
Web Development Kit and Client
Applications Development Guide

Version 5.3 SP2
January 2006

Copyright © 1994-2006 EMC Corporation. All rights reserved.

Table of Contents

Preface .. 21

Chapter 1 What is WDK? ... 23
Terminology... 23
Conventions... 23

Documentation resources.. 24
The WDK architectural stack ... 26
Content Server ... 29
J2EE 1.3 application server .. 29
Service layer... 29
The WDK environment layer... 29
Presentation model ... 30
Component model.. 30
Application model.. 31
Client... 32

Approaches to building a WDK client application... 32
Configuring and customizing a WDK-based application 33
Building a WDK-based application .. 33

Part 1 Conguring WDK Applications ... 35

Chapter 2 Conguring and Deploying Applications .. 37
Application structure .. 38
Application layers .. 38
Application layer contents... 39
Application layer inheritance .. 42
Application environments... 43
Required application directories for custom applications........................... 44
Web application archives (WAR files)... 45
How application elements interact... 46

Configuration overview .. 47
What is configurable ... 47
Working with XML configuration files ... 49
General configuration elements ... 50
Extending XML definitions ... 51
Scope ... 52
Client environment qualifier ... 53
Versioning.. 55
Externalizing and configuring strings .. 56

Configuring an application.. 57
Application name ... 58
Application configuration file (app.xml)... 58
<config> element .. 60
<scope> element ... 60
<application> element ... 60
<qualifiers> element.. 60

Web Development Kit and Client Applications Development Guide 3

Table of Contents

<environment> element .. 60
<failover> element .. 62
<fallback_identity> element ... 62
<language> element .. 62
<save_credential> element... 63
<authentication> element .. 63
<rolemodel> element... 64
<themes> element ... 64
<accessibility> element .. 65
<contentxfer> elements ... 66
<browserrequirements> element .. 70
<errormessageservice> element ... 70
<infomessageservice> element ... 70
<requestvalidation> element.. 71
<adobe_comment_connector> element ... 72
<notification> element ... 72
<session_config> element .. 73
<xmlfile_extensions> element .. 73
<formats> element .. 74
<preferred_renditions> element ... 75
<modified_vdm_nodes> element ... 76
<custom_attribute_data_handlers> element .. 77
<discussion> element .. 77
<xforms> element ... 77
<listeners> element ... 78
<client-sessionstate> element ... 78
<dragdrop> element.. 79
<copy_operation> elements ... 79
<move_operation> elements .. 80
<richtexteditor> element.. 80
<plugins> element .. 80
<display> element... 81
<applet-tag> element... 81
<job-execution> element .. 82

Web deployment descriptor (web.xml)... 83
Application environment properties .. 88
Configuring application failover support ... 89
Configuring application-wide failover ... 89
Configuring component failover .. 90

Configuring content transfer mode for the application 91
Virtual links ... 91
Virtual link handler deployment.. 92
Virtual link connection and authentication ... 93
Virtual link path resolution and document delivery 94
Virtual link error handling .. 96

Content server event notification ... 97
Navigation defaults .. 97
Browser history .. 98
Cookies.. 99
Timeout ... 101

Application login and authentication ... 103
Per-session authentication (login dialog) .. 104
J2EE principal authentication .. 104
Single sign-on... 107
Ticketed login .. 108
Skip authentication ... 110
Explicit login .. 111
Login preferences ... 111

4 Web Development Kit and Client Applications Development Guide

Table of Contents

Login locale.. 111
Number of user sessions ... 112

Using events and JavaScript .. 112
Navigating with an event handler.. 112
Client-side navigation ... 113
Registering client event handlers ... 114
Using client-side scripts .. 115
Manual scripts.. 115
Registered scripts ... 115
WDK scripts... 116
Generated script tags .. 116
JavaScript tracing.. 117

Events between frames ... 117
Inter-frame event handlers .. 119
Inter-frame server events .. 119

Managing frames.. 120
Calling JavaScript functions from server-side classes............................... 121

Branding an application .. 122
Registering a theme .. 123
Creating a theme directory .. 124
Making a theme available.. 125
How themes are located .. 126
Using style sheets ... 127
Using images in style sheets .. 128
Default WDK style sheet ... 129
Internationalized style sheet .. 130
Modifying a style sheet ... 130

Identifying styles in WDK applications .. 130
Adding images and icons .. 133
Configuring buttons ... 134
Configuring the file selector applet .. 135
Branding examples ... 135

Configuring and localizing strings ... 137
Adding locales ... 138
Adding strings to properties files... 138
Inheriting strings .. 139
Naming properties files... 140
Adding localized files to your application .. 140
Overriding strings in the UI .. 141
Designing for and testing internationalization .. 141

Configuring search ... 144
Configuring search controls .. 145
Configuring basic search ... 146
Configuring advanced search .. 147
Configuring search results... 151
Making search results configurable by users... 153
Using 5.2.5 custom search components... 154

Packaging and deploying Web applications.. 154
WAR packaging tool ... 155
Deploying with the application installer... 156
Development update tool.. 156
Compiling and precompiling JSP pages ... 157

Chapter 3 Conguring Controls ... 159
What controls do .. 160
How to configure controls ... 160

Web Development Kit and Client Applications Development Guide 5

Table of Contents

Finding files to configure controls .. 162
Using tag libraries .. 164
Control events .. 165
Types of control events ... 166
Configuring control events .. 168
Control event arguments... 168
Handling a control event on the client.. 168

Types of controls .. 169
Action-enabled controls .. 171
Types of action controls... 172
Dynamic action controls.. 172
Using dynamic action controls... 174
Controlling visibility... 174

Controls that can be globally configured .. 175
Hiding controls .. 177
Configuring dates... 177
Configuring menus... 178
Passing arguments to menus or dynamic action controls 180

Configuring tabs... 181
Configuring dropdown lists .. 181
Configuring scrollable controls .. 183
Configuring databound controls.. 184
Configuring data display .. 185
Providing data to databound controls .. 186
Configuring data sorting ... 188
Configuring data paging ... 189

JSP fragment control ... 189
Configuring rich text... 190
Displaying and validating attributes .. 192
Single and repeating attributes .. 193
Displaying lists of attributes .. 193
The attributelist control... 194
Context-based attribute lists .. 195
Attributelist configuration files .. 196
Using data dictionary attribute lists ... 199
Supplying or overriding data dictionary attribute lists 200

Display of escaped HTML strings .. 201
Configuring pseudoattributes.. 201

Validating user input .. 202
Validator controls ... 202
Input mask validator .. 203

Validating an object and its attributes... 204
Using value assistance .. 204
Implementing non-data dictionary value assistance 205

Working with images and icons ... 206
Icon controls .. 207
Using icons .. 207

Working with tooltips ... 208

Chapter 4 Conguring Actions .. 211
What actions do.. 211

6 Web Development Kit and Client Applications Development Guide

Table of Contents

How to launch an action ... 212
Adding action controls to a JSP page.. 213
Passing arguments to actions... 213

Generic actions using LaunchComponent .. 215
Action configuration file ... 215
Precondition permissions .. 218
Hiding an action for subtypes.. 218

Chapter 5 Conguring Components .. 219
Component features ... 219
Component configuration file .. 221
Component inheritance (extends) .. 224
Component scope ... 225
Hiding components .. 227
Hiding component features ... 228
Configuring data columns... 229
Adding or removing static data columns.. 229
Configuring dynamic data columns ... 232

Component layout (JSP pages) .. 233
JSP pages modeled by form class ... 233
Contents of a WDK JSP page ... 234
JSP includes ... 235
Creating a component JSP page ... 236
Using messages and labels .. 236
Using a raw JSP or static HTML file ... 237

Component navigation ... 237
Calling components by URL.. 238
Calling components from an action (LaunchComponent) 239
Calling components from JavaScript .. 239
Including a component in another component .. 240
Navigating using browser history.. 241

Component operations on foreign objects... 242
Presubmission client events... 242
Configuring containers ... 243
Container types .. 244
Calling containers... 247
Calling a container by URL ... 247
Calling a container by JavaScript ... 247
Calling a container from an action ... 248

Configuring containers ... 249
Require visit... 249
Container labels.. 249

Components that must run within a container .. 250
Creating modal containers .. 251

Configuring locators ... 251
Using JSP pages outside a component .. 257

Chapter 6 Conguring Application Connector menus, components, and
actions .. 259
Overview ... 259
Modifying the Documentum menu.. 259

Web Development Kit and Client Applications Development Guide 7

Table of Contents

Overview ... 260
Removing menu items from all application connectors............................ 261
Modifying menu items for all applications ... 261
Adding custom menu items to all applications 264
Restricting menu items to specific applications 264

Customizing application connector components and actions 265
Overview ... 266
List of application connector components and actions 266
Adding application connector components and actions........................... 266
appintgcontroller component .. 267
Managing events .. 270
Managing authentication .. 271

Chapter 7 Conguring Preferences ... 273
Preference definition... 273
Configuring default component and user preferences 276
User column display preferences ... 277
Sample preference definitions.. 281

Chapter 8 Conguring Roles and Client Capability ... 287
Role configuration overview.. 287
Client capability plugin... 289
Docbase role plugin .. 291
Role-based actions .. 292
Role-based filters .. 293
Role-based UI... 294

Chapter 9 Conguration Examples .. 295
Configuring buttons and images.. 295
Adding a button or image ... 296
Changing a button label .. 296
Changing a button or image style .. 297
Changing button or image function ... 298
Configuring dynamic buttons and images .. 299

Configuring dynamic menu items.. 300
Configuring content display .. 302
Configuring navigation base cabinet or folder .. 305
Configuring branding ... 307
Configuring validators .. 308
Configuring application startup... 309
Configuring accessibility ... 310

Configuring the properties container ... 311
Configuring attributes... 312
Configuring attribute layout.. 313
Configuring an attribute list .. 314

Creating a custom object filter ... 317

Part 2 Customizing WDK Applications .. 321

Chapter 10 Development Environment and Tools .. 323

8 Web Development Kit and Client Applications Development Guide

Table of Contents

Using an IDE.. 323
Troubleshooting WDK-based applications.. 324
Runtime errors ... 324
Error loading main component.. 325
Show All Properties does not work .. 325
Properties do not display after data dictionary change 325
WebLogic compiler fails .. 326
WebLogic slows, throws exceptions, or crashes....................................... 326
(WebLogic) java.io.IOException: Not enough space 327
Future dates do not display correctly ... 327
JavaScript error on application connection.. 327
Error "Configuration base has not been established” 327
Application no longer starts after code change.. 328
(Tomcat) Application slows down ... 328
Page not found errors in if HTTP 1.1 not enabled in client
browser ... 328
DFC business object no longer works ... 329
Application runs out of sessions .. 329
Browser navigation renders actions or links invalid 329
Content transfer fails .. 330
(Windows) Applet installation fails on client .. 330
Cannot import an XML file.. 331
Cannot check in XML file .. 332
java.lang.verify error in WDK application after installing
another Documentum product .. 332
Unable to locate checked out objects after installing
WDK-based application .. 332
(WebLogic) Invalid ticket (content transfer fails) 332
Controls don’t display any repository data ... 333

Tracing .. 333
Turning on WDK tracing... 333
Using DFC tracing .. 334
Using DMCL tracing... 334
WDK tracing flags .. 335
Tracing sessions.. 336
Tracing WDK framework operations.. 337
Tracing controls and validation.. 337
Tracing JSP processing .. 338
Tracing components and applications .. 339
Tracing virtual links.. 339
Tracing servlets .. 340
Tracing asynchronous operations... 340
Tracing content transfer .. 341

Adding custom tracing flags.. 342
Client-side tracing .. 342

Logging ... 343
Performance ... 344
Action implementation ... 345
Documentum object creation ... 345
String management... 346
Paging ... 346
J2EE memory allocation .. 346
HTTP sessions .. 348
Preferences... 349
Browser history .. 349
Value assistance.. 349
Search query performance... 350

Web Development Kit and Client Applications Development Guide 9

Table of Contents

High latency and low bandwidth connections .. 350
Qualifiers and performance ... 352
Import performance.. 352
Load balancing... 352
Modal windows ... 353

Finding component information .. 353
Comment stripper .. 353
Testing components .. 354
Debugging tips... 354
Refreshing configuration and data dictionary ... 355
JSP debugging .. 355
XML debugging ... 356
JavaScript debugging .. 356
Java debugging .. 357

Chapter 11 Component, Action, and Control Design Guidelines 359
General guidelines.. 359
File follows naming convention ... 359
File follows location convention... 361
Follows accessibility guidelines (Section 508).. 362
Externalizes and tests strings... 362

Design checklists .. 362
Control checklist... 363
Control checklist detail ... 365
Creating new control if needed.. 365
Using base tag rendering helpers ... 366
Formating and escaping rendered HTML... 366
Ensuring that page is loaded and initialized 367

Component checklist .. 367
Component checklist detail ... 373
Describing a component ... 374
Making a component configurable... 374
Making the component definition backward-compatible 374
Removing context-sensitive behavior from the class............................ 375
Caching data .. 375
Using custom attribute data handlers... 375
Following DFC guidelines... 376

Component unit test checklist.. 376

Chapter 12 Customizing Controls .. 379
Control classes ... 380
Using controls programmatically... 382
Creating controls .. 383
Naming and getting controls ... 384
Setting control values.. 386
Getting datagrid controls .. 388
Passing arguments to action-enabled controls... 389

Programming databound controls ... 389
Data support classes ... 390
Getting data ... 390
Getting data in a component ... 391
Getting data in a tag class.. 391
Getting data in a behavior class ... 392
Getting or overriding data in a JSP page... 393
Refreshing data .. 394

10 Web Development Kit and Client Applications Development Guide

Table of Contents

Caching data .. 394
Modifying the display and handling of attributes 395
docbaseobjectconfiguration file.. 395
Attribute formatters.. 397
Value handlers ... 398
Tag classes ... 398
Custom elements and editing components in object
configuration.. 401
Default configuration.. 402
DocbaseAttributeList lookup process ... 403

Rendering data with result sets.. 404
Making data scrollable .. 404
Handling data from a configuration file ... 404
Handling data from an array or vector ... 405

Formatting data with handlers .. 406
Adding custom attributes to a datagrid .. 407

Generating UI .. 409
Generating a link in a control .. 410
Making a control accessible to JavaScript.. 411
Displaying folder paths and breadcrumbs .. 412
Getting the primary folder path ... 412
Displaying the folder path... 412
Adding support for a breadcrumb ... 413
Using a hidden folder path in a component .. 414

Implementing multiple selection ... 415
Managing control events ... 416
Use server-side or client-side processing?... 417
Firing a server event from the client ... 417
Handling a control event on the server... 420
Updating components with client events.. 421
Firing a client event from the server ... 422
Linking controls by events .. 422
State change events... 423
How control events are raised ... 424
Using modal windows .. 425
Setting event handlers programmatically ... 427
Control lifecycle events ... 428

Validating a control value.. 428
Validating a repository object .. 429
Adding a control listener... 430
Creating custom pseudoattributes ... 431
How controls and tags work together .. 432
Control arguments.. 433

Chapter 13 Customizing Components ... 435
Component base class ... 436
Component public interface .. 436
Navigating within and between components.. 437
Navigating within a component .. 437
Jumping to a component ... 437
Nesting to another component .. 438
Returning to the calling component ... 440
Returning to a component, then jumping to another 440

Web Development Kit and Client Applications Development Guide 11

Table of Contents

Navigating within a container ... 441
Implementing failover support .. 442
Implementing a component... 445
Using a component listener ... 447
Accessing an included component ... 449
Supporting drag and drop... 450
Drag and drop support in WDK components ... 451
Adding drag and drop to a component definition 452
Adding drag and drop to a JSP page .. 454
Adding drag and drop support to a control .. 455
Troubleshooting drag and drop ... 456

Customizing containers .. 457
Calling a container from a server class ... 457
Implementing container notifications ... 458
Accessing components within containers ... 460
Passing arguments in a container... 462

Multi-repository support... 463
Replica (mirror), reference, and foreign Objects 464
Adding multi-repository support to a component................................... 465
Scoping and preconditioning actions on remote objects........................... 466
Session management with multiple repositories 466

Component dispatching.. 467
Component dispatcher servlet ... 467
How components are dispatched... 467
WDK 5 component bridge... 468
URL bridge (default) .. 469

Component lifecycle ... 469
JSP page processing (form processor)... 470
What the form processor does ... 470
Form processing sequence... 471
Processing browser navigation .. 473
Form navigation operations .. 473

Form classes... 475
WebformIncludes class ... 475

Chapter 14 Using the Conguration Service ... 479
Configuration service classes ... 479
ConfigService ... 480
IConfigContext... 480
Configuration lookup ... 481
Configuration lookup hooks.. 482
Configuration reader .. 483

Scope and qualifiers.. 484
Context .. 487
Configuration service process.. 488
Lookup algorithm... 489

Chapter 15 Customizing actions .. 491
Preconditions ... 491
Execution ... 493
LaunchComponent execution classes ... 496

12 Web Development Kit and Client Applications Development Guide

Table of Contents

Providing action NLS strings... 497
Dynamic component launching ... 498
Action listeners .. 500
Nesting actions... 503

Chapter 16 Customizing Roles .. 505
Role service APIs .. 505
Custom role plugin... 506
Role-based menus .. 507

Chapter 17 Customizing Content Transfer ... 509
Content transfer modes compared ... 510
Unified client facilities (UCF)... 513
UCF on the client.. 513
Configuring the UCF client ... 514
Configuring UCF client path substitution ... 517
Configuring UCF support for unsigned or non-trusted SSL
certificates.. 518
UCF on the application server ... 520
Configuring the UCF application server ... 521
Configuring UCF support for chunked transfer encoding........................ 522
UCF logging... 523
UCF troubleshooting .. 524
UCF process ... 525

