflow is manually terminated with the abort method, its state is set to terminated.

A supervisor can halt a running workflow, which changes the workflow state to halted. From a halted
state, the workflow supervisor can restart, resume, or abort the workflow.

Activity instance states

Every activity instance exists in one of five states: dormant, active, finished, failed, or halted. An
activity instance state is recorded in the r_act_state property of the dm_workflow object, as part of
the activity instance.

The following figure illustrates the activity instance states and the operations or conditions that
move the instance from one state to another.

Figure 16.

During a typical workflow execution, an activity state is changed by the server to reflect the activity
state within the executing workflow.

When an activity instance is created, the instance is in the dormant state. The server changes the
activity instance to the active state after the activity starting condition is fulfilled and server begins to
resolve the activity performers and generate work items.

188 EMC Documentum Content Server Version 6.7 Fundamentals Guide

Workflows

If the server encounters any errors, it changes the activity instance state to failed and sends a warning
message to the workflow supervisor.

The supervisor can fix the problem and restart a failed activity instance. An automatic activity
instance that fails to execute can also change to the failed state, and the supervisor or the application
owner can retry the activity instance.

The activity instance remains active while work items are being performed. The activity instance
enters the finished state only when all its generated work items are completed.

A running activity can be halted. Halting an activity sets its state to halted. By default, only the
workflow supervisor or a user with Sysadmin or Superuser privileges can halt or resume an activity
instance. However, if enable_workitem_mgmt, a server.ini key, is set to T (TRUE), any user can halt
or resume a running activity.

Depending on how the activity was halted, it can be resumed manually or automatically. If a
suspension interval is specified when the activity is halted, then the activity is automatically resumed
after the interval expires. If a suspension interval is not specified, the activity must be manually
resumed. Suspension intervals are set programmatically as an argument in the IDfWorkflow.haltEx
method. Resuming an activity sets its state back to its previous state prior to being halted.

Work item states

A work item exists in one of the following states: dormant, paused, acquired, or finished. The
following figure shows the work item states and the operations that move the work item from one
state to another.

Figure 17.

A work item state is recorded in the r_runtime_state property of the dmi_workitem object.

When the server generates a work item for a manual activity, it sets the work item state to dormant
and places the peer queue item in the performer inbox. The work item remains in the dormant state
until the activity performer acquires it. Typically, acquisition happens when the performer opens the
associated inbox item. At that time, the work item state is changed to acquired.

EMC Documentum Content Server Version 6.7 Fundamentals Guide 189

Workflows

When the server generates a work item for an automatic activity, it sets the work item state to
dormant and places the activity on the queue for execution. The application must issue the Acquire
method to change the work item state to acquired.

After the activity work is finished, the performer or the application must execute the Complete
method to mark the work item as complete. This changes the work item’s state to finished.

A work item can be moved manually to the paused state by the activity performer, the workflow
supervisor, or a user with Sysadmin or superuser privileges. A paused work item requires a manual
state change to return to the dormant or acquired state.

• , describes all options for changing the state of a halted workflow.

• Activity timers, page 184, describes how suspension intervals are implemented.

Typical workflow example
Users typically start a workflow through one of the client interfaces. If you are starting a workflow
programmatically, there are two steps. First, a workflow object must be created and saved. Then, an
execute method must be issued for the workflow object.

Saving the new workflow object requires Relate permission on the process object (the workflow
definition) used as the workflow template. The execute method must be issued by the workflow
creator or supervisor or a user with Sysadmin or superuser privileges. If the user is starting the
workflow through a Documentum client interface, such as Webtop, the user must also be defined
as a Contributor.

This section describes how a typical workflow executes. It describes what happens when a workflow
is started and how execution proceeds from activity to activity. It also describes how packages are
handled and how a warning timer behaves during workflow execution.

The following figure illustrates the general execution flow described in detail in the text of this section.

190 EMC Documentum Content Server Version 6.7 Fundamentals Guide

Workflows

Figure 18.

EMC Documentum Content Server Version 6.7 Fundamentals Guide 191

Workflows

The workflow starts

A workflow starts when a user issues the execute method against a dm_workflow object. The execute
method does the following:
• Sets the r_pre_timer property for those activity instances that have pre-timers defined

• Examines the starting condition of each Begin activity and, if the starting condition is met:
— Sets the r_post_timer property for the activity instance if a post timer is defined for the activity

— Resolves performers for the activity

— Generates the activity’s work items

— Sets the activity’s state to active

• Records the workflow’s start time

After the execute method returns successfully, the workflow’s execution has begun, starting with the
Begin activities.

Activity execution starts

For Begin activities, execution begins when an execute method is executed for the workflow. The
starting condition of a typical Begin activity with no input ports is always considered fulfilled. If a
Begin activity has input ports, the application or user must use an addPackage method to pass the
required packages to the activity through the workflow. When the package is accepted, the server
evaluates the activity starting condition just as it does for Step and End activities.

For Step and End activities, execution begins when a package arrives at one of the activity input ports.
If the package is accepted, it triggers the server to evaluate the activity starting condition.

Note: For all activities, if the port receiving the package is a revert port and the package is accepted,
the activity stops accepting further packages, and the server ignores the starting condition and
immediately begins resolving the activity performers.

After the server determines that an activity starting condition is satisfied, it consolidates packages if
necessary. Next, the server determines who will perform the work and generates the required work
items. If the activity is an automatic activity, the server queues the activity for starting.

Evaluating the starting condition

An activity starting condition defines the number of ports that must accept packages and, optionally,
an event that must be queued in order to start the activity. The starting condition is defined in
the trigger_threshold and trigger_event properties in the activity definition. When a workflow is
created, these values are copied to the r_trigger_threshold and r_trigger_event properties in the
workflow object.

When an activity input port accepts a package, the server increments the activity instance
r_trigger_input property in the workflow object and then compares the value in r_trigger_input
to the value in r_trigger_threshold.

192 EMC Documentum Content Server Version 6.7 Fundamentals Guide

Workflows

If the two values are equal and no trigger event is required, the server considers that the activity has
satisfied its starting condition. If a trigger event is required, the server will query the dmi_queue_item
objects to determine whether the event identified in r_trigger_event is queued. If the event is in the
queue, then the starting condition is satisfied.

If the two values are not equal, the server considers that the starting condition is not satisfied.

The server also evaluates the starting condition each time an event is queued to the workflow.

After a starting condition that includes an event is satisfied, the server removes the event from the
queue. If multiple activities use the same event as part of their starting conditions, the event must
be queued for each activity.

When the starting condition is satisfied, the server consolidates the accepted packages if necessary
and then resolves the performers and generates the work items. If it is a manual activity, the server
places the work item in the performer inbox. If it is an automatic activity, the server passes the
performer name to the application invoked for the activity.

Package consolidation

If activity input ports have accepted multiple packages with the same r_package_type value, the
server consolidates those packages into one package.

For example, suppose that Activity C accepts four packages: two Package_typeA, one Package_typeB,
and one Package_typeC. Before generating the work items, the server will consolidate the two
Package_typeA package objects into one package, represented by one package object. It does this by
merging the components and any notes attached to the components.

The consolidation order is based on the acceptance time of each package instance, as recorded in the
i_acceptance_date property of the package objects.

Resolving performers and generating work items

After the starting condition is met and packages consolidated if necessary, the server determines the
performers for the activity and generates the work items.

For manual activities, the server uses the value in the performer_type property in conjunction with
the performer_name property, if needed, to determine the activity performer. After the performer is
determined, the server generates the necessary work items and peer queue items.

If the server cannot assign the work item to the selected performer because the performer has
workflow_disabled set to TRUE in his or her user object, the server attempts to delegate the work
item to the user listed in the user_delegation property of the performer user object.

If automatic delegation fails, the server reassigns the work item based on the setting of the control_flag
property in the definition of the activity that generated the work item.

Note: When a work item is generated for all members of a group, users in the group who are
workflow disabled do not receive the work item, nor is the item assigned to their delegated users.

If the server cannot determine a performer, a warning is sent to the performer who completed the
previous work item and the current work item is assigned to the supervisor.

EMC Documentum Content Server Version 6.7 Fundamentals Guide 193

Workflows

For automatic activities, the server uses the value in the performer_type property in conjunction with
the performer_name property, if needed, to determine the activity performer. The server passes the
name of the selected performer to the invoked program.

The server generates work items but not peer queue items for work items representing automatic
activities.

When the performer_name property contains an alias, the server resolves the alias using a resolution
algorithm determined by the value found in the activity’s resolve_type property.

If the server cannot determine a performer, a warning is sent to the workflow supervisor and the
current work item is assigned to the supervisor.

• Executing automatic activities, page 194, describes how automatic activities are executed.

• Resolving aliases in workflows, page 228, describes the resolution algorithms for performer aliases.

Executing automatic activities

The master session of the workflow agent controls the execution of automatic activities. The workflow
agent is an internal server facility.

Assigning an activity for execution

After the server determines the activity performer and creates the work item, the server notifies the
workflow agent master session that an automatic activity is ready for execution. The master session
handles activities in batches. If the master session is not currently processing a batch when the
notification arrives, the session wakes up and does the following:
1. Executes an update query to claim a batch of work items generated by automatic activities.

A workflow agent master session claims a batch of work items by setting the a_wq_name
property of the work items to the name of the server config object representing the Content
Server. The maximum number of work items in a batch is the lesser of 2000 or 30 times the
number of worker threads.

2. Selects the claimed work items and dispatches the returned items to the execution queue.

The work items are dispatched one item at a time. If the queue is full, the master session checks
the size of the queue (the number of items in the queue). If the size is greater than a set threshold,
it waits until it receives notification from a worker thread that the queue has been reduced. A
worker thread checks the size of the queue each time it acquires a work item. When the size of
the queue equals the threshold, the thread sends the notification to the master session. The
notification from the worker thread tells the master session it can resume putting work items on
the queue.

The queue can have a maximum of 2000 work items. The threshold is equal to fives times the
number of worker threads.

3. After all claimed work items are dispatched, the master agent returns to sleep until another
notification arrives from Content Server or the sleep interval passes.

Note: If the Content Server associated with the workflow agent should fail while there are work
items claimed but not processed, when the server is restarted, the workflow agent will pick up the

194 EMC Documentum Content Server Version 6.7 Fundamentals Guide

Workflows

processing where it left off. If the server cannot be restarted, you can use an administration method to
recover those work items for processing by another workflow agent.

Executing an activity program

When a workflow agent worker session takes an activity from the execution queue, it retrieves
the activity object from the repository and locks it. It also fetches some related objects, such as the
workflow. If any of the objects cannot be fetched or if the fetched workflow is not running, the worker
session sets a_wq_name to a message string that specifies the problem and drops the task without
processing it. Setting a_wq_name also ensures that the task will not be picked up again.

After all the fetches succeed and after verifying the ready state of the activity, the worker thread
executes the method associated with the activity. The method is always executed as the server
regardless of the run_as_server property setting in the method object.

Note: If the activity is already locked, the worker session assumes that another workflow agent is
executing the activity. The worker session simply skips the activity and no error message is logged.
This situation can occur in repositories with multiple servers, each having its own workflow agent.

If an activity fails for any reason, the selected performer receives a notification.

The server passes the following information to the invoked program:
• Repository name

• User name (this is the selected performer)

• Login ticket

• Work item object ID

• Mode value

The information is passed in the following format:
-docbase_name repository_name -user user_name -ticket login_ticket
-packageId workitem_id mode mode_value

The mode value is set automatically by the server. The following table lists the values for the mode
parameter.

Table 16.

Value Meaning

0 Normal

1 Restart (previous execution failed)

2 Termination situation (re-execute because
workflow terminated before automatic activity
user program completed)

EMC Documentum Content Server Version 6.7 Fundamentals Guide 195

Workflows

The method program can use the login ticket to connect back to the repository as the selected
performer. The work item object ID allows the program to query the repository for information about
the package associated with the activity and other information it may need to perform its work.

• The workflow agent, page 186, describes the workflow agent.

• The Documentum Content Server Administration and Configuration Guide provides instructions
for recovering work items for execution by an alternate workflow agent in case of a Content
Server failure.

Completing an activity

When a performer completes a work item, the server increments the r_complete_witem property
in the workflow object and then evaluates whether the activity is complete. To do so, the server
compares the value of the r_complete_witem property to the value in the workflow r_total_workitem
property. The r_total_witem property records the total number of work items generated for the
activity. The r_complete_witem property records howmany of the activity work items are completed.

If the two values are the same and extension is not enabled for the activity, the server considers that
the activity is completed. If extension is enabled, the server:
• Collects the second-round performers from the r_ext_performer property of all generated work
items

• Generates another set of work items for the user or users designated as the second-round
performers and removes the first round of work items

• Sets the i_performer_flag to indicate that the activity is in the extended mode and no more
extension is allowed

The following figure illustrates the decision process when the properties are equal.

196 EMC Documentum Content Server Version 6.7 Fundamentals Guide

Workflows

Figure 19.

If the number of completed work items is lower than the total number of work items, the server then
uses the values in transition_eval_cnt and, for activities with a manual transition, the transition_flag
property to determine whether to trigger a transition. The transition_eval_cnt property specifies how
many work items must be completed to finish the activity. The transition_flag property defines
how ports are chosen for the transition. The following figure illustrates the decision process when
r_complete_witem and r_total_workitem are not equal.

EMC Documentum Content Server Version 6.7 Fundamentals Guide 197

Workflows

Figure 20.

If an activity transition is triggered before all the activity work items are completed, Content Server
marks the unfinished work items as pseudo-complete and removes them from the inboxes of the
performers. The server also sends an email message to the performers to notify them that the work
items have been removed.

Note: Marking an unfinished work item as pseudo-complete is an auditable event. The event name is
dm_pseudocompleteworkitem.

Additionally, if an activity transition is triggered before all work items are completed, any extended
work items are not generated even if extension is enabled.

After an activity is completed, the server selects the output ports based on the transition type defined
for the activity.

If the transition type is prescribed, the server delivers packages to all the output ports.

If the transition type is manual, the user or application must designate the output ports. The choices
are passed to Content Server using one of the Setoutput methods. The number of choices may be
limited by the activity’s definition. For example, the activity definition may only allow a performer to
choose two output ports. How the selected ports are used is also specified in the activity’s definition.

198 EMC Documentum Content Server Version 6.7 Fundamentals Guide

Workflows

For example, if multiple ports are selected, the definition may require the server to send packages to
the selected revert ports and ignore the forward selections.

If the transition type is automatic, the route cases are evaluated to determine which ports will receive
packages. If the activity’s r_condition_id property is set, the server evaluates the route cases. If the
activity’s r_predicate_id property is set, the server invokes the dm_bpm_transition method to evaluate
the route cases. The dm_bpm_transition method is a Java method that executes in the Java method
server. The server selects the ports associated with the first route case that returns a TRUE value.

After the ports are determined, the server creates the needed package objects. If the package creation
is successful, the server considers that the activity is finished. At this point, the cycle begins again
with the start of the next activity’s execution.

Distributed workflow
A distributed workflow consists of distributed notification and object routing capability. Any object
can be bound to a workflow package and passed from one activity to another.

Distributed workflow works best in a federated environment where users, groups, object types, and
ACLs are known to all participating repositories.

In such an environment, users in all repositories can participate in a business process. All users are
known to every repository, and the workflow designer treats remote users no differently than local
users. Each user designates a home repository and receives notification of all work item assignments
in the home inbox.

All process and activity definitions and workflow runtime objects must reside in a single repository.
A process cannot refer to an activity definition that resides in a different repository. A user cannot
execute a process that resides in a repository different from the repository where the user is currently
connected.

Distributed notification

When a work item is assigned to a remote user, a work item and the peer queue item are generated
in the repository where the process definition and the containing workflow reside. The notification
agent for the source repository replicates the queue item in the user home repository. Using these
queue items, the home inbox connects to the source repository and retrieves all information necessary
for the user to perform the work item tasks.

A remote user must be able to connect to the source repository to work on a replicated queue item.

The process is:

1. A work item is generated and assigned to user A (a remote user). A peer queue item is also
generated and placed in the queue. Meanwhile, a mail message is sent to user A.

2. The notification agent replicates the queue item in user A home repository.

3. User A connects to the home repository and acquires the queue item. The user home inbox
makes a connection to the source repository and fetches the peer work item. The home inbox
executes the Acquire method for the work item.

EMC Documentum Content Server Version 6.7 Fundamentals Guide 199

Workflows

4. User A opens the work item to find out about arriving packages. The user home inbox executes a
query that returns a list of package IDs. The inbox then fetches all package objects and displays
the package information.