Windows client registry in content transfer .. 527
HTTP content transfer... 529
Content transfer listeners .. 531
Content transfer service classes.. 532
UCF transfer component customization ... 533
Content transfer control initialization... 534
Content transfer debugging... 535
Using Pre-5.3 content transfer components... 536
Streaming content to the browser .. 537
Content transfer progress .. 537

Chapter 18 Customizing Authentication .. 539
Authentication service .. 539
Authentication schemes .. 540
Silent login... 542

Chapter 19 Managing Sessions ... 545
Getting a session in a component or action class ... 545
Getting a session using SessionManagerHttpBinding 547
Storing and retrieving objects in the session ... 549
Binding and caching in a request thread... 550
Application, session, and request listeners.. 550
IDfSessionManagerEventListener .. 551
Session synchronization .. 552

Web Development Kit and Client Applications Development Guide 13

Table of Contents

Session tracing ... 552
JSP implicit objects in WDK... 553

Chapter 20 Customizing Search .. 557
Programmatic search value assistance .. 557
Troubleshooting search ... 558
Search class diagrams ... 560

Chapter 21 Implementing Component and User Preferences 563
Creating a component preference .. 563
Storing and retrieving component preferences.. 566
Storing and retrieving user preferences .. 567
Tracing preferences... 569

Chapter 22 Other Customizations .. 571
Asynchronous action and component execution ... 571
Asynchronous action job execution .. 572
Asynchronous component job execution .. 574
Job execution framework .. 575
UI in asynchronous processing .. 577
Asynchronous process .. 577

Branding service... 578
Image service APIs ... 579
Locale service ... 580
Retrieving localized strings ... 581
Dynamic messages in NLS strings ... 582
Adding locale support to custom components .. 583
LocaleService APIs ... 583
Locale codes... 584

Accessibility service.. 584
Accessibility mode.. 585
Accessible control labels.. 586
Event handlers ... 586
Image accessibility strings ... 587
Accessible tables... 588
Applet descriptions .. 589
Frame titles .. 589
Writing alt tags or label descriptions .. 590

Help service ... 590
Adding help to a standalone Web application... 590
The help component ... 591
Adding help for a custom component .. 591
Invoking the help ... 592
Scoping and filtering the help .. 593
Launching help .. 594

Localizing help files .. 595
Utilities .. 595
Clipboard service ... 595
Clipboard APIs... 596
Using the clipboard in a component... 597
Location and refresh ... 598
Clipboard Action Filtering .. 599

Rendering messages to users ... 600

14 Web Development Kit and Client Applications Development Guide

Table of Contents

Reporting errors ... 601
Version utility .. 603
Encoding utilities.. 604
SafeHTMLString .. 604
StringUtil ... 605
ZipArchive... 606

Input mask... 606

Chapter 23 Using Business Objects in WDK ... 609
Calling an SBO method ... 609
Using TBOs.. 610

Chapter 24 Customization Examples ... 613
Displaying Objects: Datagrid and objectgrid .. 613
Creating a component... 614
Extending a component .. 614
Creating a component definition.. 615
Adding component parameters to the component class........................... 615
Getting data ... 616
Creating the component JSP pages... 616
Implementing navigation in a component .. 616

Customizing components.. 617
Displaying a single custom object type (object grid) 617
Creating the custom grid component definition 618
Creating the object grid class ... 619
Adding custom columns to the display .. 619
Adding externalized strings .. 620
Launching the object grid component .. 621

Getting a component reference in a JSP page .. 623
Customizing controls.. 623
Choosing a control superclass ... 624
Adding control events... 624

Customizing actions ... 625
Adding a custom action .. 625
Implementing the action execution class .. 627
Action tracing .. 628
Custom action execution class with pre- and post-processing 629

Custom queries and data sources... 630
Adding a custom query or data source... 631
Populating a dropdown list with a query ... 632

Creating a validator .. 633
Developing a validator tag .. 633
Developing a validator class .. 634
Using the validator in a component ... 634

Creating a qualifier ... 635
Using a prompt within a container... 636

Web Development Kit and Client Applications Development Guide 15

Table of Contents

List of Figures

Figure 1–1. WDK physical layout .. 27
Figure 1–2. Web application architectural stack.. 28
Figure 2–1. Application layers and configuration inheritance .. 39
Figure 2–2. Folder tree frame interaction ... 118
Figure 2–3. Custom Theme ... 125
Figure 2–4. Webtop classic view styles... 131
Figure 2–5. Webtop streamline view styles .. 132
Figure 2–6. NLS strings test .. 142
Figure 2–7. Far Eastern characters test ... 143
Figure 2–8. Long strings test ... 143
Figure 2–9. Search size custom dropdown list .. 146
Figure 2–10. Attribute selection dropdown... 150
Figure 2–11. Specific attributes as search criteria ... 150
Figure 2–12. Custom attributes as search criteria... 151
Figure 2–13. Custom search results for custom type .. 153
Figure 3–1. Scrollable pane controls .. 184
Figure 3–2. Number of columns in a datagrid .. 185
Figure 3–3. DocbaseAttributeList population ... 195
Figure 3–4. How the configuration service determines attribute list source 200
Figure 5–1. Scoped configuration .. 226
Figure 5–2. Root (cabinet) locator .. 253
Figure 5–3. Flatlist locator .. 254
Figure 5–4. Container locator .. 254
Figure 7–1. WDK preferences components .. 279
Figure 7–2. Column selector component .. 280
Figure 7–3. Custom type column preferences... 281
Figure 9–1. Custom type icon ... 296
Figure 9–2. Webtop view menu... 300
Figure 9–3. Revised view menu .. 301
Figure 9–4. Drilldown More... menu ... 301
Figure 9–5. Reconfigured More... menu... 302
Figure 9–6. Webtop My Files default display.. 303
Figure 9–7. Configured My Files display ... 304
Figure 9–8. Custom attributes display based on context.. 305
Figure 9–9. Default navigation from repository root ... 306
Figure 9–10. Navigation from a specific folder path .. 306
Figure 9–11. Navigation from a specific folder ID ... 307

16 Web Development Kit and Client Applications Development Guide

Table of Contents

Figure 9–12. Custom theme directory... 307
Figure 9–13. New default theme .. 308
Figure 9–14. Adding a component to the properties container ... 312
Figure 9–15. Default checkin attributes for a custom type .. 315
Figure 9–16. Custom checkin attributes for a custom type ... 317
Figure 9–17. Object list with custom filter ... 319
Figure 9–18. Object list with standard files filter.. 319
Figure 12–1. String attribute rendered as text control .. 399
Figure 12–2. String attribute rendered as TextArea control .. 401
Figure 12–3. Docbaseattributelist lookup.. 403
Figure 12–4. Folder path display.. 413
Figure 12–5. Client-side and server-side event processing ... 424
Figure 12–6. Control and ControlTag relationship... 433
Figure 13–1. Serialization process .. 442
Figure 13–2. Component Processing Sequence Diagram .. 471
Figure 13–3. JSP page, control, and user interaction diagram ... 472
Figure 17–1. UCF sample client configuration mapping .. 514
Figure 17–2. UCF client-server process... 526
Figure 17–3. UCF client-server session management ... 527
Figure 17–4. Content transfer component classes and service layer 533
Figure 18–1. Authentication service interfaces .. 540
Figure 18–2. Authentication scheme processing .. 541
Figure 20–1. Search component UML diagram ... 561
Figure 21–1. Component without preference .. 565
Figure 21–2. Component with preference ... 565
Figure 22–1. Job execution interaction diagram... 578
Figure 23–1. Documentum object hierarchy.. 611
Figure 24–1. Custom type object grid ... 617
Figure 24–2. Custom grid launched by URL ... 622
Figure 24–3. Launching from the Webtop browser tree.. 622

Web Development Kit and Client Applications Development Guide 17

Table of Contents

List of Tables

Table 2–1. Directories required for Web applications... 45
Table 2–2. Binding scenarios for versioned components .. 55
Table 2–3. Client environment elements (<clientenv> and <clientenv_structure>)................ 61
Table 2–4. Server environment elements (<serverenv>) ... 61
Table 2–5. Language elements (<language>) ... 62
Table 2–6. Save credentials elements (<save_credentials>) ... 63
Table 2–7. Authentication elements (<authentication>).. 64
Table 2–8. Theme elements (<themes>) .. 65
Table 2–9. Accessibility elements (<accessibility>)... 65
Table 2–10. Content transfer common elements ... 66
Table 2–11. Content transfer ACS elements ... 66
Table 2–12. Client applet content transfer elements (<contentxfer>. <client>) 67
Table 2–13. Server content transfer elements (<contentxfer>.<server>).................................. 69
Table 2–14. Browser requirement elements (<browserrequirements>) 70
Table 2–15. URL request validation elements (<requestvalidation>) 71
Table 2–16. PDF Annotation Services elements (<adobe_comment_connector>).................... 72
Table 2–17. Event notification elements (<notification>) .. 73
Table 2–18. Session management elements (<session_config>) ... 73
Table 2–19. XML extensions elements (<xmlfile_extensions>) .. 74
Table 2–20. Formats elements (<formats>).. 74
Table 2–21. Preferred renditions elements (<applications> and <renditions>)........................ 75
Table 2–22. Modified VDM action timeout (<modified_vdm_nodes>) 77
Table 2–23. Collaborative Edition elements (<discussion>) .. 77
Table 2–24. Business Process Manager Forms Builder elements (<xforms>) 78
Table 2–25. Listener elements (<listeners>) ... 78
Table 2–26. Client session state elements (<client-sessionstate>)... 78
Table 2–27. Drag and drop elements (<dragdrop>) ... 79
Table 2–28. Copy operation elements .. 79
Table 2–29. Move operation elements .. 80
Table 2–30. Rich text editor elements (<richtexteditor>)... 80
Table 2–31. Active-X plugins elements (<plugins>) ... 80
Table 2–32. Applet tag elements (<applet-tag>) .. 82
Table 2–33. Asynchronous job elements (<job-execution>)... 83
Table 2–34. Context parameters .. 84
Table 2–35. WDK filters .. 85
Table 2–36. Deployment descriptor listener.. 86
Table 2–37. WDK servlets ... 86

18 Web Development Kit and Client Applications Development Guide

Table of Contents

Table 2–38. <errorpage>.. 87
Table 2–39. Environment settings .. 88
Table 2–40. Navigation settings... 97
Table 2–41. Preferences cookies... 99
Table 2–42. Internal cookies .. 100
Table 2–43. webforms.css (WDK layer) .. 129
Table 2–44. Styles in Webtop classic view and menus ... 131
Table 2–45. Styles in Webtop streamline view .. 133
Table 3–1. WDK tag libraries ... 164
Table 3–2. Event attributes .. 167
Table 3–3. State of a control cased on dynamic attribute value ... 173
Table 3–4. Control visibility based on context ... 175
Table 3–5. Control global configuration ... 175
Table 3–6. Global date control configuration elements .. 177
Table 3–7. Rich text configuration elements .. 191
Table 3–8. Rich text editor configuration elements (<editor>) ... 192
Table 3–9. Sample Documentum Application Builder scope definitions 196
Table 5–1. Types of WDK containers .. 244
Table 6–1. Application Connectors menu configuration elements 262
Table 6–2. Appintgcontroller <dispatchitems> elements .. 268
Table 6–3. Required pages in appintgcontroller component definition 269
Table 7–1. <preference> elements... 274
Table 7–2. User preference components ... 276
Table 7–3. Column display preference elements ... 278
Table 8–1. Client capability roles ... 289
Table 11–1. Control checklist... 364
Table 11–2. Component design checklist.. 367
Table 11–3. JSP page checklist ... 369
Table 11–4. Behavior class checklist ... 370
Table 11–5. Internationalization checklist... 373
Table 11–6. Unit test checklist ... 376
Table 11–7. Component functional testing checklist.. 378
Table 12–1. Control class properties .. 380
Table 12–2. Base tag classes... 381
Table 12–3. Default attribute handling ... 402
Table 12–4. Folder path display rules .. 413
Table 13–1. Components that support drag and drop ... 451
Table 13–2. Configuration elements (<dragdrop> ... 452
Table 13–3. WDK target actions... 455
Table 13–4. Form navigation operations .. 474
Table 13–5. URL parameters ... 476
Table 17–1. Feature support in content transfer modes ... 510
Table 17–2. How client configuration settings map in content transfer modes 511

Web Development Kit and Client Applications Development Guide 19

Table of Contents

Table 17–3. How server configuration settings map in content transfer modes 512
Table 17–4. UCF client configuration settings ... 515
Table 17–5. UCF application server configuration settings .. 522
Table 17–6. Content transfer registry keys used by content transfer applets........................ 528
Table 17–7. UCF content transfer result variables ... 531
Table 22–1. Device-independent events ... 586
Table 24–1. Choosing a control superclass ... 624

20 Web Development Kit and Client Applications Development Guide

Preface

This guide is intended for two tasks:
• Configuration

Changes to XML files or modifications of JSP pages to configure controls on the page. Does not
require a developer license.

• Customization

Extending WDK classes or modifying the JSP pages to include new functionality. Requires
a developer license.

Part 1 of this guide describes general configuration ofWDK applications. Web Development Kit Reference
Guideprovides additional configuration information on specific controls, actions, and components.

To configure WDK-based applications, you must be familiar with the following technologies:
• JavaServer Pages technology, including tag libraries, in the version supported by your application

server
• Cascading style sheets (CSS)
• HTML, particularly forms, tables, and framesets
• JavaScript, including client events and event handling, frame referencing, and form action

methods
• XML
Part 2 of this guide describes customization of WDK applications. Web Development Kit Reference
Guideprovides additional configuration information on specific controls, actions, and components.

To customize WDK-based applications, you must be familiar with the above-mentioned technologies
and the following additional languages and standards. Customization requires a developer license.
• Java 1.4.x
• J2EE Java Servlet technology, in the version supported by your application server
• Portlet Specification (JSR 168) (WDK for Portlets only)

Web Development Kit and Client Applications Development Guide 21

Preface

Revision history
The following changes have been made to this document:

Revision history

Revision Date Description

March 2005 Initial document release for WDK version 5.3

August 2005 Added information on new features: new configuration for
search, date controls, panesets, app.xml, DRL anonymous
support, ACS support

September 2005 Added definitions of configuration and customization

January 2006 Added information on search configuration and customization;
changes to app.xml; UCF configuration changes; fixed
documentation errors

22 Web Development Kit and Client Applications Development Guide

Chapter 1
What is WDK?

The Documentum Web Development Kit (WDK) is a Web application tool set. WDK provides the
following functionality:
• A Java tag library of easily configured Web-based UI widgets
• A Java framework that supports application-server based state management, messaging,

branding, history, internationalization, and content transfer
• A set of configurable components that generate HTML widgets and provide access to repository

functionality
WDK's architecture incorporates two models: A presentation model that uses JSP tag libraries to
separate Web page design from behavior, and a component model that encapsulates repository
functionality in configurable server-side components.

This introduction to WDK includes the following topics:
• Terminology, page 23
• Documentation resources, page 24
• WDK foundation technologies, page 25
• The WDK architectural stack, page 26
• Approaches to building a WDK client application, page 32

Terminology
APP_HOME is the root directory of the Documentum Web application in your
installation. The paths for control, action, and component files are shown relative to
this base location.

Conventions

This guide uses the following conventions:

Web Development Kit and Client Applications Development Guide 23

What is WDK?

Convention Description

Italics Represents a variable name for which you must
provide a value, or a defined term

typewriter
Represents code samples, commands, user input,
and computer output

{curly braces} Indicates a Java or CSS code implementation

<XXX> Represents an XML element or JSP tag as it appears
in an XML or JSP file. End tags are not always
included in examples, unless the element is closed,
for example, <dmf:webform/>.

notdefined=”true” All values for control and action attributes or
component parameters are passed as strings, even
though some are treated as boolean values by the
control, action, or component class. For example,
true and false are treated as Booleans.

<nlsid>MSG_XXX</nlsid> If you provide National Language Support (NLS),
enclose the value keys in <nlsid> and </nlsid>
tags. The WDK locale service will replace the
value with the corresponding lookup value in the
appropriate localized resource file. The user’s locale
will determine which localized version of the string
is used.

Documentation resources
The Documentum Web Development Kit contains documentation and source files to
assist you in developing custom Web applications.

• Web Development Kit and Client Applications Development Guide

(The current guide) Contains general configuration, customization, and
application-building information for application developers.

• Web Development Kit Reference Guide

Contains information about all of the configurable settings for controls, actions, and
components in WDK, with some additional component-specific customization notes.

• WDK for Portlets Development Guide

This guide contains information about configuring and customizing WDK for
Portlets

• Web Development Kit and Applications Tutorial

24 Web Development Kit and Client Applications Development Guide

What is WDK?

This tutorial contains several modules on setting up a development environment
and configuring and customizing WDK

• Web Development Kit and Applications Installation Guide

This guide describes how to prepare for, install, and deploy WDK and custom
WDK-based applications

• Web Development Kit Release Notes

This publication contains information on the supported environments as well as
known bugs, limitations, and technical notes

• Source files for basic WDK controls and samples are installed in /wdk/src.

Source files for all webcomponent layer components and actions are installed in
/webcomponent/src. For Webtop installations, source files for Webtop components
and actions are installed in /webtop/src.

• Javadoc API references

This documentation is installed by the WDK installer and includes the Javadoc API
reference sets for the WDK, webcomponent, and Webtop Java libraries. The DFC
installer, which runs at the beginning of the WDK installer, offers the option of
installing the DFC Javadocs.

• The Documentum CustomerNet Web site, support.documentum.com

This Web site provides WDK and client applications support forums, developer tips
and component library, sample code, white papers, and a wealth of information to
assist you in developing Documentum-enabled applications. Source code for WDK
tutorials and some examples from the current guide are provided on this Web site.