5. When user A opens a package and wants to see the attached instructions, the user home inbox
fetches the attached notes and contents from the source repository and displays the instructions.

6. User A starts working on the document bound to the package. The user home inbox retrieves and
checks out the document and contents from the source repository. The inbox decides whether to
create a reference that refers to the bound document.

7. When user A is done with the package and wants to attach an instruction for subsequent activity
performers, the user home inbox creates a note object in the source repository and executes the
addNote method to attach notes to the package. The inbox then executes the Complete method
for the work item and cleans up objects that are no longer needed.

Tasks and events
Tasks and events are occurrences within an application or repository that are of interest to users. This
section describes how these occurrences are supported by Content Server.

Tasks are items sent to a user that require the user to perform some action. Tasks are usually assigned
to a user as a result of a workflow. When a workflow activity starts, Content Server determines
who is performing the activity and assigns that user the task. It is also possible to send tasks to
users manually.

Events are specific actions on specific documents, folders, cabinets, or other objects. For example, a
checkin on a particular document is an event. Promoting or demoting a document in a lifecycle is an
event. Content Server supports a large number of system-defined events, representing operations
such as checkins, promotions, and demotions.

Events can also be defined by an application. If an application defines an event, the application is
responsible for triggering the email notification. For example, an application might want to notify a
particular department head if some application-specific event occurs. When the event occurs, the
application issues a queue method to send a notification to the department head. In the method,
the application can set an argument that directs Content Server to send a message with the event
notification.

Tasks and event notifications are stored in the repository as dmi_queue_item objects. Tasks generated
by workflows also have a dmi_workitem object in the repository.

Accessing tasks and events

Typically, users access tasks and event notifications through their repository inboxes.

Tasks are sent to the inbox automatically, when the task is generated. Users must register to receive
events. Users can register to receive notifications of system-defined events. When a system-defined
event occurs, Content Server sends an event notification automatically to any user who is registered
to receive the event.

200 EMC Documentum Content Server Version 6.7 Fundamentals Guide

Workflows

Users cannot register for application-defined events. Generating application-defined events and
triggering notifications of the events are managed completely by the application.

• The Documentum Content Server Administration and Configuration Guide has tables listing all
system-defined events.

• Work item and queue item objects, page 182, describes work items.

• Inboxes, page 201, describes inboxes.

Inboxes
In the Documentum system, you have an electronic inbox. that holds various items that require
your attention.

An inbox is a virtual container that holds tasks, event notifications, and other items sent to users
manually (using a queue method). For example, one of your employees might place a vacation
request in your inbox, or a coworker might ask you to review a presentation. Each user in a
repository has an inbox.

Accessing an Inbox

Users access their inboxes through the Documentum client applications. If your enterprise has
defined a home repository for users, the inboxes are accessed through the home repository. All inbox
items, regardless of the repository in which they are generated, appear in the home repository inbox.
Users must login to the home repository to view their inbox.

If you do not define home repositories for users, Content Server maintains an inbox for each
repository. Users must log in to each repository to view the inbox for that repository. The inbox
contains only those items generated within the repository.

Applications access inbox items by querying and referencing dmi_queue_item objects.

All items that appear in an inbox are managed by the server as objects of type dmi_queue_item.
The properties of a queue item object contain information about the queued item. For example,
the sent_by property contains the name of the user who sent the item and the date_sent property
tells when it was sent.

The dmi_queue_item objects are persistent. They remain in the repository even after the items they
represent have been removed from an inbox, providing a persistent record of completed tasks. Two

EMC Documentum Content Server Version 6.7 Fundamentals Guide 201

Workflows

properties that are set when an item is removed from an inbox contain the history of a project with
which tasks are associated. These properties are:
• dequeued_by contains the name of the user that removed the item from the inbox.

• dequeued_date contains the date and time that the item was removed.

• The Documentum Content Server System Object Reference contains the reference information for the
dmi_queue_item object type.

Obtaining Inbox content
There are several ways to obtain the content of a particular inbox programmatically, as shown
in the following list.

• GET_INBOX administration method

GET_INBOX returns a collection containing the inbox items in query result objects. Using
GET_INBOX is the simplest way to retrieve all items in a user’s inbox.

• getEvents method

An IDfSession.getEvents method returns all new (unread) items in the current user’s queue.
Unread items are all queue item objects placed on the queue after the last getEvents execution
against that queue.

The queue item objects are returned as a collection. Use the collection identifier to process the
returned items.

• The dm_queue view

The dm_queue view is a view on the dmi_queue_item object type. To obtain information about
a queue using DQL, query against this view. Querying against this view is the simplest way to
view all the contents of a queue. For example, the following DQL statement retrieves all the items
in Haskell’s inbox. For each item, the statement retrieves the name of the queued item, when it
was sent, and its priority:
SELECT "item_name","date_sent","priority" FROM "dm_queue"
WHERE "name" = 'Haskell'

To determine whether to refresh an inbox, you can use an IDfSession.hasEvents method to check for
new items. A new item is defined as any item queued to the inbox after the previous execution of
getEvents for the user. The method returns TRUE if there are new items in the inbox or FALSE if
there are no new items.

• The Documentum Content Server DQL Reference has instructions on using GET_INBOX.

• The Documentum Content Server System Object Reference contains the reference information about
the properties of a queue item object.

Manual queuing and dequeuing
Most inbox items are generated automatically by workflows or an event registration. However,
you can manually or programmatically queue a SysObject or a workflow-related event notification

202 EMC Documentum Content Server Version 6.7 Fundamentals Guide

Workflows

using a queue method. You can also manually or programmatically take an item out of an inbox by
dequeuing the item.

Queuing items

Use a queue method to place an item in an inbox. Executing a queue method creates a queue item
object. You can queue a SysObject or a user- or application-defined event.

When you queue an object, including an event name is optional. You may want to include one,
however, to be manipulated by the application. Content Server ignores the event name.

When you queue a workflow-related event, the event value is not optional. The value you assign to the
parameter should match the value in the trigger_event property for one of the workflow’s activities.

Although you must assign a priority value to queued items and events, your application can ignore
the value or use it. For example, the application might read the priorities and present the items to the
user in priority order. The priority is ignored by Content Server.

You can also include a message to the user receiving the item.

Dequeuing an inbox item

Use an IDfSession.dequeue method to remove an item placed in an inbox using a queue method.
Executing a dequeue method sets two queue item properties:
• dequeued_by

This property contains the name of the user who dequeued the item.

• dequeued_date

This property contains the date and time that the item was dequeued.

Registering and unregistering for event
notifications
An event notification is a notice from Content Server that a particular system event has occurred. To
receive an event notification for a system event, you must register for the event.

The event can be a specific action on a particular object or a specific action on objects of a particular
type. You can also register to receive notification for all actions on a particular object.

For instance, you might want to know whenever a particular document is checked out. Or you might
want to knowwhen any document is checked out. You might want to knowwhen any action (checkin,
checkout, promotion, and so forth) happens to a particular document. Each of these actions is an
event, and you can register to receive notification when the event occurs. After you have registered for
an event, the server continues to notify you when the event occurs until you remove the registration.

EMC Documentum Content Server Version 6.7 Fundamentals Guide 203

Workflows

Registering for events

You can register to receive events using Documentum Administrator. You can also use an
IDfSysObject.registerEvent method.

Although you must assign a priority value to an event when you use the registerEvent method,
your application can ignore the value or use it. This argument is provided as an easy way for
your application to manipulate the event when the event appears in your inbox. For example, the
application might sort out events that have a higher priority and present them first. The priority is
ignored by Content Server.

You cannot register another user for an event. Executing a registerEvent method registers the current
user for the specified event.

Removing a registration

To remove an event registration, use Documentum Administrator or an IDfSysObject.unRegister
method.

Only a user with Sysadmin or superuser privileges can remove another user registration for an
event notification.

If you have more than one event defined for an object, the unRegister method only removes the
registration that corresponds to the combination of the object and the event. Other event registrations
for that object remain in place.

• The Documentum Content Server Administration and Configuration Guide lists the system events
for which you may register for notification.

Querying for registration information

Registrations are stored in the repository as dmi_registry objects. You can query this type to
obtain information about the current registrations. For example, the following query returns the
registrations for a particular user:
SELECT * FROM "dmi_registry"
WHERE "user_name" = 'user'

204 EMC Documentum Content Server Version 6.7 Fundamentals Guide

Chapter 10
Lifecycles

This chapter includes the following topics:
• Overview, page 205

• Repository storage, page 213

• Designing a lifecycle, page 214

• Lifecycle state definitions, page 215

• Custom validation programs, page 219

Overview
A lifecycle is one of the process management services provided with Content Server. Lifecycles
automate management of documents throughout their “lives” in the repository.

A lifecycle is a set of states that define the stages in the life of an object. The states are connected
linearly. An object attached to a lifecycle progresses through the states as it moves through its
lifetime. A change from one state to another is governed by business rules. The rules are implemented
as requirements that the object must meet to enter a state and actions to be performed on entering a
state. Each state can also have actions to be performed after entering a state.

Lifecycles contain:
• States

A lifecycle can be in one of a normal progression of states or in an exception state.

• Attached objects

Any system object or subtype (except a lifecycle object itself) can have an attached lifecycle.

• Entry and post entry actions

A lifecycle can trigger custom behavior in the repository when an object enters or leaves a lifecycle
state.

You use the Lifecycle Editor, accessed through Documentum Composer, to create a lifecycle. Design
states in the lifecycle can then attach an object (for example, a document) to the lifecycle. Entry
criteria apply to each state defined in the lifecycle.

For example, a lifecycle for a Standard Operating Procedure (SOP) might have states representing the
draft, review, rewrite, approved, and obsolete states of an SOP life. Before an SOP can move from

EMC Documentum Content Server Version 6.7 Fundamentals Guide 205

Lifecycles

the rewrite state to the approved state, business rules might require the SOP to be signed off by a
company vice president, and converted to HTML format for publishing on a company web site. After
the SOP enters the approved state, an action can send an email message to employees informing
them the SOP is available.

Normal and exception states

There are two kinds of state: normal and exception. Normal states are the states that define the
typical stages of object life. Exception states represent situations outside of the normal stages of object
life. All lifecycles must have normal states. Exception states are optional. Each normal state in a
lifecycle definition can have one exception state.

If an exception state is defined for a normal state, when an object is in that normal state, you can
suspend the object progress through the lifecycle by moving the object to the exception state. Later,
you can resume the lifecycle for the object by moving the object out of the exception state back to the
normal state or returning it to the base state.

For example, if a document describes a legal process, you can create an exception state to temporarily
halt the lifecycle if the laws change. The document lifecycle cannot resume until the document is
updated to reflect the changes in the law.

Figure 21, page 206, shows an example of a lifecycle with exception states. Like normal states,
exception states have their own requirements and actions.

Figure 21.

Which normal and exception states you include in a lifecycle depends on which object types will be
attached to the lifecycle. The states reflect the stages of life for those particular objects. When you
are designing a lifecycle, after you have determined which objects you want the lifecycle to handle,
decide what the life states are for those objects. Then, decide whether any or all of those states
require an exception state.

Attaching an object to a lifecycle

After a lifecycle is validated and installed, users may begin attaching objects to the lifecycle. Because
the states are states of being, not tasks, attaching an object to a lifecycle does not generate any
runtime objects.

206 EMC Documentum Content Server Version 6.7 Fundamentals Guide

Lifecycles

When an object is attached to a lifecycle state, Content Server evaluates the entry criteria for the state.
If the criteria are met, the attach operation succeeds. The server then:
• Stores the object ID of the lifecycle definition in the object r_policy_id property

• Sets the r_alias_set_id to the object ID of the alias set associated with the lifecycle, if any

• Executes any actions defined for the state

• Sets the r_current_state property to the number of the state

From this point, the object continues through the lifecycle. If the object was attached to a normal state,
it can move to the next normal state, to the previous normal state, or to the exception state defined
for the normal state. If the object was attached to an exception state, it can move to the normal state
associated with the exception state or to the base state.

Each time the object is moved forward to a normal state or to an exception state, Content Server
evaluates the entry criteria for the target state. If the object satisfies the criteria, the server performs
the entry actions, and resets the r_current_state property to the number of the target state. If the
target state is an exception state, Content Server also sets r_resume_state to identify the normal state
to which the object can be returned. After changing the state, the server performs any post-entry
actions defined for the target state. The actions can make fundamental changes (such as changes in
ownership, access control, location, or properties) to an object as that object progresses through
the lifecycle.

If an object is demoted back to the previous normal state, Content Server only performs the actions
associated with the state and resets the properties. It does not evaluate the entry criteria.

Objects cannot skip normal steps as they progress through a lifecycle.

The following figure shows an example of a simple lifecycle with three states: preliminary, reviewed,
and published. Each state has its own requirements and actions. The preliminary state is the base state.

Figure 22.

Attaching objects

An object may be attached to any attachable state. By default, unless another state is explicitly
identified when an object is attached to a lifecycle, Content Server attaches the object to the first
attachable state in the lifecycle. Typically, this is the base state.

A state is attachable if the allow_attach property is set for the state.

When an object is attached to a state, Content Server tests the entry criteria and performs the actions
on entry. If the entry criteria are not satisfied or the actions fail, the object is not attached to the state.

Programmatically, attaching an object is accomplished using an IDfSysObject.attachPolicy method.

EMC Documentum Content Server Version 6.7 Fundamentals Guide 207

Lifecycles

Moving between states

Objects move between states in a lifecycle through promotions, demotions, suspensions, and
resumptions. Promotions and demotions move objects through the normal states. Suspensions and
resumptions are used to move objects into and out of the exception states.

Promotions

Promotion moves an object from one normal state to the next normal state. Users who own an
object or are superusers need only Write permission to promote the object. Other users must have
Write permission and Change State permission to promote an object. If the user has only Change
State permission, Content Server will attempt to promote the object as the user defined in the
a_bpaction_run_as property in the docbase config object. In those instances, that user must be either
the owner or a superuser with Write permission or have Write and Change State permission on
the object.

A promotion only succeeds if the object satisfies any entry criteria and actions on entry defined for
the target state.

It is possible to bypass the entry criteria. If you choose to do that, the server does not enforce the
entry criteria, but simply performs the actions associated with the destination state and, on their
completion, moves the object to the destination state. You must own the lifecycle policy object or be
a superuser to bypass entry criteria.

Promotions are accomplished programmatically using one of the promote methods in the
IDfSysObject interface. Bypassing the entry criteria is accomplished by setting the override argument
in the method to true.

Batch promotion is the promotion of multiple objects in batches. Content Server supports batch
promotions using the BATCH_PROMOTE administration method. You can use it to promote
multiple objects in one operation.

Demotions

Demotion moves an object from a normal state back to the previous normal state or back to the base
state. Demotions are only supported by states that are defined as allowing demotions. The value of
the allow_demote property for the state must be TRUE. Additionally, to demote an object back to the
base state, the return_to_base property value must be TRUE for the current state.

Users who own an object or are superusers need only Write permission to demote the object. Other
users must have Write permission and Change State permission to demote an object. If the user has
only Change State permission, Content Server will attempt to demote the object as the user defined in
the a_bpaction_run_as property in the docbase config object. In those instances, that user must be
either the owner or a superuser with Write permission or have Write and Change State permission on
the object.

If the object current state is a normal state, the object can be demoted to either the previous normal
state or the base state. If the object current state is an exception state, the object can be demoted only
to the base state. Demotions are accomplished programmatically using one of the demote methods in
the IDfSysObject interface.

208 EMC Documentum Content Server Version 6.7 Fundamentals Guide

Lifecycles

Suspensions

Suspension moves an object from the current normal state to the state exception state. Users who
own an object or are superusers need only Write permission to suspend the object. Other users
must have Write permission and Change State permission to suspend an object. If the user has only
Change State permission, Content Server will attempt to suspend the object as the user defined in
the a_bpaction_run_as property in the docbase config object. In those instances, that user must be
either the owner or a superuser with Write permission or have Write and Change State permission on
the object.

When an object is moved to an exception state, the server checks the state entry criteria and executes
the actions on entry. The criteria must be satisfied and the actions completed to successfully move the
object to the exception state.

It is possible to bypass the entry criteria. If you choose to do that, the server does not enforce the
entry criteria, but simply performs the actions associated with the destination state and, on their
completion, moves the object to the destination state. You must own the lifecycle policy object or be
a superuser to bypass entry criteria.

Suspending an object is accomplished programmatically using one of the suspend methods in the
IDfSysObject interface. Bypassing the entry criteria is accomplished by setting the override argument
in the method set to true.

Resumptions

Resumption moves an object from an exception state back to the normal state from which it
was suspended or back to the base state. Users who own an object or are superusers need only
Write permission to resume the object. Other users must have Write permission and Change State
permission to resume an object. If the user has only Change State permission, Content Server will
attempt to resume the object as the user defined in the a_bpaction_run_as property in the docbase
config object. In those instances, that user must be either the owner or a superuser with Write
permission or have Write and Change State permission on the object.

Additionally, to resume an object back to the base state, the exception state must have the
return_to_base property set to TRUE.

When an object is resumed to either the normal state or the base state, the object must satisfy the
target state entry criteria and action on entry. The criteria must be satisfied and the actions completed
to successfully resume the object to the destination state.

It is possible to bypass the entry criteria. If you choose to do that, the server does not enforce the
entry criteria, but simply performs the actions associated with the destination state and, on their
completion, moves the object to the destination state. You must own the lifecycle policy object or be
a superuser to bypass entry criteria.

Programmatically, resuming an object is accomplished using one of the resume methods in the
IDfSysObject interface. Bypassing the entry criteria is accomplished by setting the override argument
in the method set to true.

EMC Documentum Content Server Version 6.7 Fundamentals Guide 209

Lifecycles

Scheduled transitions

A scheduled transition is a transition from one state to another at a predefined date and time. If a
lifecycle state is defined as allowing scheduled transitions, you can automate moving objects out of
that state with scheduled transitions. All of the methods that move objects between states have a
variation that allows you to schedule a transition for a particular date and time. If you issue a method
that schedules the movement between states, Content Server creates a job for the state change.

The job scheduling properties are set to the specified date and time. The job runs as the user who
issued the initial method that created the job, unless the a_bpaction_run_as property is set in the
repository configuration object. If that is set, the job runs as the user defined in that property.

The destination state for a scheduled change can be an exception state or any normal state except the
base state. You cannot schedule the same object for multiple state transitions at the same time.

You can unschedule a scheduled transition. Each of methods governing movement also has a
variation that allows you to cancel a schedule change. For example, to cancel a scheduled promotion,
you would use cancelSchedulePromote.

Internal supporting methods

Installing Content Server installs a set of methods, implemented as method objects, that support
lifecycle operations. There is a set for lifecycles that use Java and a corresponding set for lifecycles
that use Docbasic. The following table lists the methods.

Table 17.

Method name

Java Docbasic Purpose

dm_bp_transition_java dm_bp_transition Executes state transitions.

dm_bp_batch_java dm_bp_batch Invoked by BATCH_
PROMOTE to promote objects
in batches.

dm_bp_schedule_java dm_bp_schedule Invoked by jobs created for
scheduled state changes. Calls
bp_transition to execute the
actual change.

dm_bp_validate_java dm_bp_validation Validates the lifecycle
definition.

State changes

Movement from one state to another is handled by the dm_bp_transition_java and dm_bp_transition
methods. The dm_bp_transition_java method is used for Java-based lifecycles. The dm_bp_transition
method is used for Docbasic-based lifecycles.

210 EMC Documentum Content Server Version 6.7 Fundamentals Guide

Lifecycles

When a user or application issues a promote, demote, suspend, or resume method that does
not include a scheduling argument, the appropriate transition method is called immediately.
If the state-change method includes a scheduling argument, the dm_bp_schedule_java (or
dm_bp_schedule) method is invoked to create a job for the operation. The job scheduling properties
are set to the date and time identified in the scheduling argument of the state-change method. When
the job is executed, it invokes dm_bp_transition_java or dm_bp_transition.

Note: The dm_bp_transition_java and dm_bp_transition methods are also invoked by an attach
method.

The dm_bp_transition_java and dm_bp_transition methods perform the following actions:
1. Use the supplied login ticket to connect to Content Server.

2. If the policy does not allow the object to move from the current state to the next state, return an
error and exit.

3. Open an explicit transaction.

4. Execute the user entry criteria program.

Note: This step does not occur if the operation is a demotion.

5. Execute any system-defined actions on entry.

6. Execute any user-defined actions on entry.

7. If any one of the above steps fails, abort the transaction and return.

8. Set the r_current_state and r_resume_state properties. For an attachPolicy method, also set
the r_policy_id and r_alias_set_id properties.

9. Save the SysObject.

10. If no errors occurred, commit the transaction.

11. If errors occurred, abort the transaction.

12. Execute any post-entry actions.

By default, the transition methods run as the user who issued the state-change method. To change
the default, you must set the a_bpaction_run_as property in the docbase config object. If the
a_bpaction_run_as property is set in the docbase config object, the actions associated with state
changes are run as the user indicated in the property. Setting a_bpaction_run_as ensures that users
with the extended permission Change State but without adequate access permissions to an object
are able to change an object state. If the property is not set, the actions are run as the user who
changed the state.

If an error occurs during execution of the dm_bp_transition_java or dm_bp_transition method, a log
file is created. It is named bp_transition_session_.out in %DOCUMENTUM%\dba\log\repository_
id\bp ($DOCUMENTUM/dba/log/repository_id/bp). If an error occurs during execution of the
dm_bp_schedule_java or dm_bp_schedule methods, a log file named bp_schedule_session_.out is
created in the same directory.

Note: If you set the timeout_default value for the bp_transition method to a value greater than five
minutes, it is recommended that you also set the client_session_timeout key in the server.ini to
a value greater than that of timeout_default. The default value for client_session_timeout is five
minutes. If a procedure run by bp_transition runs more than five minutes without making a call to
Content Server, the client session will time out if the client_sesion_timeout value is five minutes.

EMC Documentum Content Server Version 6.7 Fundamentals Guide 211

Lifecycles

Setting client_session_timeout to a value greater than the value specified in timeout_default prevents
that from happening.

• The Documentum Content Server DQL Reference provides reference information for the
BATCH_PROMOTE administration method.

• Scheduled transitions, page 210, contains more information about the jobs that process transitions.

Types of objects that can be attached to lifecycles

Lifecycles handle objects of type dm_sysobject or SysObject subtypes with one exception. The
exception is policy objects (lifecycle definitions)-you cannot attach a lifecycle definition to a lifecycle.

When you define a lifecycle, you specify which types of object it handles. Lifecycles are a reflection of
the states of life of particular objects. Consequently, when you design a lifecycle, you are designing it
with a particular object type or set of object types in mind. The scope of object types attachable to
a particular lifecycle can be as broad or as narrow as needed. You can design a lifecycle to which
any SysObject or SysObject subtype can be attached. You can also create a lifecycle to which only a
specific subtype of dm_document can be attached.

If the lifecycle handles multiple types, the chosen object types must have the same supertype or one
of the chosen types must be the supertype for the other included types.

The chosen object types are recorded internally in two properties: included_type and
include_subtypes. These are repeating properties. The included_type property records, by name, the
object types that can be attached to a lifecycle. The include_subtypes property is a Boolean property
that records whether subtypes of the object types specified in included_type may be attached to
the lifecycle. The value at a given index position in include_subtypes is applied to the object type
identified at the corresponding position in included_type.

An object can be attached to a lifecycle if either
• The lifecycle included_type property contains the document type, or

• The lifecycle included_type contains the document supertype and the value at the corresponding
index position in the include_subtypes property is set to TRUE

For example, suppose a lifecycle definition has the following values in those properties:
included_type[0]=dm_sysobject
included_type[1]=dm_document

include_subtypes[0]=F
include_subtypes[1]=T

For this lifecycle, users can attach any object that is the dm_sysobject type. However, the only
SysObject subtype that can be attached to the lifecycle is a dm_document or any of the dm_document
subtypes.

The object type defined in the first index position (included_type[0]) is called the primary object
type for the lifecycle. Object types identified in the other index positions in included_type must be
subtypes of the primary object type.

You can define a default lifecycle for an object type. If an object type has a default lifecycle, when
users create an object of that type, they can attach the lifecycle to the object without identifying the
lifecycle specifically. Default lifecycles for object types are defined in the data dictionary.

212 EMC Documentum Content Server Version 6.7 Fundamentals Guide

Lifecycles

Object permissions and lifecycles

Lifecycles do not override the object permissions of an attached object. Before you attach a lifecycle to
an object, set the object permissions so that state transitions do not fail.

For example, suppose an action on entry moves an object to a different location (such as moving an
approved SOP to an SOP folder). The object ACL must grant the user who promotes the document
permission to move the document in addition to the permissions needed to promote the document.
Promoting the document requires Write permission on the object and Change State permission if
the user is not the object owner or a superuser. Moving the document to the SOP folder requires
the Change Location permission and the appropriate base object-level permission to unlink the
document from its current folder and link it to the SOP folder.

The actions associated with a state can be used to reset permissions as needed.

Entry criteria, actions on entry, and post-entry actions

Each state in a lifecycle may have entry criteria, actions on entry, and post-entry actions. Entry
criteria are typically conditions that an object must fulfill to be a candidate to enter the state. Actions
on entry are typically operations to be performed if the object meets the entry criteria. For example,
changing the ACL might be an action on entry. Both entry criteria and actions on entry, if present,
must successfully complete before the object is moved to the state. Post-entry actions are operations
on the object that occur after the object is successfully moved to the state. For example, placing the
object in a workflow might be a post-entry action.

Programs written for the entry criteria, actions on entry, and post-entry actions for a particular
lifecycle must be either all Java programs or all Docbasic programs. You cannot mix programs in
the two languages in one lifecycle.

Note: In entry criteria, you may use Docbasic Boolean expressions instead of or in addition to a
program regardless of the language used for the programs in the actions and entry criteria.

It is possible to bypass entry criteria for a state. If you choose to do that, the server does not enforce
the entry criteria, but simply performs the actions associated with the destination state and, on their
completion, moves the object to the destination state. Only the owner of the policy object that stores
the lifecycle definition or a superuser can bypass entry criteria.

• Actions on entry definitions, page 217, contains information about defining actions on entry.

• Post-entry action definitions, page 217, contains information about defining post-entry actions.

Repository storage
The definition of a lifecycle is stored in the repository as a dm_policy object. The properties of the
object define the states in the lifecycle, the object types to which the lifecycle may be attached, whether
state extensions are used, and whether a custom validation program is used.

The state definitions within a lifecycle definition consist of a set of repeating properties. The values at
a particular index position across those properties represent the definition of one state. The sequence
of states within the lifecycle is determined by their position in the properties. The first state in the

EMC Documentum Content Server Version 6.7 Fundamentals Guide 213

Lifecycles

lifecycle is the state defined in index position [0] in the properties. The second state is the state
defined in position [1], the third state is the state defined in index position [2], and so forth.

State definitions include such information as the name of the state, a state type, whether the state is a
normal or exception state, entry criteria, and actions to perform on objects in that state.

Lifecycle design phases

Lifecycle definitions are stored in the repository in one of three phases: draft, validated, and installed.
A draft lifecycle definition is a definition that has been saved to the repository without validation.
After the draft is validated, it is set to the validated state. After validation, the definition can be
installed.

The state of a lifecycle definition is recorded in the r_definition_state property of the policy object.

Validation of a lifecycle definition ensures that the lifecycle is correctly defined and ready for use
after it is installed. There are two system-defined validation programs: dm_bp_validate_java and
dm_bp_validate. The Java method is invoked by Content Server for Java-based lifecycles. The other
method is invoked for Docbasic-based lifecycles. Each method checks the following when validating
a lifecycle:
• The policy object has at least one attachable state.

• The primary type of attachable object is specified, and all subtypes defined in the later position of
the included_type property are subtypes of the primary attachable type.

• All objects referenced by object ID in the policy definition exist.

• For Java-based lifecycles, that all Service Based Objects (SBOs) referenced by service name exist.

In addition to the system-defined validation, you can write a custom validation program for use.
If you provide a custom program, Content Server executes the system-defined validation first and
then the custom program. Both programs must complete successfully to successfully validate the
definition.

Validating a lifecycle definition requires at least Write permission on the policy object.

Lifecycles that have passed validation can be installed. Only after installation can users begin to attach
objects to the lifecycle. A user must have Write permission on the policy object to install a lifecycle.

Internally, installation is accomplished using an install method.

• Lifecycle state definitions, page 215, contains a detailed list of the information that makes up a
state definition.

• Custom validation programs, page 219, contains more information on writing a custom validation
program.

Designing a lifecycle
Lifecycles are typically created using the Lifecycle Editor, which is accessed through Documentum
Composer. It is possible to create a lifecycle definition by directly issuing the appropriate methods or

214 EMC Documentum Content Server Version 6.7 Fundamentals Guide

Lifecycles

DQL statements to create, validate, and install the definition. However, using the Lifecycle Editor is
the recommended and easiest way to create a lifecycle.

When you design a lifecycle, you must make the following decisions:
• What objects will use the lifecycle

• What normal and exception states the lifecycle will contain and the definition of each state

A state definition includes a number of items, such as whether it is attachable, what its entry
criteria, actions on entry, and post-entry actions are, and whether it allows scheduled transitions.

• Whether to include an alias set in the definition

• Whether you want to assign state types

If objects attached to the lifecycle will be handled by the Documentum clients DCM or WCM,
you must assign state types to the states in the lifecycle. Similarly, if the objects will be handled
by a custom application whose behavior depends upon a lifecycle state type, you must assign
state types.

• What states, if any, will have state extensions

• Whether you want to use a custom validation program

• Types of objects that can be attached to lifecycles, page 212, describes how the object types whose
instances may be attached to a lifecycle are specified.

• Lifecycle state definitions, page 215, contains guidelines for defining lifecycle states.

• Lifecycles, alias sets, and aliases, page 219, describes how alias sets are used with lifecycles.

• State types, page 220, describes the purpose and use of state types.

• State extensions, page 220, describes the purpose and use of state extensions.

Lifecycle state definitions
Each state in the lifecycle has a state definition. All of the information about states is stored in
properties in the dm_policy object that stores the lifecycle definition. The properties that record a
state definition are repeating properties, and the values at a particular index position across the
properties represent the definition of one state in the lifecycle. If you are using the Lifecycle Editor to
create a lifecycle, these properties are set automatically when you create the definition. If you are
creating a lifecycle outside the Editor, you must set the properties yourself.

Lifecycle states have the following characteristics:

• State name

Each state must have a name that is unique within the policy. State names must start with a
letter, and cannot contain colons, periods, or commas. the state_name property of the dm_policy
object holds the names of the states.

• Attachability

Attachability is the state characteristic that determines whether users can attach an object to
the state. A lifecycle must have at least one normal state to which users can attach objects. It is

EMC Documentum Content Server Version 6.7 Fundamentals Guide 215

Lifecycles

possible for all normal states in a lifecycle to allow attachments. The number of states in a lifecycle
that allow attachments depends on the lifecycle.

Whether a state allows attachments is defined in the allow_attach property. This is a Boolean
property.

• Base state

The starting point in the lifecycle to which an object might be returned after a particular action.

• Demotion

Demotion moves an object from one state in a lifecycle to a previous state. If an object in a normal
state is demoted, it moves to the previous normal state. If an object in an exception state is
demoted, it moves to the base state.

The ability to demote an object from a particular state is part of the state definition. By default,
states do not allow users to demote objects. Choosing to allow users to demote objects from a
particular state sets the allow_demote property to TRUE for that state.

When an object is demoted, Content Server does not check the entry criteria of the target state.
However, Content Server does perform the system and user-defined actions on entry and
post-entry actions.

• Scheduled transitions

A scheduled transition moves an object from one state to another at a scheduled date and time.
Normal states can allow scheduled promotions to the next normal state or a demotion to the base
state. Exception states can allow a scheduled resumption to a normal state or a demotion to
the base state.

Whether a state can be scheduled to transition to another state is recorded in the allow_schedule
property. This property is set to TRUE if you decide that transitions out of the state may be
scheduled. It is set to FALSE if you do not allow scheduled transitions for the state.

The setting of this property only affects whether objects can be moved out of a particular state at
scheduled times. It has no effect on whether objects can be moved into a state at a scheduled time.
For example, suppose StateA allows scheduled transitions and StateB does not. Those settings
mean that you can promote an object from StateA to StateB on a scheduled date, but you cannot
demote an object from StateB to StateA on a scheduled date.

• Entry criteria

Entry criteria are the conditions an object must meet before the object can enter a normal or
exception state when promoted, suspended, or resumed. The entry criteria are not evaluated if the
action is a demotion. Each state may have its own entry criteria.

If the lifecycle is Java-based, the entry criteria can be:
— A Java program

Access the lifecycle through the interface IDfLifecycleUserEntryCriteria.