Check the Documentum technical support Web site (support.documentum.com) for
revisions of the documentation. Click the Documentation link to search for documents
related to your installed version of WDK or WDK client application. The support site
also provides peer support forums that are monitored by technical support experts.

WDK foundation technologies
The WDK programming model is based the following technologies:

• XML configuration

Components and actions in WDK are configured through XML configuration files.
The WDK configuration service reads configuration elements, both WDK-supplied
and user-defined. Configuration files make it easy to change the behavior of
components, actions, and applications through simple text editing.

• JavaServer Pages Technology

Web Development Kit and Client Applications Development Guide 25

http://support.documentum.com
http://support.documentum.com

What is WDK?

A JSP page is a text file that describes how to process an HTTP request to create
an HTML response. A JSP page in WDK consists of fixed (template) HTML and
dynamic content rendered by JSP tags, expressions, and scripting. Most of the UI is
generated by JSP tags that can be configured on the JSP page. JSP pages are compiled
into servlets (Java classes) by the JSP container or by a third-party compiler. These
servlets execute on the server when a JSP page is requested. The servlet performs a
server task or generates dynamic content that is then displayed on the client browser.

• J2EE Servlet Technology

A Web application runs in a J2EE-compliant JSP container, which provides the Java
Runtime Environment (JRE) and, usually, the JSP translator (compiler). Each JSP
page is translated into a servlet class and instantiated every time the JSP page is
requested. Additional WDK servlets provide back-end support for timeout, content
transfer, and virtual link redirection.

• J2EE security

If you set up J2EE security in your J2EE server, you can configure WDK to support
single login. The Java authentication mechanism is used to support sign-on to both
the Web server and the repository. Manual authentication, which has been used for
previous versions of Documentum clients, is also supported.

The WDK architectural stack
The physical components of a Documentum stack are shown below:

26 Web Development Kit and Client Applications Development Guide

What is WDK?

Figure 1-1. WDK physical layout

The components on each host in the stack is illustrated below. The layers in the stack are
described in order, starting from the bottom layer.

Web Development Kit and Client Applications Development Guide 27

What is WDK?

Figure 1-2. Web application architectural stack

The application stack is described in the following topics:
• Content Server, page 29
• J2EE 1.3 application server, page 29
• Service layer, page 29
• The WDK environment layer, page 29
• Presentation model, page 30
• Component model, page 30
• Application model, page 31
• Client, page 32

28 Web Development Kit and Client Applications Development Guide

What is WDK?

Content Server

The Web architecture stack has at its base the Documentum Content Server. All of
the WDK services and programming model exist to expose the content management
functionality of the Content Server.

J2EE 1.3 application server

The J2EE application server provides J2EE classes that are required for HTTP and
servlet operation as well as JSP processing and dispatching. The application server
requires a Java SDK, and the version of the SDK that is certified by Documentum for
each application server is listed in the release notes.

Service layer

The Java environment, DFC, and JDBC connectors provide the following services:

• Data access

The DFC session interface and JDBC connectors provide data access.
• Business Object Framework (BOF)

The DFC BOF places business logic in reusable components.
• Session pooling

The dmcl.ini file on the WDK host can be configured as a client for server
connection pooling. WDK applications take advantage of session pooling, increasing
performance over non-pooled sessions.

The WDK environment layer

The environment layer in the WDK framework provides a means of supporting various
types of Web application environments:
• Standalone Web application, such as Webtop, Documentum Administrator, Digital

Asset Manager, or Web Publisher
• JSR-168 compliant portal environments (refer to release notes for certified versions)
• Non JSR 168 compliant portal environments

Web Development Kit and Client Applications Development Guide 29

What is WDK?

Presentation model

The presentation model consists of JSP tag libraries and HTML in JSP pages as well
as server-side presentation framework.

The Documentum JSP tags generate HTML widgets and databound tables, lists, and
other presentation scripting to the browser. Server-side control classes provide access to
the control tags and maintain state on the server. A form processor maintains the HTML
form state and lifecycle, which is not possible with standard HTML forms.

In addition to the control tags and server-side control classes, the presentation model
incorporates the following services:
• Form processor, which interprets HTTP requests and translates requests into WDK

method calls and events
• History mechanism, which maintains browser history and navigation
• Configuration service, which looks up configuration contracts for actions and

components and dispatches the appropriate UI for the user's context
• Branding service, which manages the look and feel for the application
• Locale service, which delivers a localized UI
• Help service, which delivers localized, context-sensitive help
• Message service, which displays localized messages to the user
• Configurable drag and drop support

Component model

The component model provides a configurable, encapsulated set of Documentum
functions or components. A component is composed of one or more JSP pages, supporting
behavior classes, and an XML configuration file. Component JSP pages use WDK
controls and actions from the tag libraries, and each component handles control events
with its own event handlers.

The WDK framework enforces a contract for each component, consisting of parameters
that initialize the component. The component behavior class includes event handlers
that respond to user action and properties that get and set the state of a component.

The component contract is defined in an XML component configuration file. The
component is defined within <component></component> elements in the file. In addition
to contract parameters, the definition includes a component behavior class, an NLS
properties resource bundle, a help context ID, and, sometimes, additional configuration
elements. A component can include other components, acting as a container.

The component dispatcher dispatches a particular component dynamically on the
following criteria:

30 Web Development Kit and Client Applications Development Guide

What is WDK?

• Calling context

Context consists of runtime conditions such as object type, current component, or
user role. For example, one component definition is called when the selected object
is a folder, and another component definition is called when the selected object is
a document.

• Component implementation

Several types of component implementation are supported, such as raw JSP pages,
WDK 5, or other as specified in the component XML file. For example, if the
component is a raw JSP page, the component is dispatched using the J2EE server
framework without calling the WDK 5 framework.

Components are often launched by actions. Actions launch components through UI
widgets such as menu items or links. An action can evaluate preconditions to ensure that
the action is valid for the user's context.

Application model

A Documentum Web application consists of a set of components and the WDK
application framework, DFC, and native libraries. The WDK application framework
consists of services that apply across the application, such as the configuration, action,
messaging, branding, and tracing services.

Documentum’s WDK based components are designed to be used in the following
application environments:
• Application server

An environment for running JSPs, Servlets and EJBs. Documentum’s Webtop
application is built for this environment. Services such as authentication and
configuration are provided by the WDK framework.

• Portal server

An environment for running portlets, JSP pages, and servlets. Services such as
authentication and configuration are provided by the portal server. For more
information on portal applications, refer toWDK for Portlets Development Guide.

• Application Connectors

WDK provides connectors that enabled Documentum functionality within specific
Windows applications such as Microsoft Word. For information on customization
Application Connectors, refer to Application Connectors Software Development Kit
Guide.

The J2EE-compliant root context (base Web application directory) can contain application
layers that inherit application parameters from other application layers. For example,
the base application layer is WDK. The WDK application layer is extended by the

Web Development Kit and Client Applications Development Guide 31

What is WDK?

webcomponent application layer, which in turn is extended by the Webtop application
layer. Your custom application layer can then extend the Webtop application layer. The
application model enforces consistent appearance and behavior across all application
layers contained within the root WDK-based application.

Using branding, an application layer can supply themes that provide your application's
unique appearance through icons, images, and style sheets.

Client

Several optional components can be installed on the client:
• UCF

A small-footprint UCF applet is downloaded to the client, and it initiates the
download of further client-side support for content transfer

• An Internet Explorer plugin for Windows desktop drag and drop and rich text
spell checking can be installed on the client. The availability of this plugin can be
configured in in the application configuration file

• Application Connectors to content authoring applications such as Microsoft Word or
Excel can be installed on the client, supporting access to repositories and Webtop
functionality from within the application

Approaches to building a WDK client
application

Documentum Web client applications are built on WDK. Webtop is a reference
implementation of WDK. Documentum Administrator, Digital Asset Manager, Web
Publisher, and other client applications are extensions of Webtop. WDK for Portlets
is an application built on WDK.

Your customWeb application can extend one of the WDK clients such as Webtop or Web
Publisher or it can be a new application based on WDK. To design a Web application that
incorporates Documentum functionality, use one of the following approaches:
• Configuring and customizing a WDK-based application, page 33
• Building a WDK-based application, page 33

32 Web Development Kit and Client Applications Development Guide

What is WDK?

Conguring and customizing a WDK-based application

You can configure a client application such as Webtop or Web Publisher by extending
client components. You can also add your custom components to the existing client
application. You can apply your own corporate branding to your extended application
and override default UI and error message strings.

Configuration of a WDK-based applications includes one or more of the following:
• Making textual changes to the application, such as changing its branding, locale,

strings, and app.xml settings
• Making changes to any of the application’s XML or JSP files that do not require

Java class changes
• Modifying existing component definitions without changing the behavior class

Note: You should make these changes to extended component files in the custom folder,
not to the original files as installed by the installer.

Customization includes one or more of the following:
• Making changes that extend or implement the application’s Java code including

component and control classes
• Adding new components or controls to the application
• Making changes that add custom Java classes to the application
• Building new Web applications
To configure or customize an existing WDK-based application, run the WDK installer
and select the option Customize an existing application. The installer then copies
your application to a new directory in the J2EE server directory structure and adds
commented content files to the application and adds developer documentation to your
system drive. The installer also copies native libraries to your J2EE server host, outside
of the J2EE server application directories.

Note: When you customize an existing WDK client application, that application must
have the same version of WDK as the current installer.

Building a WDK-based application

To build a new WDK-based application, you must first run the WDK installer and select
the option to Create a new Web application. The required files are installed in your
J2EE server. You must then design and implement an application frameset that ties

Web Development Kit and Client Applications Development Guide 33

What is WDK?

together the components in WDK that you wish to use. Refer toWeb Development Kit and
Applications Tutorial for a simple application based on WDK.

34 Web Development Kit and Client Applications Development Guide

Part 1

Conguring WDK Applications

This section of the development guide describes the configuration methodology for
WDK-based Web applications. The following chapters describe WDK applications and
configuration:
• Chapter 2, Configuring and Deploying Applications
• Chapter 3, Configuring Controls
• Chapter 4, Configuring Actions
• Chapter 5, Configuring Components
• Chapter 8, Configuring Roles and Client Capability
• Chapter 9, Configuration Examples

Web Development Kit and Client Applications Development Guide 35

Conguring WDK Applications

36 Web Development Kit and Client Applications Development Guide

Chapter 2
Conguring and Deploying
Applications

WDK-based Web applications are J2EE-compliant and contain certain WDK framework and
component directories. WDK Java and type libraries are contained within the application /WEB-INF
directory. The application also requires Documentum native libraries and DFC Java libraries installed
in the Documentum home directory on the J2EE server.

This section contains the following information about how to configure and deploy Documentum
Web applications:
• Application structure, page 38
• Configuration overview, page 47
• Configuring an application, page 57
• Application login and authentication, page 103
• Using events and JavaScript, page 112
• Branding an application, page 122
• Configuring and localizing strings, page 137
• Configuring search, page 144
• Packaging and deploying Web applications, page 154
For information on migrating WDK 5 applications to newer versions, refer to the changed APIs
document on the Support Web site.

For information on how to make an application accessible to visually impaired users (section
508–compliant), refer to Accessibility service, page 584.

For information on how to set up a development environment for customization, refer to Chapter
10, Development Environment and Tools. A sample development environment is described inWeb
Development Kit and Applications Tutorial.

Web Development Kit and Client Applications Development Guide 37

Conguring and Deploying Applications

Application structure
The following topics describe the structure of a WDK-based Web application:
• Application layers, page 38
• Application layer contents, page 39
• Application layer inheritance, page 42
• Application environments, page 43
• Web application archives (WAR files), page 45
• How application elements interact, page 46

Application layers

AWDK-based application has a root directory that contains a WEB-INF directory and
application layer directories such as /wdk, and /webcomponent. Documentum WDK
client applications add the application layer directories /webtop, /wp, /dam, and /da (in
various combinations, depending on the client application).

The application directory /custom is provided for your customizations. Place your
configuration files, custom JSP pages, NLS resource files, and custom themes in the
/custom directory or in subdirectories of /custom. The custom directory serves as the top
layer for the application.

Application layers are managed by the WDK framework. Your custom application layer
should extend the application definition of the top-level application layer and then add
or override functionality. For example, in Webtop, the top application layer that contains
application resources is /webtop. If you wish the configure or customize Webtop, use the
/custom application layer, which extends the webtop layer. (The app.xml application
definition in /custom extends the app.xml application definition in /webtop.) You can
simply use the app.xml file in the /custom directory. For more information on application
and configuration inheritance, refer to Application layer inheritance, page 42.

A diagram of application layers and their inheritance is shown below.

38 Web Development Kit and Client Applications Development Guide

Conguring and Deploying Applications

Figure 2-1. Application layers and conguration inheritance

Application layer contents

The top level directory for each application layer contains the following directories and
files. The directories listed are the common or required directories in an application
layer. The paths shown are relative to the Web application root directory. Unless
otherwise noted, these files and directories are required by a WDK-based application.

• app.xml

Application configuration file. Can extend another application’s app.xml file.
Contains application-wide behavior classes such as qualifiers, servlets, and listeners.
The application name is applied as the scope

Web Development Kit and Client Applications Development Guide 39

Conguring and Deploying Applications

• /config

Configuration files for the application layer components
• /include

(optional) JavaScript files that are used within the application layer or within
applications that extend the application

• /strings

Externalized strings
•

/theme: Directory that contains themes for the application
The following list describes the directories and files that are specific to each application
layer:
• Root directory: Top-level directory for the Web application.

— default.html and index.html (identical): Entry point to a WDK or Webtop
application

— drl.html: Used by the DRL component to display content referenced by a DRL

— unstripped.jar: Contains the entire WDK application with all comments intact.
In the deployed WDK application, the comments and spaces are stripped out.

— version.properties: Contains the WDK version number
• /custom: Directory for your customizations. This directory should contain your

action and component configuration files (/config subdirectory), JSP pages, branding
directories (/theme subdirectory), and externalized strings (/strings subdirectory).
Custom classes should be placed in a subdirectory of /WEB-INF/classes using the
Java package and directory convention.

• /help: Contains help files for WDK-based applications
• /META-INF: Contains the J2EE manifest file
• /WEB-INF:

— web.xml: File required by J2EE Web applications. Specifies application startup
directory and application-specific servlets.

— web.xml.authenticate: Same as web.xml, with additional J2EE security element

— /classes: Contains Java classes that are used by the Web application, including
classes for application layers wdk, webcomponent, and webtop (if installed), and
your custom application. Also contains some property files (except for NLS
property files, which are located in each application layer /strings directory).

— /lib: Contains Java application archive (JAR) files required by WDK-based
applications

— /tlds: Contains Documentum and custom JSP tag libraries

40 Web Development Kit and Client Applications Development Guide

Conguring and Deploying Applications

• /wdk: Contains the following directories and files:

— Base JSP pages for login, navigation, modal dialogs, timeout, and tracing

— /container: JSP pages for container components

— /contentXfer: WDK 5.2.5 content transfer applets, for backward compatibility

— /control: Reusable JSP pages that serve as mega-controls to display attributes

— /css: Contains a style sheet for the drag and drop plugin

— /fileselector: File selector applet used in bothWDK 5.2.5 and UCF content transfer

— /fragments: Contains environment-specific JSP fragments that allow your
JSP pages to run in multiple environments (Webtop, portals, or Application
Connectors)

— /images: Images and icons used in the UI

— /include: JavaScript used by WDK-based applications

— /logos: Contains the Documentum logo

— /native: Contains the plugin files

— /samples: Sample JSP pages that exercise the controls in WDK

— /src: Source files for the basic controls and sample pages (installed by the WDK
installer)

— /strings: NLS resource files containing all strings in this layer

— /system: Component JSP pages

— /theme: CSS files and images used in the application

— /webwfm: Applets and icons for the Web workflow manager
• /webcomponent

— app.xml: webcomponent layer configuration file

— /admin: Contains administration component JSP pages

— /componentList: Displays information about all components in the application

— /environment: Clipboard and preferences services JSP pages

— /finder: Contains the finder component

— /install: DQL scripts to install subscription and administration object types in
your repositories

— /library: Component JSP pages

— /navigation: Navigation component JSP pages

— /src: Source files for all components in this layer (installed by the WDK installer)

Web Development Kit and Client Applications Development Guide 41

Conguring and Deploying Applications

— /strings: NLS resource files containing all strings in this layer

— /testbed: JSP files for the testbed component

— /theme: CSS files and images used in the application

— /xforms: Contains JSP pages for the Business Process Manager addon Forms
Builder

Application layer inheritance

Each application layer within the Web application must have an XML configuration
file named app.xml at the root level of the application layer. For example, the Webtop
layer has an app.xml file in the /webtop directory. This configuration definition
extends the definition found in the webcomponent layer application configuration file
(/webcomponent/app.xml), which extends the definition in the wdk layer application
configuration file (/wdk/app.xml). Each application layer can add its own parameters
and override some of the inherited parameters from parent application layers.

The configurable elements in app.xml are described in Application configuration file
(app.xml), page 58.

You can have multiple application layers. Each application must have a root directory
at the level of /WEB-INF. Each application layer must extend another application layer
definition and must have an app.xml file and a /config directory. You cannot have two
layers that extend the same layer. For example, you could have a company application
layer and a marketing division application layer, with the following structure under
the root Web application:
/ my_app (root)
/help
/ marketing
app.xml application extends="my_company/app.xml"
/config

/ my_company
app.xml application extends="webcomponent/app.xml"
/config

/webcomponent
app.xml application extends="wdk/app.xml"
/config

/wdk
app.xml
/config

/WEB-INF

Caution: Do not add your custom application files to the /wdk, /webcomponent,
/webtop, or other Documentum directories. They will be lost when you upgrade
the content of those directories. Place all of your custom content in the /custom (or
user-defined) or /WEB-INF directories.

42 Web Development Kit and Client Applications Development Guide

Conguring and Deploying Applications

Components and actions are inherited in the same way that applications are inherited.
Your application can extend the Webtop application definition, and within your
application you can have a custom properties component that extends the webcomponent
layer properties component and an objectlist component that extends the Webtop layer
objectlist component. If your component or action extends a component that is not in the
next layer below /custom you must make sure that your component or action is called
and not a component or action in the intervening layer. For example, if your customized
Webtop application will have a custom advanced search component, it should extend
the advanced search component definition in the webtop layer, not the definition in
the webcomponent layer. For more information on component inheritance, refer to
Component inheritance (extends), page 224.

To create your application layer:

1. Use the application layer directory /custom, or rename the custom directory. If
you rename the custom directory, be sure to specify the directory name in your
/WEB-INF/web.xml file. (Refer to the last step in this set of steps.)

2. Add an app.xml file (refer to Application configuration file (app.xml), page 58) to the
application layer directory and specify the name of the application that it extends. It
must extend the top-level application layer, for example:
<application extends="wp/app.xml">

3. Create /config and /theme directories within your new application directory.

4. Create directories for your application-specific components and add the JSP pages
and JavaScript files for those components.

5. Add configuration files for your components to the /config directory.

6. Add the supporting class files for your components to /WEB-INF/classes or, if they
are archived in jar format, add them to /WEB-INF/lib.

7. (Optional) Specify your top-level application directory in the /WEB-INF/web.xml
file. For example:
<context-param>
<param-name>AppFolderName</param-name>
<param-value>myapp</param-value>

</context-param>

Application environments

WDK-based applications can run in several types of environments with differing
requirements:

• J2EE 1.3 Application servers

Web Development Kit and Client Applications Development Guide 43

Conguring and Deploying Applications

The standalone application environment supports Web applications in a J2EE
application server. Authentication and configuration services are provided by the
J2EE applications contained within the environment. Application state is maintained
by binding with an HTTP session. Refer toWeb Development Kit Release Notes for
information on the supported application servers for the release that you have
installed.

• JSR-168 compliant Portal servers

In portal environments, authentication and some preferences are controlled by the
portal server. Portal Servers provide APIs with which a developer can create portlets
that are aware of the portal server’s environment and styles. Refer to WDK for
Portlets Release Notes for information on the supported portal servers for the release
that you have installed.

• Windows content authoring applications

Application Connectors provide support for access to WDK actions and components
within a Windows authoring environment such as Microsoft Word.

Required application directories for custom
applications

The following table lists the application layer directories required for a Web application
based on the type of application you plan to build. For example, if you are building an
application named myapp that uses WDK and its components but not Webtop, you
first create a top-level directory named /myapp. Within that directory, you need the
/WEB-INF, /wdk, /webcomponent, and /custom directories. (The /custom directory is
not shown in the table below.)

Tip: All applications that contain customization or configuration require a separate
directory to contain customizations. The /custom or user-defined directory is the
top-level application layer.

The required directories must be located at the root of your Web application directory
(for example, / my_app/webcomponent).

44 Web Development Kit and Client Applications Development Guide

Conguring and Deploying Applications

Table 2-1. Directories required for Web applications

Required directories

Appli-
cation
based on

/WEB-
INF

/wdk /webcom-
ponent

/webtop /dam /wp

WDK X X X

Webtop X X X X

Portal app X X X

DAM X X X X X

DA X X X X

Web
Publisher

X X X X X X

When you run the WDK installer and select Create a new application, you get the
required directories for applications based on WDK and components. When you
select Customize an existing application, the installer copies the existing WDK client
application directories to a new location. For example, if you customize Webtop, you get
WDK directories and the Webtop directory. In both types of installation, the installer
also installs developer documentation, Javadocs, source code, native libraries and DFC
jar files in the Documentum home directory on the J2EE server host.

Tip: To get the WDK component source code, run the WDK installer and select Create a
new application. The source code is installed to the /webcomponent/src directory. The
Webtop source code is installed to the /webtop/src directory.

Your components can extend WDK or Webtop components in the /custom directory. If
you want to use a custom JSP page with an existing WDK component, you must extend
the component in the custom layer and specify a different start page. Do not edit the
WDK component definitions. Changes to installed JSP pages and XML files are not
supported.

For information on customizing strings in WDK components, refer to Configuring and
localizing strings, page 137.

Web application archives (WAR les)

Your Documentum Web application can be packaged into a Web application archive
(WAR) for deployment in a J2EE-compliant server. Your application must conform
to the J2EE directory structure for Web applications as specified in the J2EE Servlet
specification.

Web Development Kit and Client Applications Development Guide 45

Conguring and Deploying Applications

In order to carry out configurations, it is necessary to extract the files from the archive
resource. The WDK installer expands the WDK WAR file when you select Create a
new application. The WDK installer extracts the client application when you select
Customize an existing application. Make a copy of the expanded WAR so that you
always have a backup copy of the original contents of the installed WAR.

There are two types of files in the original WAR that you can edit:

• Externalized string files in /string directories and Java properties files in
/WEB-INF/classes and its subdirectories. Be sure to back them up before you edit
them.

• Branding themes, added to your application directory.
Caution: When you upgrade your existing application, WDK updates may overwrite
customized properties or branding files. Back up your customized files.

For information on how to package a WAR for your custom Web application, refer to
Web Development Kit and Applications Installation Guide.

How application elements interact

A WDK-based Web application consists of the WDK framework, WDK and custom
components, controls, and actions. You may not need to customize all parts of the
application in order to obtain the results that your business objective requires. The
following topics describe how these various parts of the application interact.
• Controls

Controls represent a discrete UI functionality such as a button or link. They can be
reused in many different JSP pages in the application and configured to perform a
different function in each JSP page. The function that the control performs is based
on a control event or action defined for the control. For example, a button may
specify an onclick event handler that is handled in the current component. When
the button is used in another component, the event handler may be named the same
but perform differently.

• JSP pages

JSP pages are modeled as Form objects to handle HTML form state and browser
history. A form is used within a component. A JSP page can contain several other
JSP pages, each with a <dmf:form> tag. The parent JSP page must contain the
<dmf:webform> tag to initiate form processing.

• Actions

Many controls in WDK JSP pages can call an action. WDK action classes evaluate
preconditions and execute the action if preconditions are met. The execution usually
launches a component to gather user input.

46 Web Development Kit and Client Applications Development Guide

Conguring and Deploying Applications

• Components

A component contains one or more forms and controls on the JSP pages, which make
up the component UI. The component handles events raised by the component UI
and updates the controls in the UI based on server processing or data binding.

• Application layers

The application layers in the application maintain application-wide functionality
such as branding themes, accessibility settings, content transfer default settings,
and supported locales.

Conguration overview
The WDK configuration model supports configuration of controls, components, actions,
and applications. Controls are configured through JSP tags. Additionally, certain
controls are configured through XML configuration files. Components, actions, and
applications are configured through XML configuration files.

The following topics describe the general principles of configuration in WDK-based
Web applications:
• What is configurable, page 47
• Working with XML configuration files, page 49
• General configuration elements, page 50
• Extending XML definitions, page 51
• Scope, page 52
• Client environment qualifier, page 53
• Versioning, page 55
• Externalizing and configuring strings, page 56
For information on specific types of configuration files, refer to the following topics:
• Application configuration file (app.xml), page 58
• Action configuration file, page 215
• Component configuration file, page 221
• Attributelist configuration files, page 196

What is congurable

The following parts of a WDK-based application can be configured:
• Controls

Web Development Kit and Client Applications Development Guide 47

Conguring and Deploying Applications

Controls render UI features such as buttons, tabs, HTML links. Controls are provided
in a JSP tag library, which allows you to configure many aspects of the UI rendered
as HTML. Basic controls, in the dmf tag library, provide standard Web functionality.
Repository-enabled controls, in the dmfx tag library, provide data binding,
validation, and formatting. You can configure controls through the JSP tag attributes
on the JSP page itself and, for certain controls, through XML files. (Refer to Controls
that can be globally configured, page 175 for details on XML control configuration.)

• JSP pages (forms)

Forms are JSP pages that contain a <dmf:webform> or <dmf:form> tag. A form
generates HTML form tags and maintains a model of the form state and browser
history on the server. A form can include other forms, but generally there is a
one-to-one correspondence between a form and a Web page. You can configure
forms by changing the form layout in the JSP page itself.

• Actions

Actions associate UI events such as menu selection with application functions.
Actions are usually launched by a UI element such as a link, button, list item, or menu
item, or by a repository operation. An action consists of an action definition XML file
and an action class that implements the action and determines whether a user can
perform an action based on preconditions. The action control on a JSP page, such
as a menu item or link, is enabled if the preconditions are met. You can configure
actions in the action configuration file and configuring a control to launch an actionl.

• Components

Each component performs a specific repository task, such as check in or view
renditions. A component can have the following resources: an XML file containing
the definition of the component, a behavior class, an NLS resource file, a help file,
and at least one JSP page (the layout page). You can configure components by
changing the component definition or the JSP pages associated with it.

• Events

Events are raised when the user makes changes to elements in a UI form (JSP page).
Events can be handled on the client, by JavaScript event handlers, or on the server,
by the component class. You can configure events in the JSP pages by specifying the
event handlers as control tag attributes and adding your custom client-side event
handlers.

• Applications

Within a Web application, application layers are managed by the WDK framework.
Application layer directories must be located in the root Web application directory.
Application layers can inherit their configuration from a parent application layer.
For example, the webcomponent layer inherits its application definition from the
wdk layer. Configure an application in your custom configuration file app.xml,
which is located in the top directory of your custom application layer. For example,
if your are using the /custom layer, add your customization to app.xml in /custom.

48 Web Development Kit and Client Applications Development Guide

Conguring and Deploying Applications

• Branding

The branding service manages the UI look by themes, which incorporate images
and icons, and cascading style sheets (CSS). You can apply styles at any level of
granularity: on an individual control, on a component, on a group of components
within a container, and on the entire application. You can configure branding
through themes, and you register your brand in the application configuration file
app.xml. (Refer to Branding an application, page 122.) Users select a theme for
display in the Preferences component.

• Text strings

UI Strings and error messages are externalized into Java *.properties files. These text
files allow you to change or localize the text of buttons, links, labels, and messages
without any knowledge of Java (refer to Configuring and localizing strings, page
137 and Externalizing and configuring strings, page 56). WDK supports localization
(translation) of the UI strings through national language support (NLS) lookup.
Locales are specified in the application configuration file app.xml. The localized
strings are locale-specific. The application uses the string for the user’s selected
locale.

Caution: When you change WDK files, all of your changed files except for *.properties
files in /WEB-INF/classes and its subdirectories should be in a custom folder that will
not be overwritten by product upgrades. You must back up all customized files before
upgrading an existing Web application. After backup and installation of a newer version
of WDK , compare your backed-up files to the newer versions that were installed. You
might need to change some of your customized properties files and JSP pages due to
changes in the supporting Java classes that use these files.

Working with XML conguration les

Actions, components, and the application itself are configured through XML
configuration files.

Configuration files utilize the WDK configuration service, which retrieves values in a
context-sensitive manner. The configuration framework contains National Language
Service (NLS) functionality for looking up localized string tag values. The <nlsid> and
<nlsbundle> elements allow strings to be specified in a language-independent manner
within configuration files and component JSP pages. For more information on string
configuration, refer to Configuring and localizing strings, page 137.

Note: J2EE servers do not recognize changes to XML files automatically. Therefore, for
your changes to take effect you must either restart the server or refresh the component
definitions by navigating to the refresh utility page /wdk/refresh.jsp.

A WDK-based application such as Webtop or Web Publisher is contained within a
single root directory. This single directory contains application layer directories: /wdk,

Web Development Kit and Client Applications Development Guide 49

Conguring and Deploying Applications

/webcomponent, application-specific directories, and /custom. Each application layer
is configured in an XML file named app.xml. Each application directory contains a
/config directory that contains all of the configuration files for the application layer’s
components and actions.

General conguration elements

The following elements are present in all WDK configuration files:
1<?xml version="1.0" encoding="ISO-8859-1" standalone="no"?>
2<config version="1.0">
3<scope qualifier_name="qualifier_value">
4<primary-element
5extends="primary-element:path_to_definition_file
6notdefined="true_or_false"
7version="version_number">

8<nlsbundle>fully_qualified_bundle_name</nlsbundle>
9<filter qualifier_name="qualifier_value">
10<filtered_element>element_value</filtered_element></filter>

</primary-element>
</scope>
</config>

1 Configuration files are written in XML and begin with the standard XML language
declaration.

2 The root element of the configuration file is the <config> element. The entire
configuration definition is contained within this element. The version attribute is
reserved for future changes to the WDK configuration framework. For WDK 5.3, the
config version attribute value is 1.0.

3 Defines the context in which the configuration definition applies. The context is
matched to a qualifier value. If no qualifier is specified, the definition applies to all
contexts that are not otherwise defined. Refer to Scope, page 52 for more information
on scope.

4 One or more elements that represent a definition, such as <action>, <component>,
<application>, <attributelist>, and <docbaseobjectconfig>. You can specify more than one
primary element within a configuration file. Each type of primary element (application,
component, or action) has additional elements that are required by the particular kind of
primary element. The elements common to all primary-element definitions are described
below.

5 Specifies a definition that is inherited by the current definition. Elements that are not
named in the current definition are inherited. Elements that are named override the
parent definition. If you wish to include certain child elements of the element that you

50 Web Development Kit and Client Applications Development Guide

Conguring and Deploying Applications

override, you must copy those elements into your definition. Refer to Extending XML
definitions, page 51 for more information.

6 Configurations can hide elements that are defined in the parent scope by using the
notdefined attribute. Refer to Hiding components, page 227 for more information. In the
following example, the checkout component is not available for folders:
<scope type='dm_folder'>
<component id="checkout" notdefined="true"></component>

</scope>

7 Specifies a version number for the component or action. If the version attribute is not
present or has a value of CURRENT, the component is assumed to be the latest version.
For more information, refer to Versioning, page 55.
8 Specifies the fully qualified name of an NLS resource bundle that provides localizable
strings for the component. The bundle consists of a properties file with the bundle name
and the .properties extension. Each application layer can override the content of an NLS
property file in the base applications. For more information on string configuration,
refer to Configuring and localizing strings, page 137 for more information on string
configuration.

9 Optional filter that applies a scope qualifier such as type or role, which limits the
application of contained elements to user contexts that match the scope value. Refer to
Hiding component features, page 228 for more information.

10 Element to which the filter is applied, for example, <enableshowall>

Extending XML denitions

When you customize an existing WDK component or action, you must extend its
configuration definition. For example, your custom properties component can extend the
Webtop properties component and use a custom JSP page to change the UI. The elements
and values in the Webtop configuration definition are inherited by your component
definition unless you override elements in the definition. You can also add elements
or parameters to the definition.

Make sure that you extend the definition from the highest layer in your application. This
will ensure that your definition inherits all of the current functionality for that feature.
For example, your custom advanced search component should extend the Webtop
advanced search definition rather than the webcomponent layer definition.

Create your extended definition in the /custom/config directory or subdirectories. Do not
create backup copies of definitions in the /config directory or subdirectories, because the
configuration service will throw a duplicate element exception.

Web Development Kit and Client Applications Development Guide 51

Conguring and Deploying Applications

Caution: When you extend an XML definition, you do not need to copy the entire
contents of the base definition. However, if you define an element, you must copy all of
the contents of that element if you wish them to be a part of your definition. For example,
if you extend the WDK doclist component and your definition contains an <objectfilters>
element, you must copy all of the <objectfilter> elements and their contents if you wish
them to be in your extended component.

To extend a definition, the primary element in the definition, such as <component> or
<application>, must use the extends attribute. The primary element can extend a file or a
component and can specify a particular scope within the file or component. In the first
example below, <application> is the primary element. The custom application definition
extends the webcomponent layer configuration file in the following example:
<application extends="webcomponent/app.xml">

The extended configuration is specified in one of the following ways:

• The name of the configuration file that is extended. (The extended primary element
must be unique within the referenced file or scope. For example, if the configuration
file contains two component definitions, you must also specify the primary element
value that is extended.) In the following example, the custom component extends a
file that contains a single component definition:
<component id="my_drilldown" extends=
”webcomponent/config/navigation/drilldown/drilldown_component.xml”

• The primary element value and file name that is extended. This method is preferred
over the previous method, because it always returns the correct definition in the
configuration file. (Configuration files can contain more than one definition.) In
the following example, the custom component extends a component within a
configuration file that contains more than one definition:
<component id="my_container" extends=
"locatorcontainer:webcomponent/config/library/locator/
locatorcontainer_component.xml">

• File name or primary element name plus scope within the referenced definition.
In the following example, a custom action extends a scoped action definition in
the webcomponent application layer:
<action id="my_rendition" extends=
"importrendition:application='webcomponent'
type='dm_sysobject'"/>

Scope

The configuration service uses the user’s context, such as selected object, user role, or
current component, to resolve the appropriate scope and deliver the component that is
defined for the scope. Scope is defined by a qualifier class that implements the IQualifier

52 Web Development Kit and Client Applications Development Guide

Conguring and Deploying Applications

interface. WDK includes the following qualifiers: Documentum type, role, privilege,
client environment, and application. Webtop adds qualifiers for repository name and
location in the browser tree. You can add custom qualifiers to your Web application.

The configuration service matches the user’s context to the closest matching qualifier
value. For example, if the user has selected a folder to view its attributes, the
configuration service finds the definition for the attributes component that is scoped to
the type dm_folder. The component definition for dm_folder scope specifies a different
UI from the component definition for dm_sysobject scope.