— One or more Boolean expressions

— Both Boolean expressions and a Java program

Java-based programs are stored in the repository as SBO modules and a jar file. For information
about SBO modules, refer to the Documentum Foundation Classes Development Guide.

216 EMC Documentum Content Server Version 6.7 Fundamentals Guide

Lifecycles

If the lifecycle is Docbasic-based, the entry criteria can be:
— A Docbasic program

— One or more Boolean expressions

— Both Boolean expressions and a Docbasic program

Actions on entry definitions

In addition to entry criteria, you can define actions on entry for a state. You can use actions on entry
to perform such actions as changing a object ACL, changing an object repository location, or changing
an object version label. You can also use an action on entry to enforce a signature requirement.
Actions on entry are performed after the entry criteria are evaluated and passed. The actions must
complete successfully before an object can enter the state.

A set of pre-defined actions on entry are available through the Lifecycle Editor. You can choose one
or more of those actions, define your own actions on entry, or both.

If you define your own actions on entry, the program must be a Java program if the lifecycle is
Java-based. Java-based actions on entry are stored in the repository as SBO modules and a JAR file. If
the lifecycle is Docbasic-based, the actions on entry program must be a Docbasic program.

If both system-defined and user-defined actions on entry are specified for a state, the server performs
the system-defined actions first and then the user-defined actions. An object can only enter the state
when all actions on entry complete successfully.

Actions on entry include:
• System-defined actions

A set of pre-defined actions on entry are available for use. When you create or modify a lifecycle
using Lifecycle Editor, you can choose one or more of these actions.

• Java programs

A Java program used as an action on entry program must implement the interface
IDfLifecycleUserAction.

• Docbasic programs

Docbasic actions on entry programs are stored in the repository as dm_procedure objects. The
object IDs of the procedure objects are recorded in the user_action_id property. These properties
are set internally when you identify the programs while creating or modifying a lifecycle using
Lifecycle Editor.

Post-entry action definitions

Post-entry actions are actions performed after an object enters a state. You can define post-entry
actions for any state. For example, for a Review state, you might want to add a post-entry action that
puts the object into a workflow that distributes the object for review. Or, when a document enters the
Publish state, perhaps you want to send the document to an automated publishing program.

If the lifecycle is Docbasic-based, the post-entry action programs must be Docbasic programs.

EMC Documentum Content Server Version 6.7 Fundamentals Guide 217

Lifecycles

Poet-entry actions can be:
• Java-based

If the lifecycle is Java-based, the post-entry action programs must be Java programs. The programs
are stored in the repository as SBO modules and a JAR file. A Java program used as an post-entry
action program must implement the IDfLifecycleUserPostProcessing interface.

• Docbasic-based

Docbasic post-entry actions are functions named PostProc and follow a specific format.

Including electronic signature requirements

Because entry criteria and actions on entry are processed before an object is moved to the target state,
you can use a program for entry criteria or actions on entry to enforce sign-off requirements for
objects moving to that state. In the program, include code that asks the user to provide a sign-off
signature. When a user attempts to promote or resume an object to the state, the code can ensure that
if the user sign-off does not succeed, the entry criteria or action does not complete successfully and
the object is not moved to the state.

Using aliases in actions

Aliases provide a way to make the actions you define for a state flexible and usable in multiple
contexts. Many documents may have the same life stages, but have differing business requirements.
For example, most documents go through a writing draft stage, a review stage, and a published or
approved stage. However, some of those documents may be marketing documents, some may be
engineering documents, and some may be human resource documents. Each kind of document
requires different users to write, review, and approve them.

Using aliases in actions can make it possible to design one lifecycle that can be attached to all these
kinds of documents. You can substitute an alias for a user or group name in an ACL and in certain
properties of a SysObject. You can use an alias in place of a path name in the Link and Unlinkmethods.

In template ACLs, aliases can take the place of the accessor name in one or more access control
entries. When the ACL is applied to an object, the server copies the template, resolves the aliases in
the copy to real names, and assigns the copy to the object.

In the Link and Unlink methods, aliases can replace the folder path argument. When the method
is executed, the alias is resolved to a folder path and the object is linked to or unlinked from the
proper folder.

When the actions you define for a state assign a new ACL to an object or use the Link or Unlink
methods, using template ACLs and aliases in the folder path arguments ensures that the ACL for an
object or its linked locations are always appropriate.

• Including electronic signature requirements, page 218, contains information about adding a
signature requirement to a program.

• Scheduled transitions, page 210, describes how scheduled transitions are implemented internally.

• The Documentum Composer documentation contains a listing of the pre-defined actions.

218 EMC Documentum Content Server Version 6.7 Fundamentals Guide

Lifecycles

• The Documentum Foundation Classes Development Guide describes simple modules.

• Documentum Content Server Administration and Configuration Guide contains complete information
about using digital and electronic signatures or simple sign-offs.

• Appendix A, Aliases, describes how aliases are implemented in detail.

Custom validation programs
This section outlines the basic procedure for creating and installing a user-defined lifecycle
validation method. The Documentum system provides standard technical support only for the
default validation method installed with the Content Server software. For assistance in creating,
implementing, or debugging a user-defined validation method, contact Documentum Professional
Services or Documentum Developer Support.

If you want to use a custom validation program, the program must be written in the same language
as that used for any entry criteria, actions on entry, or post-entry actions written for the lifecycle. This
means that if those programs are written in Java, the custom validation program must be in Java also.
If the programs are written in Docbasic, the validation program must be in Docbasic also.

Note: Docbasic is a deprecated language.

After you write the program, use Documentum Composer to add the custom validation program
to the lifecycle definition. You must own the lifecycle definition (the policy object) or have at least
Version permission on it to add a custom validation program to the lifecycle.

• The Documentum Composer documentation contains instructions for creating a custom validation
program and adding to a lifecycle definition.

Integrating lifecycles and applications
This section discusses the lifecycle features that make it easy to integrate lifecycles and applications.

Lifecycles, alias sets, and aliases

A lifecycle definition can reference one or more alias sets. When an object is attached to the lifecycle,
Content Server chooses one of the alias sets in the lifecycle definition as the alias set to use to resolve
any aliases found in the attached object’s properties. (Sysobjects can use aliases in the owner_name,
acl_name, and acl_domain properties.) Which alias set is chosen is determined by how the client
application is designed. The application may display a list of the alias sets to the user and allow
the user to pick one. Or, the application may use the default resolution algorithm for choosing
the alias set.

Additionally, you can use template ACLs, which contain aliases, and aliases in folder paths in actions
defined for states to make the actions usable in a variety of contexts.

If you define one or more alias sets for a lifecycle definition, those choices are recorded in the policy
object’s alias_set_ids property.

EMC Documentum Content Server Version 6.7 Fundamentals Guide 219

Lifecycles

State extensions

State extensions are used to provide additional information to applications for use when an object is
in a particular state. For example, an application may require a list of users who have permission
to sign off a document when the document is in the Approval state. You can provide such a list by
adding a state extension to the Approval state.

Note: Content Server does not use information stored in state extensions. Extensions are solely for
use by client applications.

You can add a state extension to any state in a lifecycle. State extensions are stored in the repository
as objects. The objects are subtypes of the dm_state_extension type. The dm_state_extension type is
a subtype of dm_relation type. Adding state extensions objects to a lifecycle creates a relationship
between the extension objects and the lifecycle.

If you want to use state extensions with a lifecycle, determine what information is needed by the
application for each state requiring an extension. When you create the state extensions, you will
define a dm_state_extension subtype that includes the properties that store the information required
by the application for the states. For example, suppose you have an application called EngrApp that
will handle documents attached to LifecycleA. This lifecycle has two states, Review and Approval,
that require a list of users and a deadline date. The state extension subtype for this lifecycle will have
two defined properties: user_list and deadline_date. Or perhaps the application needs a list of users
for one state and a list of possible formats for another. In that case, the properties defined for the state
extension subtypes will be user_list and format_list.

State extension objects are associated with particular states through the state_no property, inherited
from the dm_state_extension supertype.

State extensions must be created manually. The Lifecycle Editor does not support creating state
extensions.

State types

A state type is a name assigned to a lifecycle state that can be used by applications to control behavior
of the application. Using state types makes it possible for a client application to handle objects in
various lifecycles in a consistent manner. The application bases its behavior on the type of the state,
regardless of the state’s name or the including lifecycle.

EMC Documentum Document Control Management (DCM) and EMC Documentum Web Content
Management (WCM) expect the states in a lifecycle to have certain state types. The behavior of either
Documentum client when handling an object in a lifecycle is dependent on the state type of the
object’s current state. When you create a lifecycle for use with objects that will be handled using DCM
or WCM, the lifecycle states must have state types that correspond to the state types expected by the
client. (Refer to the DCM and WCM documentation for the state type names recognized by each.)

Custom applications can also use state types. Applications that handle and process documents can
examine the state_type property to determine the type of the object’s current state and then use the
type name to determine the application behavior.

In addition to the repeating property that defines the state types in the policy object, state types
may also be recorded in the repository using dm_state_type objects. State type objects have two
properties: state_type_name and application_code. The state_type_name identifies the state type and

220 EMC Documentum Content Server Version 6.7 Fundamentals Guide

Lifecycles

application_code identifies the application that recognizes and uses that state type. You can create
these objects for use by custom applications. For example, installing DCM creates state type objects
for the state types recognized by DCM. DCM uses the objects to populate pick lists displayed to
users when users are creating lifecycles.

Use the Lifecycle Editor to assign state types to states and to create state type objects. If you have
subtyped the state type object type, you must use the API or DQL to create instances of the subtype.

For more information

• Determining the lifecycle scope for SysObjects, page 226, describes the default resolution
algorithm for choosing the alias set to be used with a lifecycle.

• Using aliases in actions, page 218, contains more information about using aliases in templates
and lifecycle actions.

EMC Documentum Content Server Version 6.7 Fundamentals Guide 221

Lifecycles

222 EMC Documentum Content Server Version 6.7 Fundamentals Guide

Appendix A

Aliases

This appendix describes how aliases are implemented and used. Aliases support Content Server’s
process management services. The appendix includes the following topics:
• Overview, page 223

• Defining aliases, page 224

• Alias scopes, page 224

• Resolving aliases in SysObjects, page 226

• Resolving aliases in template ACLs, page 227

• Resolving aliases in Link and Unlink methods, page 227

• Resolving aliases in workflows, page 228

Overview
Aliases are placeholders for user names, group names, or folder paths. You can use an alias in the
following places:
• In SysObjects or SysObject subtypes, in the owner_name, acl_name, and acl_domain properties

• In ACL template objects, in the r_accessor_name property

Note: Aliases are not allowed as the r_accessor_name for ACL entries of type RequiredGroup or
RequiredGroupSet.

• In workflow activity definitions (dm_activity objects), in the performer_name property

• In a link or lnlink method, in the folder path argument

You can write applications or procedures that can be used and reused in many situations because
important information such as the owner of a document, a workflow activity performer, or the user
permissions in a document ACL is no longer hard coded into the application. Instead, aliases are
placeholders for these values. The aliases are resolved to real user names, group names, or folder
paths when the application executes.

For example, suppose you write an application that creates a document, links it to a folder, and then
saves the document. If you use an alias for the document owner_name and an alias for the folder
path argument in the link method, you can reuse this application in any context. The resulting

EMC Documentum Content Server Version 6.7 Fundamentals Guide 223

Aliases

document will have an owner that is appropriate for the application context and be linked into
the appropriate folder also.

The application becomes even more flexible if you assign a template ACL to the document. Template
ACLs typically contain one or more aliases in place of accessor names. When the template is assigned
to an object, the server creates a copy of the ACL, resolves the aliases in the copy to real user or group
names, and assigns the copy to the document.

Aliases are implemented as objects of type dm_alias_set. An alias set object defines paired values
of aliases and their corresponding real values. The values are stored in the repeating properties
alias_name and alias_value. The values at each index position represent one alias and the
corresponding real user name, group name, or folder path.

For example, given the pair alias_name[0]=engr_vp and alias_value[0]=henryp, engr_vp is the alias
and henryp is the corresponding real user name.

Defining aliases
When you define an alias in place of a user name, group name, or folder path, use the following
format for the alias specification:

%[alias_set_name.]alias_name

alias_set_name identifies the alias set object that contains the specified alias name. This value is the
object_name of the alias set object. Including alias_set_name is optional.

alias_name specifies one of the values in the alias_name property of the alias set object.

To put an alias in a SysObject or activity definition, use a set method. To put an alias in a template
ACL, use a grant method. To include an alias in a link or unlink method, substitute the alias
specification for the folder path argument.

For example, suppose you have an alias set named engr_aliases that contains an alias_name called
engr_vp, which is mapped to the user name henryp. If you set the owner_name property to
%engr_alias.engr_vp, when the document is saved to the repository, the server finds the alias set
object named engr_aliases and resolves the alias to the user name henryp.

It is also valid to specify an alias name without including the alias set name. In such cases, the server
uses a predefined algorithm to search one or more alias scopes to resolve the alias name.

Alias scopes
The alias scopes define the boundaries of the search when the server resolves an alias specification.

If the alias specification includes an alias set name, the alias scope is the alias set named in the alias
specification. The server searches that alias set object for the specified alias and its corresponding
value.

If the alias specification does not include an alias set name, the server resolves the alias by searching a
predetermined, ordered series of scopes for an alias namematching the alias name in the specification.
The scopes that are searched depend on where the alias is found.

224 EMC Documentum Content Server Version 6.7 Fundamentals Guide

Aliases

Workflow alias scopes

To resolve an alias in an activity definition that does not include an alias set name, the server searches
one or more of the following scopes:
• Workflow

• Session

• User performer of the previous work item

• The default group of the previous work item performer

• Server configuration

Within the workflow scope, the server searches in the alias set defined in the workflow object
r_alias_set_id property. This property is set when the workflow is instantiated. The server copies the
alias set specified in the perf_alias_set_id property of the workflow definition (process object) and
sets the r_alias_set_id property in the workflow object to the object ID of the copy.

Within the session scope, the server searches the alias set object defined in the session configuration
alias_set property.

In the user performer scope, the server searches the alias set defined for the user who performed the
work item that started the activity containing the alias. A user alias set is defined in the alias_set_id
property of the user object.

In the group scope, the server searches the alias set defined for the default group of the user who
performed the work item that started the activity containing the alias. The group alias set is identified
in the alias_set_id property.

Within the server configuration scope, the search is conducted in the alias set defined in the
alias_set_id property of the server config object.

Nonworkflow alias scopes

Aliases used in nonworkflow contexts have the following possible scopes:
• Lifecycle

• Session

• User

• Group

• Server configuration

When the server searches within the lifecycle scope, it searches in the alias set defined in the SysObject
r_alias_set_id property. This property is set when the object is attached to a lifecycle.

Within the session scope, the server searches the alias set object defined in the session configuration
alias_set property.

Within the user scope, the search is in the alias set object defined in the alias_set_id property of the
user object. The user is the user who initiated the action that caused the alias resolution to occur.
For example, suppose a a document is promoted and the actions of the target state assign a template

EMC Documentum Content Server Version 6.7 Fundamentals Guide 225

Aliases

ACL to the document. The user in this case is either the user who promoted the document or, if the
promotion was part of an application, the user account under which the application runs.

In the group scope, the search is in the alias set object associated with the user default group.

Within the system scope, the search is in the alias set object defined in the alias_set_id property
of the server config object.

Determining the lifecycle scope for SysObjects

A SysObject lifecycle scope is determined when a policy is attached to the SysObject. If the policy
object has one or more alias sets listed in its alias_set_ids property, you can either choose one from the
list as the object lifecycle scope or allow the server to choose one by default.

The server uses the following algorithm to choose a default lifecycle scope:
• The server uses the alias set defined for the session scope if that alias set is listed in the policy
object alias_set_ids property.

• If the session scope’s alias set isn’t found, the server uses the alias set defined for the user’s scope if
it is in the alias_set_ids list.

• If the user scope alias set is not found, the server uses the alias set defined for the user default
group if that alias set is in the alias_set_ids list.

• If the default group scope alias set is not found, the server uses the alias set defined for the system
scope if that alias set is in the alias_set_ids list.

• If the system scope’s alias set isn’t found, the server uses the first alias set listed in the alias_set_ids
property.

If the policy object has no defined alias set objects in the alias_set_ids property, the SysObject
r_alias_set_id property is not set, and an error is generated.

Resolving aliases in SysObjects
The server resolves an alias in a SysObject when the object is saved to the repository for the first time.

If there is no alias_set_name defined in the alias specification, the server uses the following algorithm
to resolve the alias_name:
• The server first searches the alias set defined in the object r_alias_set_id property. This is the
lifecycle scope.