You can use scope in the following ways:

• An action or component definition can inherit or override scope

The definition for a type inherits the defined parameters and configurable elements
for the parent definition unless they are specifically overridden. To override an
element, you must provide different content for the element. For example, to require
a different set of parameters for the child type, define a <params> element in the
component or action definition that contains your new <param> elements. If your
extended definition has no <params> element, all parameters are inherited.

• A qualifier can have more than one value

The list of valid values is comma-separated. For example, <scope
type='dm_document, dm_folder'> applies to both types of objects and types
descended from these types.

• An action or component definition can have more than one qualifier

For example, the newgroup action is scoped to type='dm_group' and
privilege='creategroup'.

• An action or component definition can exclude qualifier values using the NOT
operator

For example, a definition can be scoped to type='dm_group' privilege='not
createtype'. As a result, any user could create a new group unless the user had the
privilege createtype. In another example, a properties definition that is scoped to
role='contributor, not administrator' would have no definition for the administrator
role (no access to the feature).

Scope is resolved in the order that qualifiers are specified in app.xml.

Client environment qualier

The clientenv qualifier is introduced to enable component configuration based on the
client environment. This qualifier matches the context value "webbrowser” or "appintg”
to the context "clientenv”.

The client environment context is established in one of the following ways:

Web Development Kit and Client Applications Development Guide 53

Conguring and Deploying Applications

• Specify clientenv in a URL request parameter, preferably in the first URL request that
invokes a WDK-based application. This method takes precedence over the value in
app.xml (the second option). For example:
http://webtop/component/main?clientenv=webbrowser

• Specify the default clientenv value in your custom app.xml as the value of
<application>.<environment>.<clientenv>. Valid values: webbrowser | appintg | not
appintg

The client environment is stored as a session cookie so that WDK can restore the context
for a given client session when the server times out.

The clientenv qualifier can be used as a filter in component definitions to specify
a different set of JSP pages depending on the environment. For example, the
changepassword component definition uses the value of appintg and not appintg to
present different pages depending on whether the user is in an Application Connectors
environment. The filter is applied as follows:
<pages>
<filter clientenv="not appintg">
<start>/wdk/system/changepassword/changepassword.jsp</start>

</filter>
<filter clientenv="appintg">
<start>/wdk/system/changepassword/appintgchangepassword.jsp</start>

</filter>
</pages>

A more granular environment configuration can be applied within a JSP page itself
using the clientenvpanel control. This control is used to show or hide UI elements
based on the runtime clientenv context. The client environment is specified as the value
of the environment attribute. For example, the 5.3 checkin component JSP page has a
clientenvpanel control that is rendered only in the AppConnectors environment:
<dmfx:clientenvpanel environment="appintg">
<dmf:fireclientevent event="aiEvent"
includeargname="true">
<dmf:argument name="event" value="ShowDialog"/>
...

</dmf:fireclientevent>
</dmfx:clientenvpanel>

The reversevisible attribute on the clientenvpanel control toggles the display. In the same
example above (checkin.jsp), another panel is hidden in the AppConnectors environment:
<dmfx:clientenvpanel environment="appintg" reversevisible="true">
...
<dmf:checkbox name="checkinfromfile"
id="checkinfromfile" nlsid="MSG_CHECKIN_FROM_FILE"
onclick="onCheckinFromFileClick" runatclient="true"/>

...
</dmfx:clientenvpanel>

54 Web Development Kit and Client Applications Development Guide

Conguring and Deploying Applications

JSP fragments can also be defined, so that a component JSP page includes fragments that
are dispatched based on the client environment. For information on JSP fragments,
refer to JSP fragment control, page 189.

To trace problems in the client environment, turn on the tracing flag CLIENTENV.

Versioning

Component and action definitions, or any other configuration definition within a
<config> element, can have more than one version. The version is denoted by a version
attribute on the scope element in the definition, for example, <scope version="5.2.5">.

Supported versions are registered in /wdk/app.xml as the values of
<supported_versions>.<version>. The WDK current version is supported and does
not need to be registered in app.xml. The current component or action definition
is dispatched unless there is a older version for the same action or component ID
in the /custom/config directory with the same component ID. For example, if your
custom search component extends the WDK 5.2.5 search component and has the same
component ID, your custom component will be launched in place of the newer WDK 5.3
search component. (A version attribute value of 5.2.5 has been added to all WDK 5.2.5
component definitions that are superseded by 5.3 components.)

The following table shows the supported and unsupported configurations of versioned
components and containers:

Table 2-2. Binding scenarios for versioned components

Custom layer WDK layer Binding

Extends 5.2.5 container of
same ID

5.2.5 component loaded
by 5.2.5 container (refer to
note below)

Succeeds

Extends 5.2.5 component 5.2.5 container loaded by
5.2.5 action

Succeeds

Extends 5.2.5 container and
component of same IDs

(refer to note below) Succeeds

Web Development Kit and Client Applications Development Guide 55

Conguring and Deploying Applications

Custom layer WDK layer Binding

Extends 5.3 container and
contains 5.2.5 component

Fails. Must extend 5.2.5
container to use 5.2.5
component or extend 5.3
component to use 5.3
container

Extends 5.2.5 container and
contains 5.3 component

Fails. Must extend 5.2.5
component to use 5.2.5
container or extend 5.3
component to use 5.3
container.

Note: If your custom container extends a 5.2.5 container but has a different component
ID, your container definition must have a <bindingcomponentversion> element with a
value of 5.2.5.

The version number has the form n.n.n.n where n is an integer. You can version your
own components, using the WDK inheritance procedure. Register your version numbers
in the <supported_versions> element of /custom/app.xml. Versions will take precedence
in the order that they are listed in this element: The first version in the list has the
highest precedence.

Externalizing and conguring strings

UI text and error messages in WDK controls, actions, and components are externalized
in Java properties files. Properties files are text-based files that are used by Java classes
for initialization settings. This externalization of strings facilitates the testing and
translation of strings.

The following kinds of properties files are used in WDK:
• UI strings, which are externalized to properties files for translation (refer to

Configuring and localizing strings, page 137)

Strings are externalized from each application layer into the /strings subdirectories.
• Tracing and logger initialization files (Tracing, page 333 and Logging, page 343)

Tracing and logging settings assist you in debugging your application.
• Help location file

The file /WEB-INF/com/documentum/web/common/HelpService.properties
establishes the location of help files in the application. For more information on help
files support, refer to Help service, page 590.

• Accessibility image strings (Image accessibility strings, page 587)

56 Web Development Kit and Client Applications Development Guide

Conguring and Deploying Applications

Strings are displayed as alt text for images in Web applications. These strings are
located in each application layer in the subdirectories of /strings/com/documentum/
layer_name/accessibility.

• Form processor settings

Settings for browser history, processor navigation hooks, timeout URL, history
released URL, no return URL, server busy URL, event handler timeout,
and history size are configured in FormProcessorProp.properties located in
/WEB-INF/classes/com/documentum/web/form. Refer to Navigation defaults, page
97 for more information on these settings. Additionally, you can set the form tag
attribute keepfresh to true to force a reload when the user navigates using Back
and Forward buttons.

• JavaScript files

The list of JavaScript file references that are generated with every parent JSP page
containing the tag <dmf:webform> are configured in WebformScripts.properties
located in /WEB-INF/classes/com/documentum/web/form. Refer to Registered
scripts, page 115 for more information.

• Cache size for databound queries

The cache size is configured as the cachesize setting in the file DataboundProperties.
properties located in /WEB-INF/classes/com/documentum/web/form/control. The
query will be reiussed when the user pages beyond the cached results.

• J2EE principal

The trusted authenticator credentials are configured in
TrustedAuthenticatorCredentials.properties located in
/WEB-INF/classes/com/documentum/web/formext/session. Refer to
J2EE principal authentication, page 104 for more information.

Conguring an application
You can configure the following resources in a WDK-based application:
• Application name, page 58
• Application configuration file (app.xml), page 58
• Web deployment descriptor (web.xml), page 83
• Application environment properties, page 88
• Configuring application failover support, page 89
• Configuring content transfer mode for the application, page 91
• Virtual links, page 91
• Content server event notification, page 97

Web Development Kit and Client Applications Development Guide 57

Conguring and Deploying Applications

• Navigation defaults, page 97
• Browser history, page 98
• Cookies, page 99
• Timeout, page 101

Application name

The top application layer by default is the custom application. Specify the top application
layer in the web.xml file, located in /WEB-INF. The application layer context parameter
name is AppFolderName, the value of the element <param-name>. Specify the name
of your custom application base folder as the value of the element <param-value>. For
example, Webtop specifies custom as the value of <param-value> for the <param-name>
AppFolderName.

The value of AppFolderName is used by the configuration service to determine
application definition inheritance. If your top application layer folder is named
something other than custom, you must change the value in web.xml to match the
folder name.

Application conguration le (app.xml)

You can configure application-wide behavior through the application configuration
file app.xml. Each application layer, such as wdk, webcomponent, webtop, or wp,
has an app.xml file. The file contains an application definition within the elements
<application></application>.

To inherit and override settings in another application layer, your application definition
can extend an application definition in another layer. For example, the webcomponent
app.xml file specifies the inheritance in the application element as follows:
<application extends="wdk/app.xml">

For more information on application inheritance, refer to Application layer inheritance,
page 42.

The WDK application configuration files, /wdk/app.xml and /webcomponent/app.xml,
contain the following elements. Each set of elements is described in the sections that
follow this XML file transcription.
<config> See <config> element, page 60
<scope> See <scope> element, page 60
<application> See <application> element, page 60

<qualifiers> See <qualifiers> element, page 60

58 Web Development Kit and Client Applications Development Guide

Conguring and Deploying Applications

<environment> See <environment> element , page 60

<failover> See <failover> element, page 62

<fallback_identity> See <fallback_identity> element, page 62

<language> See <language> element, page 62

<save_credential> See <save_credential> element, page 63

<authentication> See <authentication> element, page 63

<rolemodel> See <rolemodel> element, page 64

<themes> See <themes> element, page 64

<accessibility> See <accessibility> element, page 65

<contentxfer> See <contentxfer> elements, page 66

<browserrequirements> See <browserrequirements> element, page 70

<errormessageservice> See <errormessageservice> element, page 70

<infomessageservice> See <infomessageservice> element, page 70

<requestvalidation> See <requestvalidation> element, page 71

<adobe_comment_connector> See <adobe_comment_connector> element, page 72

<notification> See <notification> element, page 72

<session_config> See <session_config> element, page 73

<xmlfile_extensions> See <xmlfile_extensions> element, page 73

<formats> See <formats> element, page 74

<preferred_renditions> See <preferred_renditions> element, page 75

<modified_vdm_nodes> See <modified_vdm_nodes> element, page 76

<custom_attribute_data_handlers> See
<custom_attribute_data_handlers> element, page 77

<discussion> See <discussion> element, page 77

<xforms> See <xforms> element, page 77

<listeners> See <listeners> element, page 78

<client-sessionstate> See <client-sessionstate> element, page 78

<dragdrop> See <dragdrop> element, page 79

<copy_operation> See <copy_operation> elements, page 79

Web Development Kit and Client Applications Development Guide 59

Conguring and Deploying Applications

<move_operation> See <move_operation> elements, page 80

<richtexteditor> See <richtexteditor> element, page 80

<plugins> See <plugins> element, page 80

<display> See <display> element, page 81

<job-execution> See <job-execution> element, page 82

<cong> element

Root element for all WDK configuration files

<scope> element

Limits the configuration to contexts that match the scope attributes. The scope is not
defined in this example here because app.xml files are unqualified, that is, they apply
to the entire application.

<application> element

Contains all elements that configure application-wide behavior

<qualiers> element

Contains <qualifier> elements that define scope for configuration files in the application.
Each <qualifier> element contains the fully qualified class name of a class that implements
IQualifier.

<environment> element

Sets environment-specific dispatching of components and other environment-specific
configuration. The <environment> element contains one <clientenv>, one
<clientenv_structure>, and one <serverenv> element.

60 Web Development Kit and Client Applications Development Guide

Conguring and Deploying Applications

Table 2-3. Client environment elements (<clientenv> and <clientenv_structure>)

Element Description

<clientenv> Specifies the applicable client
environment. Valid values: webbrowser
| portal | appintg | * (all client
environments). Default = webbrowser.
Values can be used to scope action or
component definitions or filter definition
elements.

<clientenv_structure> Defines the branches of the client
environment specified in <clientenv>.
Contains one or more <branch> elements.

.<branch> Contains a <parent> and a <children>
element defining the branch for the
specified client environment

.<parent> Names a client environment branch.
Values can be used to scope action or
component definitions or filter definition
elements.

.<children> Specifies child environments of the parent.
Contains one or more <child> elements.

.<child> Specifies a client environment child of the
parent environment. Values can be used
to scope action or component definitions
or filter definition elements.

Table 2-4. Server environment elements (<serverenv>)

Element Description

<filter> The value of the clientenv attribute must
match one of the client environments
defined in <environment>.<clientenv>.

.<class> Fully qualified name of a class that
instantiates the server environment

.<preferencestoreclass> Fully qualified name of a class that
instantiates the server environment

Web Development Kit and Client Applications Development Guide 61

Conguring and Deploying Applications

<failover> element

Enables application failover in <failover>.<enabled>, which turns on serialization for all
failover-enabled components and sessions in the application. By default, failover is
enabled. If you migrate WDK 5.2.5 customizations to WDK 5.3, and your custom classes
do not support failover, disable failover in your custom app.xml file.

For more information on failover support, refer to Configuring application failover
support, page 89.

<fallback_identity> element

Turns on the DFC fallback identity feature IDfSessionManager.setIdentity(*). This flag
is enabled by default. With the introduction of foreign objects in the 5.3 release, some
WDK 5.2.5 components or your custom component that call getSession()will cause the
component to attempt to get a session for every possible repository in the repository list.
In this case, you should turn off the fallback identity flag. If you have extended the 5.2.5
Webtop browsertree component, for example, you must turn off the fallback identity flag.

<language> element

Contains elements that set the supported locales, default locale, and fallback language.

Table 2-5. Language elements (<language>)

Element Description

<supported_locales> Contains a <locale> element for each
supported locale for which there are
localized strings in the application

<locale> Java locale names are constructed from
a concatenation of the two-letter ISO
language code and the two-letter ISO
country code in the form xx_YY, where
xx is the two-character lower-case
language code and YY is the two-character
uppercase code. The language code alone
(YY) is an acceptable locale code string.

62 Web Development Kit and Client Applications Development Guide

Conguring and Deploying Applications

Element Description

<default_locale> Specifiies the locale to be shown before a
user selects the preferred locale.

<fallback_to_english_locale> Specifies whether wdk will fall back to use
the English (US) locale string if a resource
string is not available for a specified locale.
For development, you may wish to set this
to false to identify non-localized strings,
which will be displayed as xxNLS_IDxx
where NLS_ID is the NLS key that does
not have a value in the specified locale.

<save_credential> element

Contains elements that are used for saving user’s credentials (username and password)
for a repository.

Table 2-6. Save credentials elements (<save_credentials>)

Element Description

<enabled> Set to true to enable saved credentials

<encryption_key> Specifies a string encryption key. Must
be identical across all WDK application
instances on the application server. If
the key is changed by an administrator,
users will be prompted for login. You
can use the trusted authenticator tool
(com.documentum.web.formext.session.
TrustedAuthenticatorTool).

<disabled_docbases> Specifies repositories that will not support
saved credentials

<authentication> element

Contains elements whose values are used for login: domain, repository, authentication
service class, and single sign-on.

Web Development Kit and Client Applications Development Guide 63

Conguring and Deploying Applications

Table 2-7. Authentication elements (<authentication>)

Element Description

<docbase> Default repository name. When SSO
authentication is enabled but a repository
name is not explicitly spelled out by the user
nor defined in this element, the sso_login
component is called. In this case the component
will prompt the user for the repository name.

<domain> Windows network domain name

<service_class> Fully qualified name of class that provides
authentication service. This class can perform
pre- or post-processing of authentication.

<sso_config> Single sign-on authentication configuration
elements

<sso_config>.
<ecs_plug_in>

Name of the Content Server authentication
plugin (not the authentication scheme name).
Valid values: dm_netegrity | dm_rsa

<sso_config>.
<ticket_cookie>

Name of vendor-specific cookie that holds
the sign-on ticket, for example, SMSESSION
(Netegrity)

<sso_config>.
<user_header>

Name of vendor-specific header that holds the
user name. The user_header value is dependent
on the settings in the webagent configuration
object in the policy server. The default is either
SMUSER or SM-USER depending on whether
the flag "LegacyVariable" is set to true or false. If
false, it uses SMUSER, if true, it uses SM-USER.

<rolemodel> element

Configures the class that defines roles used by the role qualifier

<themes> element

Contains elements that define the themes available in the preferences UI.

64 Web Development Kit and Client Applications Development Guide

Conguring and Deploying Applications

Table 2-8. Theme elements (<themes>)

Element Description

<default_theme> Specifies the default theme to be used when the
application starts up.

<theme> Lists all of the themes available in the
application.

<theme>.<name> Name of a theme.

<theme>.<label> NLS key in the branding properties file that
provides a lable for the theme.

<nlsbundle> Specifies the NLS resource file that contains a
localizable list of themes for the application.
This list will be displayed for user preference
selection.

<accessibility> element

Contains elements that turn on accessibility support (section 508 compliance) in the
application.

Table 2-9. Accessibility elements (<accessibility>)

Element Description

<accessibility> Contains settings that turn on accessibility
support.

<altextenabled> Flag to enable alt text. If true, alt text will be
displayed for all icons and images.