• If the alias is not found in the lifecycle scope or if r_alias_set_id is undefined, the server looks next
at the alias set object defined for the session scope.

• If the alias is not found in the session scope, the server looks at the alias set defined for the user
scope.

226 EMC Documentum Content Server Version 6.7 Fundamentals Guide

Aliases

• If the alias is not found in the user scope, the server looks at the alias set defined for the user
default group scope.

• If the alias is not found in the user default group scope, the server looks at the alias set defined
for the system scope.

If the server does no’t find a match in any of the scopes, it returns an error.

Resolving aliases in template ACLs
An alias in a template ACL is resolved when the ACL is applied to an object.

If an alias set name is not defined in the alias specification, the server resolves the alias name in
the following manner:
• If the object to which the template is applied has an associated lifecycle, the server resolves the
alias using the alias set defined in the r_alias_set_id property of the object. This alias set is the
object lifecycle scope. If no match is found, the server returns an error.

• If the object to which the template is applied does not have an attached lifecycle, the server
resolves the alias using the alias set defined for the session scope. This is the alias set identified in
the alias_set property of the session config object. If a session scope alias set is defined, but no
match is found, the server returns an error.

• If the object has no attached lifecycle and there is no alias defined for the session scope, the server
resolves the alias using the alias set defined for the user scope. This is the alias set identified in the
alias_set_id property of the dm_user object for the current user. If a user scope alias set is defined
but no match is found, the server returns an error.

• If the object has no attached lifecycle and there is no alias defined for the session or user scope, the
server resolves the alias using the alias set defined for the user default group. If a group alias set
is defined but no match is found, the system returns an error.

• If the object has no attached lifecycle and there is no alias defined for the session, user, or group
scope, the server resolves the alias using the alias set defined for the system scope. If a system
scope alias set is defined but no match is found, the system returns an error.

If no alias set is defined for any level, Content Server returns an error stating that an error set was not
found for the current user.

Resolving aliases in Link and Unlink methods
An alias in a Link or Unlink method is resolved when the method is executed. If there is no alias set
name defined in the alias specification, the server resolves the alias name with the algorithm used
for resolving aliases in SysObjects.

EMC Documentum Content Server Version 6.7 Fundamentals Guide 227

Aliases

Resolving aliases in workflows
In workflows, aliases can be resolved when:
• The workflow is started

• An activity is started

Resolving aliases when the workflow is started requires user interaction. The person starting the
workflow provides alias values for any unpaired alias names in the workflow definition alias set.

Resolving an alias when an activity starts is done automatically by the server.

Resolving aliases during workflow startup

A workflow definition can include an alias set to be used to resolve aliases found in the workflow
activities. The alias set can have alias names that have no corresponding alias values. Including an
alias set with missing alias values in the workflow definition makes the definition a flexible workflow
template. It allows the workflow starter to designate the alias values when the workflow is started.

When the workflow is instantiated, the server copies the alias set and attaches the copy to the
workflow object by setting the workflow r_alias_set_id property to the object ID of the copy.

If the workflow is started through a Documentum client application, the application prompts the
starter for alias values for the missing alias names. The server adds the alias values to the alias set
copy attached to the workflow object. If the workflow is started through a custom application, the
application must prompt the workflow starter for the absent alias values and add them to the alias set.

If the workflow scope is used at runtime to resolve aliases in the workflow activity definitions, the
scope will have alias values that are appropriate for the current instance of the workflow.

Note: The server generates a runtime error if it matches an alias in an activity definition to an
unpaired alias name in a workflow definition.

Resolving aliases during activity startup

The server resolves aliases in activity definitions at runtime, when the activity is started. The alias
scopes used in the search for a resolution depend on how the designer defined the activity. There are
three possible resolution algorithms:
• Default

• Package

• User

228 EMC Documentum Content Server Version 6.7 Fundamentals Guide

Aliases

The default resolution algorithm

The server uses the default resolution algorithm when the activity resolve_type property is set to
0. The server searches the following scopes, in the order listed:
• Workflow

• Session

• User performer of the previous work item

• The default group of the previous work item performer

• Server configuration

The server examines the alias set defined in each scope until a match for the alias name is found.

The package resolution algorithm

The server uses the package resolution algorithm if the activity’s resolve_type property is set to 1. The
algorithm searches only the package or packages associated with the activity incoming ports. Which
packages are searched depends on the setting of the activity resolve_pkg_name property.

If the resolve_pkg_name property is set to the name of a package, the server searches the alias sets
of the package components. The search is conducted in the order in which the components are
stored in the package.

If the resolve_pkg_name property is not set, the search begins with the package defined in
r_package_name[0]. The components of that package are searched. If a match is not found, the search
continues with the components in the package identified in r_package_name[1]. The search continues
through the listed packages until a match is found.

The user resolution algorithm

The server uses the user resolution algorithm if the activity resolve_type property is set to 2. In such
cases, the search is conducted in the following scopes:
• The alias set defined for the user performer of the previous work item

• The alias set defined for the default group of the user performer of the previous work item

The server first searches the alias set defined for the user. If a match isn’t found, the server searches
the alias set defined for the user default group.

EMC Documentum Content Server Version 6.7 Fundamentals Guide 229

Aliases

When a match is found

When the server finds a match in an alias set for an alias in an activity, the server checks the
alias_category value of the match. The alias_category value must be one of:
• 1 (user)

• 2 (group)

• 3 (user or group)

If the alias_category is appropriate, the server next determines whether the alias value is a user
or group, depending on the setting in the activity performer_type property. For example, if
performer_type indicates that the designated performer is a user, the server will validate that the
alias value represents a user, not a group. If the alias value matches the specified performer_type, the
work item is created for the activity.

Resolution errors

If the server does not find a match for an alias, or finds a match but the associated alias category
value is incorrect, the server:
• Generates a warning

• Posts a notification to the inbox of the workflow supervisor

• Assigns the work item to the supervisor

230 EMC Documentum Content Server Version 6.7 Fundamentals Guide

Appendix B

Internationalization Summary

This appendix describes EMCDocumentum’s approach to server internationalization, or how Content
Server handles code pages. It discusses Unicode, which is the foundation of internationalization at
Documentum, and summarizes the internationalization requirements of various features of Content
Server.

The chapter contains the following topics:
• Overview, page 231

• Configuration requirements for internationalization, page 233

• Where ASCII must be used, page 235

• User names, email addresses, and group names, page 236

• Lifecycles, page 236

• Docbasic, page 236

• Federations, page 237

• Object replication, page 237

• Other cross-repository operations, page 237

Overview
Internationalization refers to the ability of the Content Server to handle communications and data
transfer between itself and client applications in a variety of code pages. This ability means that the
Content Server does not make assumptions based on a single language or locale. (A locale represents
a specific geographic region or language group.)

Content Server runs internally with the UTF-8 encoding of Unicode. The Unicode Standard provides
a unique number to identify every letter, number, symbol, and character in every language. UTF-8 is
a varying-width encoding of Unicode, with each single character represented by one to four bytes.

Content Server handles transcoding of data from national character sets (NCS) to and from Unicode.
A national character set is a character set used in a specific region for a specific language. For
example, the Shift-JIS and EUC-JP character sets are used for representing Japanese characters.
ISO-8859-1 (sometimes called Latin-1) is used for representing English and European languages. Data
can be transcoded from a national character set to Unicode and back without data loss. Only common

EMC Documentum Content Server Version 6.7 Fundamentals Guide 231

Internationalization Summary

data can be transcoded from one NCS to another. Characters that are present in one NCS cannot be
transcoded to an NCS in which they are not available.

Note: Internationalization and localization are different concepts. Localization is the ability to display
values such as names and dates in the languages and formats specific to a locale. Content Server
uses a data dictionary to provide localized values for applications. For information about the data
dictionary and localization, refer to Chapter 4, The Data Model.

Content files
You can store content files created in any code page and in any language in a repository. The files are
transferred to and from a repository as binary files.

Note: It is recommended that all XML content use one code page.

Metadata
The metadata values you can store depend on the code page of the underlying database. The code
page may be a national character set or it may be Unicode.

If the database was configured using a national character set as the code page, you can store only
characters allowed by that code page. For example, if the database uses EUC-KR, you can store only
characters that are in the EUC-KR code page as metadata.

All code pages supported by the Documentum System include ASCII as a subset of the code page.
You can store ASCII metadata in databases using any supported code page.

If you configured the database using Unicode, you can store metadata using characters from any
language. However, your client applications must be able to read and write the metadata without
corrupting it. For example, a client using the ISO-8859-1 (Latin-1) code page internally cannot read
and write Japanese metadata correctly. Client applications that are Unicode-compliant can read and
write data in multiple languages without corrupting the metadata.

Client communications with Content Server
All communications between DFC and Content Server are performed using the UTF-8 (Unicode)
code page.

Constraints
A UTF-8 Unicode repository can store metadata from any language. However, if your client
applications are using incompatible code pages in national character sets, they may not be able to
handle metadata values set in different code page. For example, if an application using Shift-JIS or
EUC-JP (the Japanese code pages) stores objects in the repository and another application using

232 EMC Documentum Content Server Version 6.7 Fundamentals Guide

Internationalization Summary

ISO-8859-1 (Latin-1 code page) retrieves that metadata, the values returned to the ISO-8859-1
application will be corrupted because there are characters in the Japanese code page that are not
found in the Latin-1 code page.

• TheDocumentum XML Applications Development Guide has more information and recommendations
for creating XML content.

Configuration requirements for
internationalization
Before you install the server, it is important to set the server host locale and code page properly and to
install the database to use a supported code page. For information about the values that are set prior
to installing Content Server, refer to the Documentum Content Server Installation Guide.

During the server installation process, a number of configuration parameters are set in the server.ini
file and server config object that define the expected code page for clients and the host machine
operating system. These parameters are used by the server in managing data, user authentication,
and other functions.

The Documentum system has recommended locales for the server host and recommended code
pages for the server host and database.

Values set during installation

Some locales and code pages are set during Content Server installation and repository configuration.
The following sections describe what is set during installation.

The server config object

The server config object describes a Content Server and contains information that the server uses to
define its operations and operating environment.
• locale_name

The locale of the server host, as defined by the host operating system. The value is determined
programmatically and set during server installation. The locale_name determines which data
dictionary locale labels are served to clients that do not specify their locale.

• default_client_codepage

The default code page used by clients connecting to the server. The value is determined
programmatically and set during server installation. It is strongly recommended that you do not
reset the value.

• server_os_codepage

The code page used by the server host. Content Server uses this code page when it transcodes user
credentials for authentication and the command-line arguments of server methods. The value is

EMC Documentum Content Server Version 6.7 Fundamentals Guide 233

Internationalization Summary

determined programmatically and set during server installation. It is strongly recommended that
you do not reset the value.

• The Documentum Content Server Administration and Configuration Guide contains a table of default
values for code pages by locale.

Values set during sessions

Properties defining code pages are set when DFC is initialized and when a session is started.

The client config object

A client config object records global information for client sessions. It is created when DFC is
initialized. The values reflect the information found in the dfc.properties file used by the DFC
instance. Some of the values are then used in the session config object when a client opens a
repository session.

The following properties for internationalization are present in a client config object:
• dfc.codepage

The dfc.codepage property controls conversion of characters between the native code page and
UTF-8. The value is taken from the dfc.codepage key in the dfc.properties file on the client host.
This code page is the preferred code page for repository sessions started using the DFC instance.
The value of dfc.codepage overrides the value of the default_client_codepage property in the
server config object.

The default value for this key is UTF-8.

• dfc.locale

This is the client preferred locale for repository sessions started by the DFC instance.

The session config object

A session config object describes the configuration of a repository session. It is created when a client
opens a repository session. The property values are taken from values in the client config object, the
server config object, and the connection config object.

The following properties for internationalization are set in the session config object:
• session_codepage

This property is obtained from the client config object dfc.codepage property. It is the code page
used by a client application connecting to the server from the client host.

If needed, set the session_codepage property in the session config object early in the session and
do not reset it.

• session_locale

234 EMC Documentum Content Server Version 6.7 Fundamentals Guide

Internationalization Summary

The locale of the repository session. The value is obtained from the dfc.locale property of the
client config object. If dfc.locale is not set, the default value is determined programmatically from
the locale of the client host machine.

How values are set

The values of the dfc.codepage and dfc.locale properties in the client config object determine
the values of session_codepage and session_locale in the session config object. These values are
determined in the following manner:
1. Use the values supplied programmatically by an explicit set on the client config object or session

config object.

2. If the values are not explicitly set, examine the settings of dfc.codepage and dfc.locale keys in
the dfc.properties file.

If not explicitly set, the dfc.codepage key and dfc.locale keys are assigned default values. DFC
derives the default values from the Java Virtual Machine (JVM), which gets the defaults from
the operating system.

Where ASCII must be used
Some objects, names, directories, and property values must contain only ASCII characters. These
include:
• Content Server’s host machine name

• Repository names

• Repository owner user name and password

• Installation owner user name and password

• Registered table names and column names

• The directory in which Content Server is installed

• Location object names

• The value of the file_system_path property of a location object

• Mount point object names

• Format names

• Format DOS extensions

• All file store names

• Object type names and property names

• Federation names

• Content stored in turbo storage

• String literals included in check constraint definitions

EMC Documentum Content Server Version 6.7 Fundamentals Guide 235

Internationalization Summary

• String literals included in the expression string referenced in the conditional clauses of value
assistance definitions

• Text specified in an AS clause in a SELECT statement

Other Requirements

User names, email addresses, and group names

There are code page-based requirements for the following property values:
• dm_user.user_name

• dm_user.user_os_name

• dm_user.user_db_name

• dm_user.user_address

• dm_group.group_name

The requirements for these differ depending on the site configuration. If the repository is a standalone
repository, the values in the properties must be compatible with the code page defined in the server
server_os_codepage property. (A standalone repository does not participate in object replication or a
federation, and its users never access objects from remote repositories.)

If the repository is in an installation with multiple repositories but all repositories have the same
code page defined in server_os_codepage, the values in the user property must be compatible
with the server_os_codepage. However, if the repositories have different code pages identified in
server_os_codepage, the values in the properties listed above must consist of only ASCII characters.

Lifecycles

The scripts that you use as actions in lifecycle states must contain only ASCII characters.

Docbasic

Docbasic does not support Unicode. For all Docbasic server methods, the code page in which the
method is written and the code page of the session the method opens must be the same and must
both be the code page of the Content Server host (the server_os_codepage).

Docbasic scripts that run on client machines must be in the code page of the client operating system.

236 EMC Documentum Content Server Version 6.7 Fundamentals Guide

Internationalization Summary

Federations

Federations are created to keep global users, groups, and external ACLs synchronized among
member repositories.

A federation can include repositories using different server operating system code pages
(server_os_codepage). In a mixed-code page federation, the following user and group property
values must use only ASCII characters:
• user_name

• user_os_name

• user_address

• group_address

ACLs can use Unicode characters in ACL names.

Object replication

When object replication is used, the databases for the source and target repositories must use the
same code page or the target repository must use Unicode. For example, you can replicate from a
Japanese repository to a French repository if the French repository database uses Unicode. If the
French repository database uses Latin-1, replication fails.

In mixed code page environments, the source and target folder names must contain only ASCII
characters. The folders contained by the source folder are not required to be named with only ASCII
characters.

Other cross-repository operations

In other cross-repository operations, such as copying folders from one repository to another, the
user performing the operation must have identical user credentials (user names and passwords
and email addresses) in the two repositories.