<keyboardnavigationenabled> Flag that enables keyboard navigation through
menus, buttons, and tabs via the keyboard tab
and arrow keys

<shortcutnavigationenabled> Flag that generates a shortcut to the top and
bottom of a tree

Web Development Kit and Client Applications Development Guide 65

Conguring and Deploying Applications

<contentxfer> elements

The elements within <contentxfer> set the application-wide content transfer mechanism.
The elements within <contentxfer>.<common> turn on or off compression for WDK 5.2.5
applet (not UCF) content transfer operations.

Note: Most of the settings in <contentxfer> are used for WDK 5.2.5 applets only, except
where noted. For information on the UCF settings, refer to Configuring the UCF
application server, page 521.

Table 2-10. Content transfer common elements

Element Description

<default-mechanism> Sets the content transfer mode for the
application. Valid values: http | ucf. If one or
more custom components extend pre-5.3 applet
components, specify ucf. The UCF mechanism
is also required to support Adobe Comment
Connector.

<common> Contains 5.2.5 configuration elements for applet
content transfer

.<inlinecompressionwindows> Deprecated: for 5.2.5 custom content transfer
only. Set to true to compress content transfer on
Windows clients. If most objects transferred are
already compressed, such as MPG or JPG, set to
false for better performance.

.<inlinecompressionmacosx> Deprecated: for 5.2.5 custom content transfer
only. Mac OS X client content transfer
compression (refer to above)

.<inlinecompressionmacos9> Deprecated: for 5.2.5 custom content transfer
only. Mac OS 9 client content transfer
compression (refer to above)

Table 2-11. Content transfer ACS elements

Element Description

<acs> Contains elements that configure
Accelerated Content Services: <enable>,
<attemptsurrogateget>, <maintainvirtuallinks>

66 Web Development Kit and Client Applications Development Guide

Conguring and Deploying Applications

Element Description

.<enable> Set to true to enable Accelerated Content
Services in the application. Requires
configuration of Accelerated Content Services
on the network.

.<attemptsurrogateget> Set to false to display only ACS servers that
require surrogate get, which fetches from a
remote storage area to the storage area local
to the selected Accelerated Content Services
server. Set to true to display all ACS servers.

.<maintainvirtuallinks> To maintain relative links within HTTP content
transfer, set to true. If true, ACS will not be used
for HTTP view operations. If false, ACS will be
attempted for view operations, which will result
in relative links inside the viewed document
being broken in the browser. Checkout, export,
and edit operations in HTTP mode are not be
affected by this flag, since they do not display
content inline in the browser.

Note: WDK sets the ACS transfer protocols for HTTP-based transfer to HTTP, HTTPS for
HTTP sessions and to HTTPS for HTTPS sessions. For UCF-based transfer, WDK does
not set any protocol. The transfer is based on ACS configuration only.

<contentxfer>.<client> elements specify default locations for applet content transfer on
the client (WDK application users).

Note: Most of the content transfer settings in app.xml do not apply to UCF. The settings
that do apply to UCF, in <contentxfer>.<server>, are so noted in the table below. For
information on UCF client configuration, refer to Configuring the UCF application
server, page 521.

Table 2-12. Client applet content transfer elements (<contentxfer>. <client>)

Element Description

<contentlocationunix> Not used for UCF or HTTP. Path to default
location for content on UNIX and Mac clients.
Send and receive directories will be created
under this location the first time content
transfer takes place. The directories created
will be relative to the user’s home directory
(returned by the "user.home" java system
property).

Web Development Kit and Client Applications Development Guide 67

Conguring and Deploying Applications

Element Description

<contentlocationwindows> Not used for UCF or HTTP. Path to default
location for content on Windows clients. Send
and receive directories will be created under
this location the first time content transfer takes
place, if a value for this location is not already
set in the Windows registry.

<checkoutlocationunix> Not used for UCF or HTTP. Path to default
location for checkout on UNIX and Mac clients.
Send and receive directories will be created
under this location the first time content
transfer takes place.

<checkoutlocationwindows> Not used for UCF or HTTP. Path to default
location for checkout on Windows clients. Send
and receive directories will be created under
this location the first time content transfer takes
place.

<userlocationunix> Not used for UCF or HTTP. Path to default
location for files being viewed.

<userlocationwindows> Not used for UCF or HTTP. Path to default
location for files being viewed.

<registrylocationunix> Not used for UCF or HTTP. Path to default
location for the WDK registry file on UNIX
and Mac clients. WDK applications track
information about checked out files and their
locations in the WDK registry file.

<buffersize> Not used for UCF or HTTP. Size of content
transfer memory buffer on the HTTP server.

<debug> Not used for UCF or HTTP. Turns on client
content transfer debugging (temporary
files are not removed). You can determine
how far transfer progressed. For example,
during upload, the content is sent from the
client to a temporary directory on the server
(<server>.<contentlocationwindows>). If
content does not successfully transfer from the
repository to the WDK server, you will see the
temporary upload in this directory. Requires
restarting the JSP server.

68 Web Development Kit and Client Applications Development Guide

Conguring and Deploying Applications

Element Description

<uploadchunksizeplatform_name> Not used for UCF. Size in bytes of each chunk
that is uploaded by the client for content
transfer (for example, for import or checkin).
Size can differ for Windows and Macintosh
clients.

<housekeepinginterval> Not used for UCF or HTTP transfer. (The
registry key is read by UCF operations in
DFC, but the setting in app.xml is not read.)
Interval in days between download and
cleanup of temporarily viewed files on the
client. Cleanup takes place at next login
after the interval has expired. This setting
is overridden by the registry key HKEY_
CURRENT_USER\Software\Documentum\
Housekeeping\NumberOfDays.

<contentxfer>.<server> elements specify default locations for content transfer files on the
application server file system. Settings that do not apply to UCF can be configured in
ucf.server.config.xml, located in /WEB-INF/classes.

Table 2-13. Server content transfer elements (<contentxfer>.<server>)

Element Description

<contentlocation> Not used for UCF. Relative path to default
location for temporary content on the HTTP
server. The root for this relative path is
the web application root. Send and receive
directories for content transfers through the
server will be created under this location the
first time content transfer takes place. Default:
WEB-INF/contentXfer

<buffersize> Not used for UCF or HTTP. Size of content
transfer memory buffer on the web client.
Default: 4096

<debug> Not used for UCF. Refer to <client>.<debug>
description. Turn on both client and server
debugging to determine where content transfer
is failing.

<version> Not used for UCF or HTTP. Sets the version
of the content transfer applets used by the
application

Web Development Kit and Client Applications Development Guide 69

Conguring and Deploying Applications

<browserrequirements> element

The elements within <browserrequirements> enforce supported browsers and platforms
and provide strings for error messages.

Table 2-14. Browser requirement elements (<browserrequirements>)

Element Description

<windows> Contains the list of supported browsers for the
Windows platform

<macintosh> Contains the list of supported browsers for the
Macintosh platform

<unix> Contains the list of supported browsers for the
Unix platform

<nlsbundle> Contains the localized error messages for the
browserrequirements control

<warningmessage> Contains the warning message or NLS ID of the
warning message

<unsupportedplatformmsg> Contains the error message to be displayed
when the client is on an unsupported platform

<unsupportedbrowsermsg> Contains the error message to be displayed
when the client is using an unsupported
browser

<javadisabledmsg> Contains an error message to be displayed
when Java is disabled in the browser

<browserversionmsg> Contains an error message to be displayed
when the browser is not a supported version

<softwareinstallmsg> JavaScript handler not currently implemented

<errormessageservice> element

Contains a class element for a class that provides error messages.

<infomessageservice> element

Contains a class element for a class that provides informative messages

70 Web Development Kit and Client Applications Development Guide

Conguring and Deploying Applications

<requestvalidation> element

Turns on validation for each HTTP request to detect possible malicious scripting
(cross-site scripting). Each possible URL request parameter can be configured here to be
tested for comformity to a datatype and a regular expression.

Note: You can also turn off stack trace display for production applications in the
errormessage component definition. This will prevent attackers from gaining
information about the application.

Table 2-15. URL request validation elements (<requestvalidation>)

Element Description

<enabled> Set to true to validate every HTTP request
for the parameters named in the <parameter>
elements.

<parameter> Contains a parameter that must be validated.
Must contain a <name> element and at least one
of the following child elements: <datatype>,
<regexp>, <validator>. For each URL parameter,
WDK checks for a parameter named in this
configuration list. It creates a validator if one is
specified, or a regular expression validator if
regexp validation is specified for the parameter.
Then it checks the datatype if one is specified.

<name> Required. Must contain a valid URL request
parameter.

<validator> Fully qualified class name for a validator to
validate the parameter value. Must implement
IRequestParameterValidator.

<regexp> Regular expression that must be satisfied
by the parameter value, for example,
__client(\d+)(~~)(\d+). For information about
Apache expression syntax, refer to the Apache
Web site.

datatype Datatype of the parameter value, for example,
String, Integer, Long. String type requires a
regular expression (<regexp>).

Note: The URL parameters that are configured in app.xml represent parameters that are
added by the Form class and by several other classes that append these parameters to a
URL. For a description of some of these parameters, refer to the javadocs for IParams.
The __dmfHiddenX and Y parameters are hidden parameters that are used to save

Web Development Kit and Client Applications Development Guide 71

http://jakarta.apache.org/regexp/apidocs/org/apache/regexp/RE.html

Conguring and Deploying Applications

browser scroll offsets in order to refresh a display. The __dmfSerialNumber parameter is
set by the Form class to aid in automated testing.

<adobe_comment_connector> element

(In /webcomponent/app.xml) The following elements set connection and formats for the
Adobe comment connector servlet. Requires Adobe Acrobat 6, PDF Annotation Services,
and UCF content transfer (<default-mechanism> element value in app.xml).

Table 2-16. PDF Annotation Services elements (<adobe_comment_connector>)

Element Description

<server_url> Specifies the base URL to the Adobe
comments servlet, for example, http://
myserver:port/

<use_virtual_link> Set to true to use a virtual link to retrieve
content. Set to false to enable comment on
the current document only.

<formats> Contains all of the formats that can
support Adobe comments

<format> Specifies a format for which to allow
Adobe comments, for example, pdf or
msw8.

<notication> element

The following elements set the Content Server events on a subscribed document for
which a user can turn on notification. Notification on replica and reference (shortcut)
objects is not supported. For more information on event notification, refer to Content
server event notification, page 97.

72 Web Development Kit and Client Applications Development Guide

Conguring and Deploying Applications

Table 2-17. Event notication elements (<notication>)

Element Description

<events> Contains one or more <event> elements
that will be made available to users who
are selecting notification

<event> Specifies the name of a Content Server
API event

<session_cong> element

Contains session management settings:

Table 2-18. Session management elements (<session_cong>)

<max_sessions> Sets the maximum number (integer) of
application server sessions. After the
maximum number of sessions has been
reached, requests are redirected to the JSP
page /wdk/serverBusy.jsp. A value of –1
means that there is no limit to the number
of sessions.

<timeout_control> Forces timeout of HTTP session

<client_shutdown_session_timeout> Specifies the number of seconds before the
session will be shut down after the main
frame has been unloaded by user action.
Default = 120 seconds if no configuration
element is present, minimum = 15
seconds. If the timeout is larger than the
actual HTTP session timeout configured
in web.xml, the session timeout will not
be overridden.

<xmlle_extensions> element

Contains <extension> elements, which configure the file extensions that will be
recognized and parsed as XML files by the application. You must configure these
extensions if your application connects to a version 5.1 repository. If your application
connects to a 5.2 repository or later, the WDK-based application will retrieve the

Web Development Kit and Client Applications Development Guide 73

Conguring and Deploying Applications

dm_format object based on the file extension and use the object’s format_class attribute
to determine whether the file extension indicates an XML format file. If no dm_format
object is found for the file extension, the extensions in <xmlfile_extensions> will be used.

Table 2-19. XML extensions elements (<xmlle_extensions>)

Element Description

<extension> Specifies a file extension that will be parsed as
an XML file, for example, xsl, xml, and txt.

<formats> element

Contains a list of file extensions that map to known formats in the repository, mapping
for format extensions on specific platforms, and an optional class that performs
extensions mapping.

Table 2-20. Formats elements (<formats>)

Element Description

<custom-file-extensions> Contains one or more <format> elements
that map a custom file extension to a
format in the repository

<format> Specifies a file extension as the value of
extension attribute. Specifies the name of
a format in the repository as the value of
the name attribute.

<extension-format-detection> Contains optional <class>, <client>, and
<default> elements.

<class> Specifies the fully qualified class name
for a custom file extension detection
and mapping class that implements
java.util.Map. Overrides the settings in
<extension-format-detection>.

74 Web Development Kit and Client Applications Development Guide

Conguring and Deploying Applications

Element Description

<client> Contains one or more <format> elements
that override the format mapping in
the <default> element. The platform
attribute specifies the platform for which
the mapping is defined. Valid values for
platform are defined as static variables of
the WDK ClientInfo class. For example,
in the /wdk/app.xml configuration, the
extension txt is mapped to the text format
for browsers on the UNIX platform,
which overrides the default ctrext format.
Clients should be listed in order of more
specific to less specific. For example, the
Mac OSX is one of the UNIX platforms,
so Mac OSX mappings would be listed
before UNIX mappings.

<default> Contains <format> elements that map a
file extension to a format in the repository

<preferred_renditions> element

Contains elements that specifies the application to be used for viewing or editing a
specific document type and format combination. Users can override these settings using
the preferred renditions component.

Table 2-21. Preferred renditions elements (<applications> and <renditions>)

Element Description

<renditions> Specifies the default list of renditions
(document type and format combinations)
and the application to be used for viewing
or editing

.<rendition>.<mode> Action to be performed. Valid values:
view | edit

.<rendition>.<objecttype> Object type in the repository, such as
dm_document, or all_types

Web Development Kit and Client Applications Development Guide 75

Conguring and Deploying Applications

Element Description

.<rendition>.<primaryformat> The primary format to be used for editing
objects of the specified type. May not be
the same as the selected rendition format.

.<rendition>.<renditionformat> View mode only, specifies the rendition
format, for example, pdf

.<rendition>.<app> Specifies the full path to the default
application executable including switches
to use for viewing or editing the object

.<rendition>.<action> (Optional) If the rendition invokes an
action instead of an application, an
<action> element is used instead of an
<app> element to specify the name of the
action to be invoked.

.<rendition>.<inline> (Optional) Specifies whether the rendition
can be displayed inline (view mode only).
Document will be launched with HTTP
content transfer mode.

.<rendition>.<label> (Optional) The application label
displayed in the format preferences UI
dropdownlist. If omitted, the contents
of the <app> tag will be used for the app
label.

.<rendition>.<isdefault> (Optional) Set to true to enable a rendition
to be selected by default for a given mode,
type, and primary format combination.
Default = false.

Object types can have their own rendition settings for view and edit mode. A different
application can be specified for each mode. If no default application is specified for a
requested object type and format, the OS default application is used.

<modied_vdm_nodes> element

(In /webcomponent/app.xml) Sets the user’s session timeout value during actions that
include unsaved virtual document changes. The timeout value for the user’s session will
be set back to the application timeout value after the action completes.

Note: Setting the timeout value to a large number could improve performance but can
also result in data loss for users whose sessions time out during a lengthy action.

76 Web Development Kit and Client Applications Development Guide

Conguring and Deploying Applications

Table 2-22. Modied VDM action timeout (<modied_vdm_nodes>)

Element Description

<modified_vdm_nodes> Contains <unsaved_changes_session_
timeout>

<unsaved_changes_session_timeout> Resets the user’s session timeout in
seconds when an action on unsaved
virtual document nodes has begun. The
default value of –1 ensures that the session
does not time out until the action has
completed. This may have a performance
impact.

<custom_attribute_data_handlers> element

(In /webcomponent/app.xml) Contains one or more <custom_attribute_data_handler>
elements that specify classes to handle custom attributes in datagrids.

<discussion> element

Contains the following elements that configure discussions.

Table 2-23. Collaborative Edition elements (<discussion>)

Element Description

<sharing> Sets behavior for discussion sharing
between document versions.Valid
values: all = discussion shared among all
document versions | minor = discussions
shared only on minor versions | none =
each version has its own discussion

<xforms> element

Contains pointer to an XForms adapter service class.

Web Development Kit and Client Applications Development Guide 77

Conguring and Deploying Applications

Table 2-24. Business Process Manager Forms Builder elements (<xforms>)

Element Description

<adaptorService> Fully qualified class name

<listeners> element

Registers application, session, and request listeners. For more information, refer to
Application, session, and request listeners, page 550.

Table 2-25. Listener elements (<listeners>)

Element Description

<application-listeners> Contains one or more <listener> elements
that specify a class to be notified on
application startup and stop

<session-listeners> Contains one or more <listener> elements
that specify a class to be notified when
each session is created and destroyed

<request-listeners> Contains one or more <listener> elements
that specify a class to be notified at each
request start and end

.<class> Fully qualified class name of the listener

<client-sessionstate> element

Contains filters that enable or disable specific client environments

Table 2-26. Client session state elements (<client-sessionstate>)

Element Description

<client-sessionstate> Contains one or more filters that enable or
disable a client environment

78 Web Development Kit and Client Applications Development Guide

Conguring and Deploying Applications

Element Description

<filter> The value of the clientenv attribute
specifies the client environment being
enabled or disabled. Must match
a client environment specified in
<environment>.<clientenv>.

<enabled> Set to true to enable the client
environment.

<dragdrop> element

Contains elements that turn on or off drag and drop support in the Internet Explorer
browser. For more information on drag and drop, refer to Supporting drag and drop,
page 450.

Table 2-27. Drag and drop elements (<dragdrop>)

Element Description

<dragdrop> Contains <enabled> element

<enabled> Set to true to enable drag and drop in
the application for the Internet Explorer
browser. If set to false, the Active X
plugin in the <plugins> element can still
be enabled for rich text spellchecker.