EMC Documentum Content Server Version 6.7 Fundamentals Guide 237

Internationalization Summary

238 EMC Documentum Content Server Version 6.7 Fundamentals Guide

Index

% (percent sign) in alias specification, 224

A
a_bpaction_run_as property, 211
a_contain_desc property, 151
a_contain_type property, 151
a_content_type attribute, 130
a_controlling_app property, 89
a_full_text attribute, 129
a_is_signed property, 103
a_special_app property

use in workflows, 170
a_storage_type attribute, 131
a_wq_name property

automatic activities, use by, 195
AAC tokens. See application access control

tokens
ACLs

custom, creating, 139
default ACL, assigning, 139
default, described, 138
described, 94, 137
entries, described, 95
grantPermit method, 140
kinds of, 95
non-default, assigning, 139
object-level permissions, 91
replacing, 141
revokePermit method, 140
room defaults, 140
template ACLs, 138
templates

alias use, 223
aliases, resolving, 227
described, 96

Trusted Content Services and, 140
acquired state, for work items, 189
actions on entry (lifecycle)

aliases in, 218
defining, 217

described, 213
Docbasic programs, 217
execution order, 217

active state (activity instance), 188
activities

automatic, 170
Begin, 168
described, 168
End, 168
links between, 169
manual, 170
repeatable, 169
starting conditions, 174
Step, 168
task subjects, 173
timer implementations, 184
transition behavior, 178
trigger condition, 174
trigger events, 174
validation checks, 180
warning timers, 179

activity definitions
automatic transitions, 178
control_flag property, 172
delegation, 172
described, 170
extension characteristic, 172
installing, 181
manual transitions, 178
multiple use, 169
names of, 169
package definitions

compatibility, 176
scope, 175

performers
defining, 173

ports
described, 174
input, 175
output, 175
revert, 175

EMC Documentum Content Server Version 6.7 Fundamentals Guide 239

Index

prescribed transitions, 178
priority values, 171
starting condition, defining, 174
states, 171
task subjects, defining, 173
transition_eval_cnt property, 178
trigger conditions, 174
trigger events, 174
validation, 180
XML files as packages, 175

activity instances
alias resolution

alias_category property, 230
default, 229
described, 194
errors, 230
package resolution algorithm, 229
user resolution algorithm, 229

completion, evaluating, 196
defined, 182
dm_bpm_transition method, 199
execution, 192, 194
packages

acceptance protocol, 176
consolidation of, 193

resuming
automatically, 189

starting condition
described, 174
evaluating, 192

states of, 188
timer instantiation, 184 to 185
transition conditions, evaluating, 198
work items

completing, 183
addESignature method

audit trail entries, 101
description of actions, 99

addPackage method, 192
addRendition method, 113
AEK (Administration Encryption Key), 88
alias set object type, 224
alias sets

alias set object type, 224
group alias sets, 225
lifecycle usage, 219
server configuration scope, 225
session alias set, 225
user alias sets, 225

alias_category property, 230

alias_name property, 224
alias_set property, 225
alias_set_id property, 225
alias_set_ids property, 219
alias_value property, 224
aliases

alias set object type, 224
lifecycle scope, defining, 226
lifecycle state actions, use in, 218 to 219
methods, resolving in, 227
object types and, 223
purpose, 223
resolution

errors, 230
in activities, 194, 229
in lifecycles, 225
in workflows, 225
non-workflow scopes, 225

scope, defined, 224
specification format, 224

allow_attach property, 207
allow_demote property, 216
allow_schedule property, 216
ALTER TYPE (statement), 72
annotations

described, 144
effect of operations on, 144
workflow package notes, 184

application access control tokens
described, 36
dmtkgen utility, 38
expiration, 38
format, 37
generating, 38
getApplicationTokenDiagnostics

method, 37
login ticket key use, 37
methods and, 39
scope, 38
superuser privileges and, 37
trusted repositories and, 39
use of, 37

application component classifiers, 68
application events, auditing, 96
application_code property, 89
applications. See client applications

events, 200
approved_clients_only property, 106
ASCII use requirements, 235, 237
aspect properties

240 EMC Documentum Content Server Version 6.7 Fundamentals Guide

Index

described, 78
full-text indexing, 79
object types for, 79
query optimization, 79

aspects, 78
See also aspect properties
described, 78
property bags and, 57

assemblies. See snapshots
assembling virtual documents, 156
assembly behavior, defining, 153
assembly objects, 150

modifying, 160
assume method, 33
asynchronous write and retention, 128
attachments, for workflows, 186
attachPolicy method, 207
attr_identifier property, 56
attr_restriction property, 56
attributes

immutability and, 122
single-valued, modifying, 135

Audit method
described, 96

auditing
Audit method, 96
default auditing, 96
described, 96
registry objects and, 96
repository storage, 97

automatic activities
a_wq_name property, use of, 195
described, 170
executing, 194
executing in dm_bpm servlet, 170
execution queue size, 194
information passed to method, 195
mode parameter values, 195
priority values, 171
resolving performers, 194
workflow agent, 171, 186

automatic activity transitions, 178

B
base permissions. See object-level

permissions
batch promotion, 208
BATCH_PROMOTE (administration

method), 208

Begin activities, 168
bindFile method, 136
blob storage areas

digital shredding and, 107
BOF. See business object framework
BOF modules

caching, 77
client-side requirements, 77
components of, 76
dfc.bof.cache.currency_check_

interval, 77
jar objects, 76
java library objects, 76
module objects, 76
overview, 75
packaging and deployment, 76
sandboxing, 77
simple, described, 79
testing in development mode, 75

Branch method, 119
branching versions

defined, 118
numeric version labels and, 119

business object framework, 75
See also aspects; service-based objects;
simple modules; type-based objects
described, 75
module overview, 75

C
cabinets

destroying, 73
linking documents, 129
privileges to create, 72

cache config objects, 47
cache.map file, 45
caches

data dictionary cache, 44
persistent client, 45
query, 44
query cache location, 45

cancelCheckOut method, 124
Centera profiles, 127
CHANGE...OBJECT (statement), 74
check constraints, 67
CHECK_CACHE_CONFIG administration

method, 47
Checkin method, 137
CheckinEx method, 137

EMC Documentum Content Server Version 6.7 Fundamentals Guide 241

Index

Checkout method, 134
classifiers, for application components, 68
client applications

a_controlling_app property, 89
aliases, use of, 223
application events, auditing, 96
application_code property, 89
CheckinEx method, 137
component classifiers, 68
connection pooling, 33
control of SysObjects, 89
digital signatures, using, 103
lifecycle state types, using, 220
lifecycles and, 219
locking strategies, 123
persistent client caches, 45
repository sessions, 27
roles

domain groups, 86
supporting groups, 85

virtual document components,
obtaining path to, 163

XML support, 151
client config object, 30, 234
client registration objects, 104
client rights objects, 105
client sessions. See repository sessions
client_check_interval property, 48
client_pcaching_change property, 48
close method, for IDfSessionManager, 30
code pages

ASCII support, 232
default_client_codepage property, 233
group name requirements, 236
server, 233
user name requirements, 236

Collaborative Services, 24
collection objects, 51
compatibility, workflow package, 176
complete method, 183
component specifications (data

dictionary), 68
components (virtual document)

adding to snapshots, 160
assembly behavior, defining, 153
deleting from snapshots, 160

compound_integrity property, 150
computed properties

described, 54
_is_restricted_session, 31

concurrent sessions
defined, 30

concurrent users, 30
conditional assembly, 150
Config Audit user privileges, 91
connection brokers

described, 31
purpose in installation, 31

connection config object, 30
connection pooling, 33
connections

application access control tokens, 36
connection config object, 30
login tickets, 33

consistency checking
cache config object use, 47
CHECK_CACHE_CONFIG

administration method, 47
client_check_interval property, 48
consistency check rules

default rule, 48
defined, 46

described, 46
DMCL behavior, 48
query results, 48
r_last_changed_date property, 48

constraints (data dictionary)
check, 67
defined, 67

constraints on explicit transactions, 40
containment objects

copy_child property, 155
follow_assembly property, 155
object type for, 149
use_node_ver_label property, 154

content assignment policies, 131
overriding, 131

content files
adding, 130
assigning to storage area, 130
association of primary and

rendition, 111
bindFile method, 136
content assignment policies, 131
default storage algorithm, 131
digital shredding, 107
internationaliztion, 232
object types accepting, 54
page numbers, 110, 136
removing from documents, 73, 136

242 EMC Documentum Content Server Version 6.7 Fundamentals Guide

Index

renditions and, 111
replacing, 136
sharing, 136
storage options, 63
virtual documents and, 151

content objects
described, 110

Content Server
communicating with, 24
compound_integrity property, 150
concurrent sessions, 30
data dictionary, use of, 64
privileged DFC, recognition of, 105
supported format converters, 113
transactions, 40
user authentication, 87

Content Services for EMC Centera, 22
Content Storage Services license, 131
Content Transformation Services, 111
content-addressed storage areas

metadata fields, setting, 131
retention periods, 125
retention policies, effect of, 126

control_flag property, 172
convert.tbl file, 112
copy_child property, 155
CREATE...TYPE (statement), 71
crypto_key property, 106
CSEC. See Content Services for EMC

Centera
CURRENT version label, 117
custom ACLs

creating, 139
naming convention, 140

D
DAR file, 23, 44
data dictionary

cache, 44
components for object types, 68
Content Server use of, 64
dd attr info objects, 65
dd common info objects, 65
dd type info objects, 65
default lifecycles for types, 67
described, 64
ignore_immutable attribute, 123
lifecycle state information, defining, 67
locales, supported, 64

localized text, 65
mapping information, 68
modifying, 65
object type constraints, 67
property default values, 68
publishing, 65
retrieving information, 66
value assistance, 68

data validation. See check constraints
database-level locking, 41, 123
dd attr info objects, 65
dd common info objects, 65
dd type info objects, 65
deadlocks, managing, 41
default aspects

described, 79
default storage algorithm for content, 131
default values, for properties, 68
default_acl property

default value, 138
use, 138

default_app_permit property, 89
default_client_codepage property, 233
default_folder attribute, 129
delegation

control_flag property, effects of, 172
defined, 172
enable_workitem_mgmt (server.ini

key), 172
deletions, forced, 127
demotion in lifecycles, 216
dequeue method, 203
destroying

objects, 73
versions, 119

development registry for BOF modules, 75
DFC (Documentum Foundation

Classes), 104
See also privileged DFC
connection pooling, 33
data dictionary, querying, 66
defined, 25, 28
dfc.properties file, 29
persistent caches, 45
sessions, implemetnation, 28

dfc.bof.cache.currency_check_interval, 77
dfc.codepage property, 234
dfc.config.check_interval key, 29
dfc.data.cache_dir, 77
dfc.data.dir, 77

EMC Documentum Content Server Version 6.7 Fundamentals Guide 243

Index

dfc.keystore file, 105
dfc.locale property, 234
dfc.privilege.enable key, 104
dfc.properties file

described, 29
dfc.config.check_interval key, 29
max_session_count, 27
verify_registration key, 105

digital shredding
definition, 107
implementation overview, 107

digital signatures
a_is_signed property, 103
definition, 103
implementation overview, 103
lifecycle states, 218

disassemble method, 161
Disconnect method, 30
discussions, described, 24
distributed notification, 199
distributed repositories

mirror objects, 142
distributed storage areas

digital shredding and, 107
distributed workflows, 199
dm name prefixes, 53
dm_acl type, 94
dm_addesignature events, audit trail

entries, 101
dm_alias_set type, 224
dm_audittrail objects, 97
dm_audittrail_acl objects, 97
dm_audittrail_group objects, 97
dm_bp_schedule method, 210
dm_bp_schedule_java method, 210
dm_bp_transition method

described, 210
dm_bp_transition_java method

described, 210
dm_bp_validate method

described, 214
dm_bp_validate_java method

described, 214
dm_bpm servlet, 170
dm_bpm_transition method, 199
dm_changepriorityworkitem event, 183
dm_lightweight object type, 52
dm_lightweight type

i_property_bag property, 57
dm_owner

default object-level permissions, 93
dm_policy type, 213
dm_queue (view), 202
dm_relation_type objects, 142
dm_retention_managers group, 126 to 127
dm_retention_users group, 126
DM_SESSION_DD_LOCALE

(keyword), 66
dm_sig_template page modifier, 100
DM_TRANSLATION_OF relationship, 143
dm_type type

attr_restriction property, 56
dm_user objects, 85
dm_WFReporting job

described, 185
dm_workflow objects, 182
dmc_completed_workflow objects, 185
dmc_completed_workitem objects, 185
dmc_jar objects, 76
dmc_java_library objects, 76
dmc_module objects, 76
dmc_wf_package_schema type, 175
dmc_wf_package_skill type, 184
DMCL (client library)

application access control token
retrieval, 39

dmi_package objects, 183
dmi_package type, 175
dmi_queue_item objects, 201
dmi_wf_attachment type, 186
dmi_workitem objects, 182
dmSendToList2 workflow template, 167
dmtkgen utility, 38
docbase configuration

client_pcaching_change property, 48
Docbasic

actions on entry (lifecycles), 217
defined, 25
internationalization, 236

documents, 109
See also virtual documents
ACL, replacing, 141
ACLs, assigning, 133, 139
annotations, 144
attributes, setting, 135
bindFile method, 136
Branch method, 119
branching, 118
checking out, 134

244 EMC Documentum Content Server Version 6.7 Fundamentals Guide

Index

content files
adding, 130
format characteristics, 112
Macintosh-generated, 130
page numbers, 110, 136
removing, 136
sharing, 136
specifying storage, 130

content objects and, 110
deleting with unexpired retention, 127
described, 109
dm_document type, 109
fetching, 134
forced deletions, 127
immutability, 121
lifecycles and, 128
linking to cabinets/folders, 129
locking strategies, 123
modifying, 134
permissions, revoking, 140
primary location default, 129
privileged delete, 127
properties, modifying, 135
prune method, 120
renditions, 130

defined, 111
removing, 113, 128
user-generated, 113

retention control
deletion and, 125
effect on modification ability, 134

saving, 137
translation relationships, 143
translation support, 116
versions

described, 116
removing, 119, 128
version tree, 118

Documentum Administrator, 25
domain groups, 86
domains, 55
dormant state

activity instance, 188
work items, 189
workflows, 188

DQL (Document Query Language)
data dictionary, querying, 66
query result objects, 51

draft state (workflow definitions), 171
DROP TYPE (statement), 72

DROP_INDEX administration method, 63
dynamic groups

described, 86
nondynamic group as member, 86

E
early binding

defined, 152
virtual document components, 152

electronic signatures, 97
See also digital signatures; Signoff

method
addESignature behavior, 99
content handling, default, 101
customizations allowed, 102
definition, 98
implementation overview, 98
lifecycle states, 218
PDF Fusion library and license, 100
signature creationmethod, default, 100
signature page template, default, 100
verifying, 102
work items, 183

enable_persistence dfc.properties key, 46
enable_workitem_mgmt (server.ini key)

delegation and, 172
halting activities and, 189

encryption
login ticket key, 34
password, 88

encryptPassword method, 88
End activities, 168
entry criteria (lifecycles)

described, 213, 216
esign_pdf method object, 100
events

accessing, 200
auditing, 96
defined, 200
getEvents method, 202
notifications, 203
queue items and, 200
registrations for

establishing, 204
obtaining information about, 204
removing, 204

trigger, for workflow activities, 174
exception states (lifecycles)

described, 206

EMC Documentum Content Server Version 6.7 Fundamentals Guide 245

Index

resuming from exception state, 209
execute method, 190, 192
explicit sessions, 29
explicit transactions

constraints, 40
database-level locking, 41, 123
deadlock management, 42
described, 40

EXPORT_TICKET_KEY administration
method, 35

extended permissions. See object-level
permissions

extension (workflow activities), 172
extensions. See state extensions
extent, for object type tables, 62
external ACLs, 95
external storage areas

digital shredding and, 107

F
failed state (activity instance), 189
federated repositories

defined, 56
internationalization, 237
mirror objects, 142

fetch method
locking and, 124

Fetch method
described, 134

file formats
conversions on Microsoft

Windows, 113
converter support, 111
PBM Image converters, 114
renditions, 111

described, 111
supported converters, 113
transforming with UNIX utilities, 115

file store storage areas
crypto_key property, 106
encrypted, 106

files. See content files
finished state

activity instance, 189
work items, 190
workflows, 188

folder security, 94
default setting, 94

folders

default ACL, 138
linking documents, 129
privileges to create, 72

follow_assembly property, 155
forced deletions, 127
format

application access control token, 37
login ticket, 34

freeze method, 161
Freeze method, 121
full-text indexing

aspect properties, 79
SysObjects, 129

G
GET_INBOX (administration method), 202
getApplicationTokenDiagnostics, 37
getEvents method, 202
getLoginTicketDiagnostics method, 34
getSession method, 28
getTypeDescription method, 66
global properties, 56
grantPermit method, 140
group_class property, 86
groups, 85

See also dynamic groups
alias sets for, 225
code page requirements, 236
described, 85
local and global, 87
membership constraint for nondynamic

groups, 86
mixing nondynamic and dynamic

groups in membership, 86
module role, 86
ownership of objects, 129
privileged group, 86
role, 86
standard, 86

H
halted state

activity instances, 189
workflows, 188

haltEx method, 189
hasEvents method, 202
hierarchy, object type, 51
home repository, 201