<copy_operation> elements

Contain elements that determine whether to retain storage areas during copy operations.
Some applications override the default setting for this feature.

Table 2-28. Copy operation elements

<retainstorageareas> Set to true to retain storage area for objects
being copied. Required for some Webtop
client applications.

Web Development Kit and Client Applications Development Guide 79

Conguring and Deploying Applications

<move_operation> elements

Contain elements that determine whether to move all versions or only the selected
version during move operations.

Table 2-29. Move operation elements

<all_versions> Set to true to move all versions of the
object to the paste or drop location

<richtexteditor> element

Contains elements that configure the rich text editor.

Table 2-30. Rich text editor elements (<richtexteditor>)

Element Description

<spell_checker_enabled> Set to false to disable the spell checker in
the Active-X plugin. To enable the spell
checker, set to true and set the value of
<enhanced_plugin>.<enabled> to true.
The spell checker requires Microsoft Word
on the client.

<plugins> element

Contains elements that enable the spell-check dictionary and drag and drop Active-X
plugin for Internet Explorer.

Table 2-31. Active-X plugins elements (<plugins>)

Element Description

<enhanced_plugin> Contains <enabled>, <classid> and
<min_version> elements

80 Web Development Kit and Client Applications Development Guide

Conguring and Deploying Applications

Element Description

<enabled> Set to true to enable the rich text dictionary
and drag and drop plugins for Internet
Explorer in the application. If disabled
and <dragdrop> is enabled, drag and drop
within WDK applications is supported
but not to and from the Desktop. For
desktop drag and drop, both this element
and <dragdrop> must be set to enabled.

<classid> Specifies the Active-X plugin classid

<min_version> Specifies the plugin major and minor
version

<initial_user_state> Sets the initial plugin state for the user
before a preference is set. With the
default value of false, the user must
set a preference to enable the plugin
download. With a setting of true, all users
must have privileges that allow them to
install Active-X plugins. If the plugin is
deployed by SMS, the initial user state
should be set to true.

<display> element

The <display> element configures the display of hidden objects for the application. Set
<display>.<hiddenobject> to true to display hidden objects.

<applet-tag> element

The <applet-tag> element configures the rendering of applets. The following elements
configure applet rendering in the application:

Web Development Kit and Client Applications Development Guide 81

Conguring and Deploying Applications

Table 2-32. Applet tag elements (<applet-tag>)

Element Description

<mode> Applet is rendered as either HTML applet
(deprected in HTML 4.01) or HTML
object. The object tag allows control of
the version of the Java plugin used by IE
on Windows clients. Valid values: applet
| object

<plugin-manual-install> Specifies a complete URL for download
of the browser plugin for browsers that
do not have a Java plugin installed, for
example, http://www.java.com. The URL
will be displayed in browsers that do not
have the plugin.

<activex-classid> For object applets, Windows/IE only.
Identifies the Active-X class ID of the
specific version of the Java plugin to
be used, for example, CAFEEFAC-
0014–0002–0008–ABCDEFFEDCBA
corresponds to Java plugin version
1.4.2_08. If no value is present, the latest
plugin is used. (The Java plugin for IE is
written as an Active-X control.)

<activex-install> Specifies a URL for automatic installation
of the Java plugin, for example,
http://java.sun.com/products/ plugin/
autodl/jinstall-1_4_2–windows-i586.cab#
version=1,4,2,8. Version is the minimum
supported by the application. If the user
has a lower version, download will be
triggered. If the URL is prefixed with "/”,
the path is relative to the application root
directory, and user must have appropriate
read permissions on that location.

<job-execution> element

This element and its contained elements can be added to an application configuration file
to support global settings for asynchronous jobs (actions and components).

82 Web Development Kit and Client Applications Development Guide

Conguring and Deploying Applications

Table 2-33. Asynchronous job elements (<job-execution>)

Element Description

<job-eventhandler> Fully qualified class name of default event
handler for actions and components

<async> Contains settings that override the
individual action or component
asynchronous setting

<enable-async-job> A value of false turns off asynchronous
processing for the application. By default
each individual component and action
job will process synchronously unless
<enable-async-job> has a value of true and
the component or action definition sets
<asynchronous> to a value of true.

<sendnoticeonfinish> Set to true to send a notice to the user’s
inbox when a job has finished

<async-jobs-max-limit> Integer value that limits the number
of asynchronous jobs a user can run
concurrently. A value of 0 indicates no
limit.

For more information on asynchronous jobs, refer to Asynchronous action and
component execution, page 571.

Web deployment descriptor (web.xml)

A deployment descriptor file is defined and described by the J2EE Servlet specification.
WDK-based applications provide a customized web.xml file that specifies the top
application layer and the mapping of servlets that are used by WDK. Additionally, the
WDK installer and installers for WDK client applications such as Webtop modify the
root web application web.xml file if virtual link support is requested during installation
(refer to Virtual links, page 91).

The first set of elements in a web deployment descriptor are context parameters for the
application. The WDK context parameters are described in the features to which they
apply:

Web Development Kit and Client Applications Development Guide 83

Conguring and Deploying Applications

Table 2-34. Context parameters

Context Parameter Description

AppFolderName Specifies the top layer for the application,
for example, custom. For more
information, refer to Application name,
page 58.

StaticPageIncludes Specifies the file extensions that do
not need to be processed by the WDK
controller filter.

StaticPageExcludes Specifies paths to files whose extensions
are listed in StaticPageIncludes but
which should be treated as dynamic
(refreshed), that is, exceptions for the
general file extension. Uses regular
expression syntax. For example, the
path /*/formaticon/*/fileExt/*/file.gif,
which excludes all format icons in
each theme, is written as follows:
<![CDATA[^.*?\/formaticon\/.+?\/
fileExt\/.*?\/file\.gif$]]>

HTTPSessionRequired Specifies URLs that do not require a new
HTTP session. Uses regular expression
syntax. The default value specifies that
URLs to UCF will not create a new HTTP
session, because UCF on the client could
issue heartbeats that do not require a
session. For information about Apache
expression syntax, refer to the Apache
Web site.

UseVirtualLinkErrorPage Set to true to use the VirtualLinkHandler
servlet for all HTTP document requests
that result in a HTTP "404 - File Not
Found” error. This servlet tries to resolve
the request as a virtual link.

To add a static page type that will not be processed:

1. Open the web deployment descriptor (/WEB-INF/web.xml).

2. Change the value of the StaticPageIncludes context parameter to include the static
page extension. The following example adds the sound file extension .wav to the list:
<context-param>

84 Web Development Kit and Client Applications Development Guide

http://jakarta.apache.org/regexp/apidocs/org/apache/regexp/RE.html

Conguring and Deploying Applications

<param-name>StaticPageExtensions</param-name>
<param-value>
<![CDATA[(\.js|\.css|\.gif|\.jpeg|\.jpg|\.html|\.htm|\.bmp|\.wav)$]]>

</param-value>
</context-param>

The following table describes the servlet filters that are defined in web.xml:

Table 2-35. WDK lters

Filter Description

WDKController Maps all requests ("/”) but does not
process requests for static pages as
specified in the context parameter
StaticPageExtensions. Initializes the
config service, binds session, request, and
response objects to current thread, sends
notifications to application, session, and
request listeners. Detects failover and
notifies components upon recovery. For
more information about failover, refer to
Implementing failover support, page 442.

RequestAdapter Processes requests and intercepts requests
with multipart/form-data encoding in the
header.

UcfSessionInit Binds the UCF manager instance to the
HTTP request/response context

CompressionFilter Compresses text responses for configured
file extensions. For more information,
refer to High latency and low bandwidth
connections, page 350.

ClientCacheControl Limits the number of requests by telling
the client browser to cache static elements.
For more information, refer to High
latency and low bandwidth connections,
page 350.

The following listener is specified in web.xml:

Web Development Kit and Client Applications Development Guide 85

Conguring and Deploying Applications

Table 2-36. Deployment descriptor listener

Class Description

NotificationManager Instantiates all classes that implement
IApplicationListener, such as the
EnvironmentService class. Used by the
failover mechanism.

The following table describes the servlets that are defined in web.xml:

Table 2-37. WDK servlets

Servlet Description

UcfGAIRConnector Specifies the servlet that uses the GAIR protocol
to communicate data between the client and the
application server

UcfInitGAIRConnector Specifies the servlet that initializes the GAIR
connector

UcfNotification Specifies a servlet that implements
INotificationHandler, which UCF uses to
notify the client of errors and progress

WorkflowEditorServlet Displays a Web-based workflow editor

VirtualJS (in root application
web.xml file)

Rewrites the static WDK JavaScript files to
portlet-specific versions, changing method names
and any form variable names that are used to the
appropriate Portal server namespace. .

Trace Servlet for tracing WDK

ComponentDispatcher The component dispatcher maps a URL to a
component to the appropriate component start
page.

ActionDispatcher The action dispatcher maps a URL to an action to
launch the action.

DRLDispatcher Converts a DRL to a URL

SessionTimeoutControl Overrides the JSP container timeout to provide
finer timeout management

wdk5-contentsender WDK 5 content transfer servlet

wdk5-contentreceiver WDK 5 content transfer servlet

wdk5-download WDK 5 content transfer servlet that streams
browser-supported content to the browser.

86 Web Development Kit and Client Applications Development Guide

Conguring and Deploying Applications

Servlet Description

wdk5-xmlutil WDK 5 content transfer servlet that detects links
in XML files.

wdk5-appletresultsink WDK 5 servlet used by content transfer applets to
return results

HttpContentSender Wraps HttpSessionServlet

FileFormatIconResolver Returns docbase format icon for given file
extension

DownloadServlet Used by HttpContentTransportManager to
stream content to the browser

VirtualLinkHandler Class that handles File Not Found (404) errors,
passing them to the virtual link servlet. This
allows a different servlet for each WDK
application in the server instance.

The following errorpage element is defined in web.xml. Two error pages are specified:
one to handle 404 (Page not found) errors by the virtual link handler servlet, and one
to handle 500 (Internal Server Error) errors. The error JSP page for 500 errors sets the
response status to 200 to prevent the application server from displaying the stack trace
and revealing application internals.

Table 2-38. <errorpage>

<error-code> Specifies the error codes that will be
handled by the specified error page

<location> Specifies the servlet that handles the error
code

The following elements are added to the Web deployment description (web.xml file) for
the root Web application on the J2EE server if virtual link support is requested during
installation.
<web-app>
1<context-param>

...
2<servlet>
<servlet-name>VirtualLinkHandler</servlet-name>
<servlet-class>com.documentum.web.virtuallink.VirtualLink404Handler
</servlet-class>

</servlet>
<servlet-mapping>
<servlet-name>VirtualLinkHandler</servlet-name>
<url-pattern>/VirtualLinkHandler</url-pattern>

</servlet-mapping>
3<error-page>
<error-code>404</error-code>

Web Development Kit and Client Applications Development Guide 87

Conguring and Deploying Applications

<location>/VirtualLinkHandler</location>
</error-page>

</web-app>

2 Defines the virtual link servlet name, class, and URL pattern mapping

3 Defines the HTTP error code and handler. (The virtual link handler intercepts all 404
File Not Found errors.)

Application environment properties

The Environment.properties file, located in /WEB-INF/classes/com/documentum/web/
formext, sets some application listener classes and other application-wide settings. The
following table describes the settings in the environment properties file.

Table 2-39. Environment settings

Setting Description

LookupHookPath.#
LookupHookArgument.#
LookupHookClass.#

Sets a path, scope argument, and class
name for each configuration service
listener class. Refer to Configuration
lookup hooks, page 482.

SessionHookClass Session listener class that implements
ISessionHook in com.documentum.web.
formext.session

ComponentServletPath Used by Component.getServletPath
to resolve the path statically rather
than dynamically. Should match the
ComponentDispatcher servlet mapping
in web.xml.

ConfigReaderClass Class that parses XML configuration files

non_docbase_component.# Name of component that does not require
a Documentum session (login is not
presented)

DocbaseFolderTreeShowMoreThreshold Limits the number of folders that will be
displayed in the tree. A larger number of
folders will result in a More Folders link
instead of a listing of all folders. Set this
number to optimize performance of the
tree.

88 Web Development Kit and Client Applications Development Guide

Conguring and Deploying Applications

Conguring application failover support

Session failover is required in a clustered application server environment. User session
data is persisted, and the load balancer routes the last HTTP request before failover
to the secondary server.

The WDK infrastructure detects failover and provides recovery by notifying components
of failover. Components can then perform cleanup and recovery. Failover is configurable
and can be implemented by components. Data integrity is preserved during failover
for components that implement failover.

The following components support failover in this release:
• Container components wizard, combo, property sheet, and property sheet wizard

(not content transfer containers) will persist completed form data for the user’s
session.

• Advanced search criteria and location are persisted
• The state of property editing components is persisted

Note: The following features do not support failover: inbox, navigational history, content
transfer components, asynchronous job state, and changes to virtual document structure.

The following topics describe failover configuration:
• Configuring application-wide failover, page 89
• Configuring component failover, page 90
Refer to Implementing failover support, page 442 for information on implementing
failover in custom components.

Conguring application-wide failover

Application failover is enabled in a setting of the WDK app.xml file. The setting
<failover>.<enabled> turns on serialization for all failover-enabled components and
sessions in the application. This setting is filtered for the defined client environments,
so that failover can be disabled for environments such as portals that do not support
failover. If you migrate WDK 5.2.5 customizations to WDK 5.3, and your custom classes
do not support failover, you can disable failover in your custom app.xml file, or you can
run a mixed environment, with some components supporting failover and some not, just
as in the current Webtop.

Tip: Some application servers have a configuration setting that enables or disables
session serialization. In Tomcat version 5.x, serialization is turned on by default and
you will see error messages for non-serializable objects. This feature of Tomcat makes
it useful for identifying objects that should be marked transient in your preparations

Web Development Kit and Client Applications Development Guide 89

Conguring and Deploying Applications

for failover support. To turn off the default serialization, refer to the Tomcat Server
Configuration Reference documentation.

To disable failover support in the application:

1. Open the application definition file (/custom/app.xml).

2. Add the failover element, filter for the appropriate client environment, and override
the value. For example:
<failover>
<filter clientenv="not portal">
<enabled>true</enabled>

</filter>
</failover>

The failover filter is described in Implementing failover support, page 442.

Conguring component failover

The Control class, and its subclasses such as Component, implements the Serialized
interface. Any component can potentially support failover.

Each component that supports failover must have a configuration element
<failoverenabled> with a value of true:
<failoverenabled>true</failoverenabled>

All components in a container must support failover in order for the container to support
failover.

If a component is marked as failover-enabled and is extended by another component,
the extended component will inherit failover support. If the extended component
needs to do additional work for recovery or cleanup, it must override onRecover(), call
super.onRecover(), and do the additional work.

Containers that are failover-enabled override onRecover() and call onRecover on all
contained components, which in turn call onRecover() on their controls.

Note: If a container is marked as failover-enabled and contains a component that is not
failover-enabled, WDK will not serialize the container.

If the user is on a component that does not support failover, and failover occurs, the
application home page will be displayed after recovery.

90 Web Development Kit and Client Applications Development Guide

Conguring and Deploying Applications

Conguring content transfer mode for the application

Content transfer in WDK 5.3 supports three modes:
• Custom components that extend WDK 5.2.5 content transfer components

(applet-based)
• HTTP content transfer
• Unified Client Facilities (UCF), a lightweight client-based service
For information on the features available with each mode, refer to Content transfer
modes compared, page 510.

To configure your application to use either UCF or WDK 5.2.5 applet-based content
transfer, set the value of <contentxfer.).<default-mechanism> in app.xml to ucf. To use
HTTP-based content transfer, set the value to http.

If the application is configured to use UCF content transfer, the lightweight UCF
applet downloads to the client on the first call to a content transfer operation, unless
the application has been configured to support HTTP transport only. The applet is
lightweight so that is can be downloaded every time it is needed and does not need to be
installed. This removes the security restriction for users that do not have permission to
install applets.

Clients must have the Sun Java plugin installed in the browser to support UCF. HTTP
content transfer requires either the Sun or Microsoft browser JVM. The JVM is not
installed by default in some versions of IE, so you must install the JVM if one is not
present. The JVM must be of the supported version that is specified in the release notes
for your WDK product.

For more information about UCF, refer to Unified client facilities (UCF), page 513.

WDK 5.2.5 content transfer components are present in the WDK runtime for backward
compatibility. They cannot be addressed directly by URL because they are versioned,
but if your custom component extends a WDK 5.2.5 component definition, it will work.

Virtual links

The virtual link service supports virtual links, which are URLs to view a single document
with the following syntax:
http(s)://server: port[/repository:/virtual_directory/
folder_path]/object_name?format= dmformat_name

For example, the virtual link service can resolve the following kind of link:
http://localhost:8080/webtop/mydocbase:/somecabinet/somedoc
or
http://localhost:8080/webtop/somecabinet/somedoc

Web Development Kit and Client Applications Development Guide 91

Conguring and Deploying Applications

The virtual link service processes the virtual link by providing authentication and
resolving the URL path to a document in the repository.

Virtual link support is installed with every WDK application.

Virtual links are resolved to a matching object in the named repository for the named
application. To handle URLs without the the application virtual directory, you must
install virtual link support to a default WDK application, for example:
http://localhost:8080/somecabinet/somedoc
This option in the installer is called the Root virtual link handler. The virtual link
handler is installed in the application server root or default Web application (in addition
to the WDK application). Only one WDK application on the application server can then
handle URLs that do not specify the application virtual directory.