246 EMC Documentum Content Server Version 6.7 Fundamentals Guide

Index

I
i_chronicle_id attribute, 118
i_performer_flag property, 196
i_property_bag property, 57
i_property_bat property

overflow, 57
i_retain_until property, 126
i_vstamp attribute, locking and, 124
i_vstamp property, 48
identifiers

object type, 74
property, 56

identifiers, session, 28
ignore_immutable attribute, 123
images

PMB Image converters, 114
transforming, 114

immutability
attributes, effect on, 122
described, 121
ignore_immutable attribute, 123
retention policies and, 122

implicit sessions, 29
IMPORT_TICKET_KEY administration

method, 35
inboxes

dequeue method, 203
description, 201
dm_queue view, 202
dmi_queue_item objects, 201
GET_INBOX (administration

method), 202
getEvents method, 202
hasEvents method, 202
home repository and, 201
obtaining event registrations, 204
queue method, 202
viewing queue, 202

indexes for object types, 63
inheritance, 51
input ports

Begin activities and, 169
defined, 175
packages, 176, 193

installed state (workflow definitions), 171
internal ACLs, 95
internal transactions

deadlock management, 41
described, 40

internationalization
ASCII support, 232
ASCII use requirements, 235
client config object, 234
code pages, 233
content files, 232
data dictionary support for, 65
databases, 233
described, 231
Docbasic, 236
federations, ASCII requirements, 237
lifecycle constraint, 236
locales, 231
metadata, 232
National Character Sets, 231
object replication, 237
repository sessions, values set, 234
required parameters, 233
server config object, 233
session config object, 234
Unicode, 231
UTF-8, 231

_is_restricted_session (computed
property), 31

J
JAR files

jar objects, 76
jar objects, 76
java library objects, 76
jobs

dm_WFReporting, 185
lifecycle state transition jobs, 210

L
language_code attribute, 143
lifecycle states

actions on entry
defining, 217
Docbasic, 217
execution order, 217

aliases in, 219
attaching objects, 207
batch promotion, 208
data dictionary and, 67
definitions

described, 215
demoting from, 208, 216

EMC Documentum Content Server Version 6.7 Fundamentals Guide 247

Index

entry criteria
described, 216

movement between, 208
normal states, 206
post-entry actions

described, 217
promoting to, 208
sign-offs, enforcing, 218
state extensions

described, 220
state type definitions, 220
state_class property, 215
suspending from, 209
transitions, scheduled, 210, 216

lifecycles
a_bpaction_run_as property, 211
actions, described, 213
alias scope, defining, 226
alias use in actions, 218
aliases and alias sets, 219
allow_demote property, 216
attaching objects, 207
batch promotion, 208
code page requirements, 236
defaults for object types, 67, 212
defined, 128, 205

See also lifecycle states
definition states, 214
demotion, 208
entry criteria, described, 213
exception states, 206
installation, 214
log files, 211
methods supporting, 210
object types for, 212
object-level permissions and, 213
primary object type for, 212
programming languages,

supported, 213
progression through, overview, 206
promotion, 208
repository storage, 213
resumption from exception state, 209
state change behavior, 211
state definitions, 215
state extensions, 220
state types, 220
state-change methods, 208, 210
suspension from state, 209

validation
custom programs, 214
overview, 214

lightweight object types
database storage, 60
defined, 52
materialization, 60

lightweight objects
i_property_bag property, 57

Link method
alias use in, 223
resolving aliases, 227

linking, folder security and, 94
links

described, 169
links (workflow)

port compatibility, 176
local properties, 56
locale_name property, 233
locales

described, 64
DM_SESSION_DD_LOCALE

keyword, 66
session_locale property, 234
supported, 64, 231

location objects
SigManifest, 100

locking
database level, 41, 123
optimistic, 124
repository level, 124
strategies, 123 to 124

log files, lifecycle, 211
login ticket key

application access control tokens
and, 37

defined, 34
resetting, 35
ticket_crypto_key property, 34
use of, 34

login tickets
described, 33
expiration, configuring, 35
format, 34
generation, 33
getLoginTicketDiagnostics method, 34
global, defined, 34
login_ticket_cutoff property, 35
login_ticket_timeout property, 35

248 EMC Documentum Content Server Version 6.7 Fundamentals Guide

Index

max_login_ticket_timeout
property, 35

revoking, 35
scope, 34
single use, 33
superuser use, restricting, 36
time difference tolerances, 35
timed-out sessions, reconnecting, 31
trusted repositories and, 39

login_ticket_cutoff property, 35
login_ticket_timeout property, 35
LTK. See login ticket key

M
Macintosh files, adding as content, 130
MAKE_INDEX administration method, 63
manual activities

delegation, 172
described, 170
extension characteristic, 172
manual transitions

described, 178
performers

resolving, 193
priority values, 171

mapping information (data dictionary), 68
mark method, 117
materialization, 60
max_login_ticket_timeout property, 35
max_session_count, 27
Media Transformation Services, 111
metadata

described, 54
national character sets and, 232
setting in content-addressed

storage, 131
method objects

workflow, executing in dedicated
servlet, 170

methods
application access control tokens

and, 39
lifecycle, 210

Microsoft Windows platforms, format
conversions supported, 113

mirror objects
described, 142

mode parameter values, 195
module objects, 76

module role groups, 86
modules. See BOF modules

N
names

activity definitions, 169
custom ACLs, 140
object type name prefixes, 53

National Character Sets, 231
newSession method, 28
nonpersistent objects, 51
nonqualifiable properties, 56
normal states (lifecycle), 206
notes, 24

See also annotations
notification in distributed workflows, 199
notifications of events, 203
numeric version labels, 117

O
object caches

consistency checking, 48
described, 44

object replication
internationalization, 237

object type tables
described, 58
extent size, defining, 62
lightweight object types, 60
subtype storage, 59
tablespace, defining, 62

object types
categories of, 52
component routines for, 68
content files and, 54
creating, 71
data dictionary information

constraints, 67
default lifecycle for type, 67, 212
mapping information, 68
retrieving, 66
value assistance, 68

dd_attr_info, 65
dd_common_info, 65
dd_type_info, 65
default ACLs for, 138
defined, 51
dm name prefix, 53

EMC Documentum Content Server Version 6.7 Fundamentals Guide 249

Index

identifiers, 74
indexes on, 63
lightweight, 52
nonqualifiable and qualifiable

properties, 55
owner, 71
persistence, 51
primary for lifecycles, 212
properties, defaults for, 68
RDBMS tables for, 58
removing, 72
shareable, 53
subtypes, described, 51
supertypes, 51
SysObjects, 109
valid types for lifecycles, 212

object-level permissions, 91
See also ACLs
assigning, 133
base permission levels, 91
described, 91
extended permission levels, 92
lifecycles and, 213
revoking, 140

objects
alias use in, 223
attaching to lifecycles, 207
changing to another type, 74
creating, 72
default owner permissions, 93
default superuser permissions, 93
defined, 51
destroying, 73
freezing, 121
global and local properties, 56
ignore_immutable attribute, 123
immutability, 121
information about, obtaining through

DFC, 66
ownership, assigning, 129
persistence, 51
privileges to create, 72
relationships

user-defined, 143
unfreezing, 122

optimistic locking, 124
output ports

defined, 175
End activities and, 169

ownership of objects, 129

P
package control (workflows), 179
package definitions

compatibility, 176
described, 175
empty, 175
scope, 175

package object type, 175
packages

acceptance protocol, 176
adding to Begin activities, 192
consolidation of, 193
empty, 175
package objects, 183
package skill level, 184
visibility of, 176

page numbers, for content, 110, 136
password encryption, 88
path_name property, 163
paused state, for work items, 190
PBM Image converters, 114
PDF Fusion library and license, 100
percent sign (%) in alias specification, 224
performance

optimizing for aspect properties, 79
persistence, 51
persistent caching

described, 45
persistent client caches

cache.map file, 45
consistency checking, 46
enable_persistence dfc.properties

key, 46
flushing, 48
object caches

consistency checking, 48
query cache location, 45
query caches, 44 to 45
using, 45

persistent properties
domains, 55

PKI credentials, location, 105
policy object type, 213
ports, 174

See also input ports; output ports
compatibility, 176
described, 174
package definitions

described, 175

250 EMC Documentum Content Server Version 6.7 Fundamentals Guide

Index

post-entry actions (lifecycles)
aliases in, 218
defining, 217
described, 213

post-timers (workflows)
described, 179
instantiation, 185

pre-timers (workflows)
described, 179
instantiation, 184

prescribed activity transitions, 178
primary cabinet. See primary location
primary content files. See content files
primary folder, 138
primary location, 129
priority values

activity (workflow), 171
work items, setting for, 183

private ACLs
assigning to documents, 139
described, 96

private groups, 86
private sessions, 28
privileged delete, 127

See also forced deletions
privileged DFC

approved_clients_only property, 106
client registration objects, 104
client rights objects, 105
Content Server, recognition by, 105
described, 104
public key certificate objects, 104
registration described, 104
verify_registration key (dfc.properties

file), 105
privileged group, 86
Process Builder, 167
process definitions, 168

See also workflow definitions
activity types, 168
described, 168
installing, 181
links, 169
validation checks, 180

properties
a_full_text, 129
characteristics of, 54
constraints (data dictionary), 67
data dictionary information,

retrieving, 66

datatypes, 55
default values, defining, 68
defined, 54
global and local, 56
identifiers, 56
mapping information (data

dictionary), 68
nonqualifiable, 56
qualifiable, 55
RDBMS tables for, 58
repeating, 55
repeating, modifying, 135
single-valued, 55
value assistance (data dictionary), 68

property bag
aspect properties and, 57
described, 57

prune method, 120
public ACLs

assigning to documents, 139
described, 95

public groups, 86
public key certificate objects, 104
publishing data dictionary, 65
Purge Audit user privileges, 91

Q
qual comp objects, 68
qualifiable properties, 55
query caches, 44 to 45

storage location, 45
query result objects, 51
queue items

placing in inbox, 202
work items and, 182

queue method, 202

R
_r repository tables, 58
r_act_priority property, 171
r_alias_set_id property, 225
r_complete_witem property, 196
r_definition_state property, 214
r_frozen_flag attribute, 121
r_frozen_flag property, 161 to 162
r_frzn_assembly_cnt property, 161 to 162
r_has_frzn_assembly property, 161 to 162
r_immutable_flag attribute, 121

EMC Documentum Content Server Version 6.7 Fundamentals Guide 251

Index

r_immutable_flag property, 161 to 162
r_is_virtual_doc property, 149
r_last_changed_date property, 48
r_link_cnt property, 149
r_property_bag property, 57
r_total_witem property, 196
r_version_label attribute, 117
RDBMS

database-level locking, 123
Documentum tables in, 58
object type indexes, 63
_r repository tables, 58
registered tables, 64, 93
_s repository tables, 58

referential integrity, 150
registered tables, 64, 93
registerEvent method, 204
registry objects, 96
relation objects

annotations and, 144
described, 142

relationships
annotations, 144
defined, 142
relation object, 142
system-defined, 142
translation relationships, 143
user-defined, 143

remote users, work items and, 199
removeContent method, 136
removeRendition method, 113
removing, 136

See also destroying
content files, 136
event registrations, 204
queued inbox items, 203
renditions, 113
user-defined types, 72
versions, 119

renditions
adding user generated, 113
addRendition method, 113
connection to source document, 116
convert.tbl file, 112
converter support, 111
defined, 111
described, 130
file formats, 111
format characteristics, 112
Media Transformation Services, 111

page numbers and, 111
PBM Image converters, 114
removeRendition method, 113
removing, 128
removing user-generated, 113
supported format converters, 113
system-generated, 112

Repeat method, 172
repeatable_invoke property, 169
repeating properties, 55

performance tip, 135
replacing values, 135
storage, 58

replicas
described, 142
retention policies and, 126

reports
usage tracking, 88

repositories
a_bpaction_run_as property, 211
application access control tokens, 36
application access control tokens,

generating, 38
approved_clients_only property, 106
architecture, 58
auditing events, 96
data dictionary

described, 64
retrieving information, 66

default_acl property, 138
events, 200
home repository, 201
inboxes, 201
localizing, 65
login ticket use, 33
object types

creating, 71
RDBMS indexes, 63
RDBMS tables, 58
removing, 72

repository objects
changing type, 74
creating, 72
destroying, 73

security, 84
trusted mode, for connection

requests, 39
user authentication, 87
views, 64
working with remote objects, 141

252 EMC Documentum Content Server Version 6.7 Fundamentals Guide

Index

repository sessions
alias sets for, 225
closing, 30
configuration, 29
configuration objects, 30
connection pooling, 33
deadlocks, managing, 41
default_app_permit property, 89
defined, 27
explicit sessions, 29
explicit transactions, 40
identifiers, 28
implicit sessions, 29
inactive, 31
internationalization, 234
_is_restricted_session (computed

property), 31
max_session_count, 27
maximum number, 30
object state, 30
private, 28
restricted, 31
secure connections, 32
session config objects, 234
session_codepage property, 234
session_locale property, 234
shared, 28
timed out sessions, reconnecting, 31
transactions, managing, 40

repository-level locking, 124
resetPassword (IDfSession), 31
resolve_pkg_name property, 229
resolve_type property, 229
respository sessions

default_client_codepage property, 233
retention and asynchronous write

operations, 128
retention policies

deleting documents under control, 127
described, 125
description, 125
dm_retention_managers group, 126
dm_retention_users group, 126
document versions and, 126
privileged delete, 127
r_immutable_flag and, 122
replicas and, 126
storage-based retention, interaction

with, 126

SysObjects, modification
constraints, 134

virtual documents, 152
Retention Policy Services. See retention

policies
described, 23

revert ports, 175
revokePermit method, 140
role groups, 86
rooms

ACL assignments for governed
objects, 140

rooms, described, 24
route cases

evaluation, 199
RPS. See Retention Policy Services

S
_s repository tables, 58
sandboxing of Java libraries, 77
Save method

described, 137
SBO (service-based object)

described, 77
storage location, 78

scope
alias, 224
application access control tokens, 38
login tickets, 34

search, 41
secure connections, described, 32
security

cached query files, 45
digital shredding, 107
digital signatures, 103
folder security, 94
permissions, revoking, 140
secure connections, use of, 32
signature requirements support, 97

security_mode property, 84
SELECT (statement)

processing algorithm, 157
server config object, 30, 233
server_os_codepage property, 233
service-based object. See SBO

(service-based object)
session code page

session_codepage property, 234
session config objects, 30, 234

EMC Documentum Content Server Version 6.7 Fundamentals Guide 253

Index

session configuration. See repository
sessions

session managers
terminating, 30

session objects (DFC), 28
session_locale property, 234
sessions. See repository sessions

DFC implementation, 28
SET_APIDEADLOCK administration

method, 42
Setpriority method, 183
shareable object types

defined, 53
shared sessions, 28
shredding, digital. See digital shredding
SigManifest location object, 100
sign-offs, simple

definition, 103
implementation overview, 103

signature creation method, default, 100
signature page templates, default, 100
signature requirements, support for, 97

See also digital signatures; electronic
signatures; sign-offs, simple

signatures, digital. See digital signatures
signatures, electronic. See electronic

signatures
signoff method

simple sign-off, use in, 103
sigpage.doc, 100
sigpage.pdf, 100
simple modules, 79
single sign-on, 88
single-valued properties, 55
snapshots

assembly object type, 150
components

adding, 160
deleting, 160

creating, 159
described, 150, 159
disassemble method, 161
freezing, 161
modifying, 159
path_name property, 163
unfreezing, 162

SSL (secure socket layer) protocol, 32
standard groups

described, 86
starting condition (activities)

described, 174
evaluating, 192

state extensions
described, 220

state types, for lifecycles, 220
state_class property, 215
states

work items, 189
workflow, 187
workflow definition objects, 171

Step activities
described, 168

storage areas
assigning content to, 130
digital shredding, 107
retention periods, 126

subtypes
database storage, 59
described, 51
owner, 71
removing, 72

supertypes, 51
Superuser user privilege

application access control tokens
and, 37

login tickets and, 36
workflow supervisor and, 186

superusers
default object-level permissions, 93

supervisor, workflow, 186
supported format converters, 113
suspend method, 209
suspend timers

implementation, 184
instantiation, 185

symbolic version labels, 117
Sysadmin user privilege

workflow supervisor and, 186
SysObjects

ACL assignments in rooms, 140
ACLs and, 137
alias use in, 223
application-level control, 89
attachPolicy method, 207
content files

adding, 130
replacing, 136

default_folder attribute, 129
described, 109
full-text indexing, 129

254 EMC Documentum Content Server Version 6.7 Fundamentals Guide

Index

i_chronicle_id attribute, 118
i_retain_until property, 126
lifecycle scope, defining, 226
modifying, 134
ownership, assigning, 129
primary folder, defined, 138
property bags, 57
r_alias_set_id property, 225
r_is_virtual_doc property, 149
r_link_cnt property, 149
r_property_bag property, 57
r_version_label attribute, 117
removeContent method, 136
repeating properties, modifying, 135
resolving aliases, 226
retention control, effects of, 125, 134
retention policies, 125
version labels, 116
version tree, 118

system ACLs
assigning to documents, 139
public ACLs and, 95

T
tablespaces for object type tables, 62
task subjects, 173
task_subject property, 173
task_subject property (activities), 173
task_subject property (queue items), 174
tasks, workflow

accessing, 200
defined, 200
queue items and, 200
work items and, 200

TBO (type-based object)
described, 78
storage location, 78

TCS. See Trusted Content Services
template ACLs, 96
template signature pages, 100
template workflows

described, 167
dmSendToList2, 167

terminated state (workflows), 188
ticket_crypto_key property, 34
timers, for workflow, 179
tokens. See application access control

tokens
tracing, overview, 97

transactions
database-level locking, 123
deadlocks, managing, 41
defined, 40
locking strategies, 123 to 124

TRANSCODE_CONTENT administration
method, 111

transformations
PBM Image converters, 114
supported converters, 113
using UNIX utilities, 115

transition_eval_cnt property, 178
transitions, activity, 178
translation relationships, 143
translations of documents, 116
trigger condition (activities), 174
trigger events (activities), 174
trust_by_default property, 39
Trusted Content Services

ACLs and, 95, 140
described, 21

trusted_docbases property, 39
turbo storage areas

digital shredding and, 107
type identifiers, 74
type-based object. See TBO (type-based

object)
type_category property, 52

U
Unfreeze method, 122, 162
Unicode, 231
Unlink method

alias use in, 223
resolving aliases, 227

unlinking, folder security and, 94
unmaterialize, 60
unRegister method, 204
usage tracking, 88
use_node_ver_label property, 154
user authentication, 87
user privileges

basic, list of, 90
Config Audit, 91
extended, list of, 90
Purge Audit, 91
View Audit, 91

user-defined types, removing, 72
user_delegation property, 172

EMC Documentum Content Server Version 6.7 Fundamentals Guide 255

Index

users
alias sets for, 225
alias_set_id property, 225
code page requirements, 236
default ACL, 138
described, 85
dm_user objects, 85
local and global, 85
object-level permissions, 91
privileges to create, 72
user privileges, list of, 90

UTF-8, 231
utilities

dmtkgen, 38

V
validated state (workflow definitions), 171
validation, lifecycle definitions, 214
validity periods

application access control tokens, 38
login tickets, 35

value assistance, 68
vdmPath method, 164
vdmPathDQL method, 164
verification of electronic signatures, 102
verify_registration key, 105
version trees

changeable versions, 121
versioning

defined, 116
versions

Branch method, 119
branching, 118
changeable, 121
Destroy method and, 119
i_chronicle_id attribute, 118
label uniqueness, 117
mark method and, 117
numeric version label, 117
prune method and, 120
r_version_label attribute, 117
removing, 73, 119, 128
retention policies and, 126
symbolic version label, 117
SysObjects and, 116
version tree, 118

View Audit user privileges, 91
view on inboxes, 202
views, on repository tables, 64

virtual documents
assembling, 156
components

appending, 156
assembly behavior, defining, 153
determining paths to, 163
early binding, 152
ordering, 149

compound_integrity property, 150
conditional assembly, 150
containment objects

copy_child property, 155
described, 149

content files and, 151
copy behavior, defining, 155
creating, 156
described, 110, 147
freezing, 161
querying, 162
r_is_virtual_doc property, 149
r_link_cnt property, 149
referential integrity, 150
retention policies, 152
snapshots

assembly objects, 150
creating, 159
described, 150, 159
disassembling, 161

unfreezing, 162
vdmPath method, 164
vdmPathDQL method, 164
versioning, 150

W
warning timers

described, 179
implementation, 184

Webtop Workflow Reporting tool, 185
wf attachment objects, 186
wf package schema object type, 175
wf package skill object type, 184
work items

completing, 183
delegating, 172
described, 182
overview of use, 182
priority, setting, 183
queue items and, 182
remote users and, 199

256 EMC Documentum Content Server Version 6.7 Fundamentals Guide

Index

signing off, 183
states of, 189

work queues
priority values for work items, 171

workflow agent
activities, assigning, 194
activity priority value use, 171
batch size, 194
described, 186

workflow definitions
activities, naming, 169
activity definitions

multiple use of, 169
alias use in, 167, 223
architecture, 168
Begin activities, 168
described, 170
End activities, 168
package compatibility, 176
package control, enabling, 179
process definitions

validation checks, 180
states, 171
Step activities, 168
templates, 167

workflow instances
activity instances, 182

completion, evaluating, 196
evaluating transition

conditions, 198
attachments, 186
notes, for packages, 184
reports about, 185
resolving performers

aliases, 194
automatic activities, 194
manual activities, 193
workflow_disabled property, 193

starting, 190, 192
states of, 187

workflow objects, 182
workflow worker thread

activity execution, described, 195
workflow_disabled property, 193
workflows, 165

See also activities; workflow definitions;
workflow instances
activities

definitions, 170
delegation, 172
execution, 192
extension, 172
instances of, 182
names of, 169
repeatable, 169
types of, 168

aliases
default resolution, 229
package resolution algorithm, 229
resolving at activity start, 228
resolving at startup, 228
scopes of, 225
user resolution algorithm, 229

attachments, 186
defined, 165
distributed, 199
dm_bpm servlet, 170
implementation overview, 165
input ports, 175
links, 169
manual activities, 170
output ports, 175
package definitions, 175
revert ports, 175
runtime architecture, 181
runtime execution, 190
starting, 190, 192
supervisor, 186
tasks, defined, 200
timers, for activities, 179
work item objects, 182
workflow agent, 186

X
XML files

activity packages, as, 175
support for, 151

XML store, 23
XQuery, 23

EMC Documentum Content Server Version 6.7 Fundamentals Guide 257

	EMC Documentum Content Server
	Preface
	Intended audience
	Conventions
	Revision history

	Overview
	Managed content
	Elements of the content management system
	Check out / check in
	Versioning
	Virtual documents
	Full text indexing
	Security
	Repository security
	Accountability

	Process management features
	Workflows
	Lifecycles

	Distributed services
	Additional options
	Trusted Content Services
	Content Services for EMC Centera
	Content Storage Services
	XML Store and XQuery

	EMC Documentum products requiring activation on Content Server
	Retention Policy Services
	Documentum Collaborative Services

	Internationalization
	Communicating with Content Server
	Applications
	Interactive utilities

	Session and Transaction Management
	Session Overview
	Session Implementation in DFC
	Obtaining a session
	Shared and private sessions
	Explicit and implicit sessions
	Session configuration
	The dfc.properties file
	The runtime configuration objects

	Closing repository sessions

	Concurrent sessions
	Inactive repository sessions
	Restricted sessions
	Connection brokers
	Native and secure connections
	Connection pooling
	Login tickets
	Login Ticket format and Scope
	The login ticket key
	Login ticket expiration
	Revoking login tickets
	Restricting superuser use

	Application access control tokens
	Using tokens
	Token format and scope
	Token generation and expiration
	Internal methods, user methods, and tokens

	Trusting and trusted repositories
	Transaction management
	Internal and explicit transactions
	Constraints on explicit transactions
	Database-level locking in explicit transactions
	Managing deadlocks
	Handling deadlocks in internal transactions
	Handling deadlocks in explicit transactions

	Caching
	Object type caching
	Object types with names beginning with dm, dmr, and dmi
	Custom object types and types with names beginning with dmc

	Repository session caches
	Persistent caching
	Query cache storage location
	Using persistent client caching in an application

	Consistency checking
	Determining if a consistency check is needed
	Rules with a keyword or integer
	Rules with a cache config object

	Conducting consistency checks
	The client_pcaching_change property

	The Data Model
	Objects and object types
	Object type categories
	Lightweight object types
	Shareable object types
	Documentum system object type names
	Content files and object types

	Properties
	Property characteristics
	Persistent and nonpersistent
	Single-valued and repeating
	Datatype
	Read only or read and write
	Qualifiable and nonqualifiable
	Local and global
	Property identifiers

	The property bag
	Implementation

	Repositories
	Object type tables
	Single-valued property tables
	Repeating property tables
	How standard subtype instances are stored
	Figure 1.

	How lightweight subtype instances are stored
	Figure 2.
	Figure 3.

	Location and extent of object type tables

	Object type index tables
	Content storage areas

	Registered tables
	The data dictionary
	Localization support
	Modifying the data dictionary
	Publishing the data dictionary
	Retrieving data dictionary information
	Using DQL
	Using the DFC

	Data dictionary contents
	Constraints
	Lifecycle states and default lifecycles for object types
	Component specifications
	Default values for properties
	Value assistance
	Mapping information

	Object Type and Instance Manipulations and Customizations
	Object type manipulations
	Creating new object types
	Altering object types
	Dropping object types

	Object instance manipulations
	Object creation
	Object modification
	Object destruction

	Changing the object type of an object
	Figure 4.

	Business object framework
	The BOF module
	Module packaging and deployment
	Figure 5.

	Service-based objects
	Type-based objects
	Aspects
	Aspect properties
	Implementation of aspect properties
	Default aspects

	Simple modules

	Security Services
	Overview
	Standard security features
	Trusted Content Services security features

	Repository security
	Users and groups
	Users
	Repository implementation of users
	Local and global users

	Groups

	User authentication
	Password encryption
	Application-level control of SysObjects
	User privileges
	Basic user privileges
	Extended user privileges

	Object-level permissions
	Base object-level permissions
	Extended object-level permissions
	Default permissions

	Table permits
	Folder security
	ACLs
	ACL entries
	Categories of ACLs
	Template ACLs

	Auditing and tracing
	Auditing
	Tracing

	Signature requirement support
	Electronic signatures
	Overview of Implementation
	The addESignature method
	Default signature page template
	Default signature creation method
	Default content handling
	Audit trail entries
	Customizing signatures
	Signature verification

	Digital signatures
	Simple sign-offs

	Privileged DFC
	Privileged DFC registrations
	Recognizing a privileged DFC instance
	Using approved DFC instances only

	Encrypted file store storage areas
	Digital shredding

	Content Management Services
	Document objects
	Document content
	Content objects
	Primary content
	Renditions
	Rendition formats and characteristics
	Generated renditions
	Supported conversions on Microsoft Windows platforms
	Supported conversions on UNIX platforms
	PBM image converters
	Miscellaneous converters

	Connecting source documents and renditions

	Translations
	For more information

	Versioning
	Version labels
	Version trees
	Branching
	Figure 6.

	Removing versions
	Figure 7.

	Changeable versions

	Immutability
	Effects of a checkin or branch method
	Effects of a freeze method
	Effects of a retention policy
	Attributes that remain changeable

	Concurrent access control
	Database-level locking
	Repository-level locking
	Optimistic locking

	Document retention and deletion
	Retention policies
	Storage-based retention periods
	Behavior if both a retention policy and storage-based retention
	Deleting documents under retention
	Deleting versions and renditions
	Retention in distributed environments

	Documents and lifecycles
	Documents and full-text indexing
	Creating document objects
	Adding content
	Storing content
	Content assignment policies
	Default storage allocation
	Explicitly assigning a storage area

	Setting content properties and metadata for content-addressed st
	Document objects and Access Control Lists

	Modifying document objects
	Accessing a document in the repository
	Modifying single-valued attributes
	Modifying repeating attributes
	Performance tip for repeating attributes

	Adding content
	Adding additional primary content
	Replacing an existing content file

	Removing content from a document
	Sharing a content file
	Writing changes to the repository
	Checkin and checkinEx methods
	Save and saveLock methods

	Managing permissions
	The default ACLs
	Template ACLs
	Assigning ACLs
	Generating custom ACLs

	Rooms and ACL assignments
	Removing permissions
	Replacing an ACL

	Managing content across repositories
	Relationships between objects
	System-defined relationships
	User-defined relationships

	Managing translations
	Translation relationships

	Annotation relationships
	Object operations and annotations

	Virtual Documents
	Overview
	Figure 8.
	Use of virtual documents
	Implementation
	Versioning
	Deleting virtual documents and components
	Assembling the virtual document
	Figure 9.

	Virtual documents and content files
	XML support
	Virtual documents and retention policies

	Virtual document assembly and binding
	Figure 10.

	Defining component assembly behavior
	use_node_ver_label
	Figure 11.

	follow_assembly

	Copy behavior
	Creating virtual documents
	Assembling a virtual document
	Processing the SELECT statement

	Snapshots
	Creating a snapshot
	Modifying snapshots
	Adding new assembly objects
	Deleting an assembly object
	Changing an assembly object

	Deleting a snapshot

	Frozen virtual documents and snapshots
	Freezing a document
	Unfreezing a document

	Obtaining information about virtual documents
	Querying virtual documents
	Obtaining a path to a particular component
	The path_name property
	Using DFC

	Workflows
	Overview
	Implementation
	Figure 12.

	Template workflows
	Process Builder and Workflow Manager

	Workflow definitions
	Process definitions
	Activity types in a process definition
	Links

	Activity definitions
	Manual and automatic activities
	Manual activities
	Automatic activities

	Activity priorities
	Use of the priority defined in the process definition
	Use of the work queue priority values

	Process and activity definition states
	Delegation and extension
	Extension

	Performer choices
	Task subjects
	Starting conditions

	Port and package definitions
	Port definitions
	Package definitions
	Scope of a package definition
	Package compatibility

	Package acceptance
	Figure 13.
	Figure 14.

	Transition behavior
	Warning and suspend timers
	Package control

	Validation and installation
	Validating process and activity definitions
	Installing new process and activity definitions

	Workflow execution
	Workflow objects
	Work item and queue item objects
	How manual activity work items are handled
	Priority values
	Signing off manual work items

	Package objects
	Package notes

	Activity timers
	Pre-timer instantiation
	Post-timer instantiation
	Suspend timer instantiation

	Completed workflow reports
	Attachments
	The workflow supervisor
	The workflow agent
	Instance states
	Workflow states
	Figure 15.

	Activity instance states
	Figure 16.

	Work item states
	Figure 17.

	Typical workflow example
	Figure 18.
	The workflow starts
	Activity execution starts
	Evaluating the starting condition
	Package consolidation
	Resolving performers and generating work items
	Executing automatic activities
	Assigning an activity for execution
	Executing an activity program

	Completing an activity
	Figure 19.
	Figure 20.

	Distributed workflow
	Distributed notification

	Tasks and events
	Accessing tasks and events

	Inboxes
	Accessing an Inbox

	Obtaining Inbox content
	Manual queuing and dequeuing
	Queuing items
	Dequeuing an inbox item

	Registering and unregistering for event notifications
	Registering for events
	Removing a registration
	Querying for registration information

	Lifecycles
	Overview
	Normal and exception states
	Figure 21.

	Attaching an object to a lifecycle
	Figure 22.
	Attaching objects
	Moving between states
	Promotions
	Demotions
	Suspensions
	Resumptions
	Scheduled transitions

	Internal supporting methods
	State changes

	Types of objects that can be attached to lifecycles
	Object permissions and lifecycles
	Entry criteria, actions on entry, and post-entry actions

	Repository storage
	Lifecycle design phases

	Designing a lifecycle
	Lifecycle state definitions
	Actions on entry definitions
	Post-entry action definitions
	Including electronic signature requirements
	Using aliases in actions

	Custom validation programs
	Integrating lifecycles and applications
	Lifecycles, alias sets, and aliases
	State extensions
	State types
	For more information

	Aliases
	Overview
	Defining aliases
	Alias scopes
	Workflow alias scopes
	Nonworkflow alias scopes
	Determining the lifecycle scope for SysObjects

	Resolving aliases in SysObjects
	Resolving aliases in template ACLs
	Resolving aliases in Link and Unlink methods
	Resolving aliases in workflows
	Resolving aliases during workflow startup
	Resolving aliases during activity startup
	The default resolution algorithm
	The package resolution algorithm
	The user resolution algorithm
	When a match is found
	Resolution errors

	Internationalization Summary
	Overview
	Content files
	Metadata
	Client communications with Content Server
	Constraints
	Configuration requirements for internationalization
	Values set during installation
	The server config object

	Values set during sessions
	The client config object
	The session config object
	How values are set

	Where ASCII must be used
	Other Requirements
	User names, email addresses, and group names
	Lifecycles
	Docbasic
	Federations
	Object replication
	Other cross-repository operations

	Index