RightSite URLs are also supported by the Root virtual link handler option. The
following kinds of RightSite URLs will redirect to the default WDK application, that is,
the WDK application that has legacy RightSite support installed:
http(s)://server:port/repository-name:/folder-path/
.../objectname

http(s)://server:port/RightSite/repository-name:/
folder-path/.../objectname

http(s)://server:port/rs-bin/RightSite.dll//
folder-path/.../objectname

Note: If an object name contains non-ASCII characters, the virtual link will not be
resolved, as URLs are limited to ASCII characters.

The virtual link service consists of a virtuallinkconnect component and a virtual link
handler servlet, VirtualLinkHandler. The service will handle any failed HTTP document
request that results in an HTTP 404 File Not Found error by attempting to resolve the
failed request to a document in a repository.

The virtual link service is described in the following topics:
• Virtual link handler deployment, page 92
• Virtual link connection and authentication, page 93
• Virtual link path resolution and document delivery, page 94
• Virtual link error handling, page 96
Refer to Web Development Kit Reference Guide for information on configuring the
virtuallinkconnect component.

Virtual link handler deployment

When a WDK-based application is installed, the installer installs virtual link support for
the current application. The installer also provides an option to install the root virtual

92 Web Development Kit and Client Applications Development Guide

Conguring and Deploying Applications

link handler in the root or default Web application provided by the application server. If
you install the virtual link application in the root Web application, virtual link requests
that are not prefixed with an application name, and Right-site style URLs, are handled.

Note: The virtual link handler servlet must be installed on the same host as the Web
application.

If you install the root virtual link handlern, you must specify the name of the default
WDK application to be used for user authentication. The default WDK application will
be used to attempt authentication for a virtual link when the user does not have a current
session or the URL does not specify an application virtual directory. In the following
example, the user has installed Webtop with the virtual directory alias wt53 and root
virtual link support. The installer writes the name of the default WDK application to the
root web application web.xml file as follows:
<context-param>
<param-name>DefaultWdkAppName</param-name>
<param-value>wt53</param-value>

</context-param>

Note: You can modify the default WDK application.

The virtual link handler servlet is registered in the web.xml file of the WDK-based
application, and optionally in the root Web application, as follows:
<servlet>
<servlet-name>VirtualLinkHandler</servlet-name>
<servlet-class>com.documentum.web.virtuallink.VirtualLink404Handler
</servlet-class>

</servlet>
<servlet-mapping>
<servlet-name>VirtualLinkHandler</servlet-name>
<url-pattern>/VirtualLinkHandler</url-pattern>

</servlet-mapping>

Virtual link connection and authentication

When a user supplies a virtual link URL in the browser, the virtual link handler checks
for authentication in the following order:
• Credentials passed with the request
• Current WDK session
• Virtual link anonymous account
• Login dialog
If this is the first request for a virtual link during the user’s session, the handler
determines the WDK application to redirect to by looking for an application cookie
in browser memory. If the handler does not find a cookie or an application virtual
directory in the URL, it reads the default application name from the root web application

Web Development Kit and Client Applications Development Guide 93

Conguring and Deploying Applications

web.xml file. The handler then redirects to the virtuallinkconnect component in the
WDK application.

You can configure anonymous access for virtual links through the virtuallinkconnect
component definition. Only one anonymous account per repository is supported. Each
application in the application server instance must use the same anonymous account for
a given repository. For example, if the DA virtual link uses anonymous account A for
repository A, the Web Publisher virtual link must use account A for repository A. The
repository must have a guest account for which the username and password match those
in the virtuallinkconnect component definition.

Setting up an anonymous virtual link account

1. Encrypt the anonymous virtual link account password for the repository with the
trusted authenticator tool (refer to To use the password encryption tool:, page 105).

2. Copy /wdk/config/virtuallinkconnect_component.xml to /custom/config and open
the file for editing.

3. Paste the encrypted password into the <defaultaccounts> element. (Add one
<defaultaccount> element for each repository.) For example:
<defaultaccount>
<filter docbase='repository_name'>
<docbase>my_repository</docbase>
<username>default_user</username>
<password>d7d1d6e383d6d4e1d0</password>
<domain></domain>

</filter>
</defaultaccount>

4. Set up the guest account in the repository using Documentum Administrator.
The virtuallinkconnect component reads the list of root paths for the authenticated
repository from the component definition and constructs a virtual link URL using the
original request, adding rootpath information, authentication arguments and an optional
format argument that retrieves a rendition.

Refer to Web Development Kit Reference Guide for information on configuring the
virtuallinkconnect component.

Virtual link path resolution and document delivery

A virtual link has the following syntax:
http:// host_name/virtual_directory[/repository:/path]/
document_name?format=dmformat_name

For example, the following virtual link resolves to an HTML rendition of a document
in my_repository:

94 Web Development Kit and Client Applications Development Guide

Conguring and Deploying Applications

http://myserver/virtual_directory/my_repository:/mycabinet/mydoc?format=html

The repository portion of the link is optional. If it is not supplied, the current repository
is assumed. If the virtual directory is not supplied, then a root virtual link handler must
resolve the application name.

Preferred rendition and document format — If the user does not provide a format or
extension, the virtual link handler will attempt to get the user’s preferred rendition for
the document. If the user supplies an extension for the file name in the virtual link, the
link handler will attempt to locate a rendition in the requested format. For example, the
following virtual link requests a document in PDF format:
http://webtop/MyCabinet/MyFolder/MyDocument.pdf

The link handler will look for a PDF rendition of the document. If there is no match,
the handler will remove the extension and look for the object. If no object with the
corresponding path and name is found, the handler returns an error message.

A virtual link will resolve to the current version of the document in the same location. If
a more recent version has been created in another location, the virtual link will resolve to
the most recent version in the location specified by the link. For example, a virtual link is
created that points to version 1.1 of a document in folder A. Then a user creates a version
1.2 of the document and moves that version to folder B. The original virtual link that
points to version 1.1 in folder A will return the version 1.1 document even though it is
not the current or latest version. If, however, version 1.2 is in folder A, the same folder as
the original link, version 1.2 will be returned by the link.

Document path — The document portion of the link corresponds to the document
name. The path may not be the full repository path to the document. The virtual link
handler will attempt to use the rootpaths that are defined in the virtuallinkconnect
component to resolve the full path to the document.

After the virtual link handler has authenticated the user, the handler matches the
document path in the virtual link URL by retrieving the list of rootpaths from the
virtuallinkconnect component definition. The full URL is formed by concatenating
the first rootpath with the path on the virtual link. If the document is not found
in that folder, the next rootpath is tried. If no match is found with any rootpath,
the handler tries the virtual link as an absolute repository path, for example,
http://myhost/Cabinet1/folderA/DocumentX.html.

Note: A virtual link URL should not be manually formed with the arguments specified.
The only exception to this rule is the format argument, which should be specified
manually if a specific content format is required.

If no document is found with this algorithm, or the user does not have permission to
read a document, an HTTP 404 File Not Found error is returned to the browser.

Inline document links — If a document is presented for viewing, and the document
contains links (such as a Microsoft Office or Adobe PDF document), the links will work

Web Development Kit and Client Applications Development Guide 95

Conguring and Deploying Applications

only if they are links that were created based on the folder structure of the document
inside the repository. For example, if the user is viewing a document MySecrets in /My
Cabinet/My Folder 1/My Sub Folder 1, and this document contains a link to another
document in the same folder, the linked document will be displayed when the user
clicks the link. When the user clicks a a link like "My Sub Sub Folder 1/my other
document.pdf”, the file "my other document.pdf” located at /My Cabinet/My Folder
1/My Sub Folder 1/My Sub Sub Folder1 will be displayed.

If the requested document is a virtual document or complex document, only the parent
document will be returned.

Virtual link URLs and content transfer — Virtual links must have ASCII characters
in the URL path, in accordance with the URI syntax as defined in World-wide Web
Consortium RFC 2396. Repository folder and cabinet names that contain non-ASCII
characters cannot be resolved by a virtual link.

When a document is matched, the virtual link handler checks for a format URL argument
to specify the rendition that is requested. The handler then writes the content to the
browser, bypassing the WDK content transfer mechanism, and sets the HTTP content
header to the mime type that correspond to the format of the content.

Virtual link error handling

The web.xml deployment descriptor is modified to redirect all HTTP 404 (not found)
errors to the virtual link handler as follows:
<error-page>
<error-code>404</error-code>
<location>/VirtualLinkHandler</location>

</error-page>

In addition to handling 404 (Page Not Found) errors, the virtual link error page will
report errors for invalid user credentials, invalid formats, or generic errors. This virtual
link error page is used when the UseVirtualLinkErrorPage context parameter is set to
true in the application /WEB-INF/web.xml file:
<context-param>
<param-name>UseVirtualLinkErrorPage</param-name>
<param-value>true</param-value>

</context-param>

The virtual link error page is constructed by the virtual link handler using messages that
are specified in /wdk/strings/com/documentum/web/virtuallink/VirtualLinkNlsProp.
properties.

96 Web Development Kit and Client Applications Development Guide

Conguring and Deploying Applications

Content server event notication

Users can request notification for a Content Server event on one or more subscribed
objects in the subscriptions UI. All users who are subscribed to the object and have turned
on notification for the event will receive a notification in the Documentum inbox, and an
email to Microsoft Outlook if a WDK application was installed with Outlook integration.

To configure the list of Content Server events that are available to the user for
notification, add each event to the <notification> element in your custom app.xml file.
(For information on the app.xml configuration elements, refer to <notification> element,
page 72.) Any API, workflow, or lifecycle event can be added to the configuration.
Notification is available on dm_sysobject and its subtypes. If an event that is registered
in app.xml does not exist in a particular repository, that event will be ignored by the
event notification mechanism for users logged into that repository.

For information on the existing Content Server events, refer to Content Server API
Reference Manual.

Note: Event notification on replica or reference objects is not supported and will not be
permitted in the subscription UI.

Navigation defaults

You can set properties of the form processor that affect memory usage and
URLs that are returned for specific cases. The form processor properties
are defined in /WEB-INF/classes/com/documentum/web/form, in the file
FormProcessorProp.properties. The configurable properties are described in the
following table.

Table 2-40. Navigation settings

Property Description

manageBrowserHistory True to maintain browser history (pages
that the user has navigated from)

processorHookClass Specifies the fully qualified class name of
a form processor hook class

timeoutURL Specifies a URL to a page to be displayed
when the user times out

historyReleasedURL Specifies a URL to a page to be displayed
when the user attempts to navigate back
beyond the browser history

Web Development Kit and Client Applications Development Guide 97

Conguring and Deploying Applications

Property Description

noReturnURL Specifies a URL to a page to be displayed
when the user attempts to return to a
page or component that has no caller, for
example, the first URL used to connect to
the application

serverBusyURL Specifies a URL to a page to be displayed
when the number of HTTP sessions has
been exceeded (<max_sessions> value in
app.xml)

requestHistorySize Specifies the number of URLs
maintained as browser history when
manageBrowserHistory equals true

formProcessorClass Class that performs the form processor
functions

eventHandlerSessionTimeout Number of minutes to keep the HTTP
session alive during event handling.
Overrides the session timeout specified
in web.xml. For example, if a delete
operation for many objects is expected to
take up to 4 hours to complete, increase
this value to 240.

Browser history

When the user navigates away from a component JSP page using the Back or Forward
button, the user’s selections on the page are lost. If the state should be saved, set the
keepfresh attribute on the <dmf:form> tag to true in the JSP page.

You can turn off browser history for Web applications that do not need to maintain
navigation history. You can configure the number of pages that are retained in history.
This value is configurable so that you can tune memory usage, since memory is
consumed by maintaining history for each browser window in each user session.

Caution: If you turn off browser history, some controls may not work properly when the
user navigates using the browser Back button.

To congure browser history
The form processor has configurable properties in the file FormProcessorProp.properties,
which is located in /WEB-INF/classes/com/documentum/web/form. You can turn on

98 Web Development Kit and Client Applications Development Guide

Conguring and Deploying Applications

browser history management and set the number of page requests that are retained
for browser history.

1. Open FormProcessorProp.properties in Application_Root/WEB-INF/classes/com/
documentum/web/form.

2. Set the value of manageBrowserHistory to false to serve each page request in a single
network round trip. The browser will not necessarily have the correct URL for the
page it is currently displaying. Set the value to true to manage browser history
through the history mechanism. This closes browser history around nested forms so
that the user cannot return to a nested form after leaving the nest.

3. Set the value of requestHistorySize to specify the number of snapshots that will be
held in history for each window or frame (default = 10). If the value is empty or
zero, there is no limit to the number of snapshots that can be kept in the collection,
which can significantly affect performance.

Tip: Name all user input controls and controls that must maintain state when the
user navigates back to them. Only controls that are named are saved in a snapshot
and retrieved in browser history.

Cookies

Cookies are used by WDK-based applications to store login information, user
preferences, and other application data on the client machine. Cookies are encoded so
that they are not stored as plain text. Some session cookies are in-memory only and are
not stored on the client.

Refer to Storing and retrieving user preferences, page 567 for details on reading and
writing your own cookies.

Cookie lookup can slow performance. To improve performance, cookie preferences are
stored in memory the first time they are read or written in a session.

Login, SSOLogin, and GeneralPreferences write several cookies to the client browser
that set user preferences:

Table 2-41. Preferences cookies

Cookie Description

LOCALE_CONFIG_PATH User’s selected locale

CONFIG_USERNAME Name of user who is logged in

Web Development Kit and Client Applications Development Guide 99

Conguring and Deploying Applications

Cookie Description

CONFIG_SHOWOPTIONS Sets whether to display the extra login
options: domain, locale, and accessibility
settings

DOMAIN_CONFIG_PATH Name of selected repository domain

DOCBASE_CONFIG_PATH Name of selected repository

CONFIG_ENTRYPAGE Sets user’s preferred Webtop view (classic
or streamline)

CONFIG_ALTTEXT_ENABLED Sets user’s preference for alt text
(accessibility mode)

CONFIG_KEYBOARDNAVIGATION_
ENABLED

Sets user’s preference for keyboard
shortcuts (accessibility mode)

CONFIG_SHORTCUTNAVIGATION_
ENABLED

Sets user’s preference for shortcuts to the
top and bottom of the navigation tree
(accessibility mode)

theme Sets user’s preferred display theme

INHIBIT_CHANGE_LOSS_WARNING ComboContainer preference that inhibits
the warning when the user cancels
checkout

INHIBIT_CONFIRM_PROMPT Sets user preference for the display of a
confirmation prompt upon delete

PREF_SHOW_THUMBNAILS Set’s user’s preference to display
thumbnail images

m_strPreference Sets user’s selected data page size

A set of cookies are stored for internal purposes:

Table 2-42. Internal cookies

Cookie Description

JSESSIONID ID for the user’s session, generated by
HttpServletRequest

FULL_INSTALL_ARCHIVE_COOKIE_
NAME

Sets a boolean cookie that signifies that
the full content transfer applets have been
installed

INSTALL_SUCCESS_COOKIE_NAME Sets a cookie that signifies that the content
transfer applets installed successfully and
do not need to be downloaded again

100 Web Development Kit and Client Applications Development Guide

Conguring and Deploying Applications

Cookie Description

CODEBASE_URL File selector applet cookie that specifies
the URL to the applet codebase

PARAM_BROWSER_FILTER File selector applet, last filter used

PARAM_BROWSE_DIR File selector applet, user’s default browse
directory

PARAM_RESULT_KEY File selector applet, result key to retrieve
results

PARAM_RESULT_SERVLET_URL File selector applet, URL of the result
servlet

PARAM_SESSION_ID File selector applet, HTTP session ID

PARAM_STYLE_INFO_URL File selector applet, URL to applet style

PARAM_VALUE File selector applet, applet value

PREFERENCE_LAST_DIRECTORY Stores the last directory selected by user
during import with the file selector applet

CONFIG_ADD_FOLDERS_ENABLED Boolean setting to enable Add Folders in
file selector applet

appname Name of Web application. For
example, the name of the application at
http://locahost/webtop is webtop.

isMicrosoftVm IE cookie that is read by Browser to
determine the user’s client VM

Timeout

The timeout of your Web application is managed through the J2EE server. The J2EE
servlet specification supports a <session-timeout> element in the web.xml deployment
descriptor file. Locate the <session-config> element in /WEB-INF/web.xml and change
the timeout value (in minutes). For example:
<session-config>
<session-timeout>60</session-timeout>

</session-config>

Repository timeout settings are configured through the dmcl.ini file on the J2EE server
host. Login ticket expiration settings are in the server config object. Refer to Content
Server Administration Guide for details on client and login ticket timeout settings.

Web Development Kit and Client Applications Development Guide 101

Conguring and Deploying Applications

A timeout page, timeout.jsp, is displayed for HTTP session timeout. Modify this page to
redirect the user to a login page or other timeout component. In the following example,
the virtual root global variable is resolved by the <dmf:webform> tag in the JSP page:
function loginRedirect()
{
getTopLevelWnd().location.replace(g_virtualRoot+"/component/main");

}

Operations timeout — The form processor has a property that overrides the HTTP
session timeout. The eventHandlerSessionTimeout property is used to set timeout in
minutes during event processing. For example, if a delete operation for many objects is
expected to take up to 4 hours to complete, increase this value to 240. This property is
found in /WEB-INF/classes/com/documentum/web/form/FormProcessorProp.properties.

Browser unload timeout — You can override the user’s HTTP session timeout when the
client browser has closed without an explicit logout. When the user closes the browser
window or navigates to an outside URL, the top frame unload event is triggered. A
timeout servlet is called when the main frame of the application is unloaded.

This timeout control can be traced with the flag SESSIONTIMEOUTCONTROL.

To override the session timeout, perform the following steps:

1. Open the JSP page that contains your application top-level frameset.

2. Include the timeout control JavaScript file as follows:
<script language="JavaScript1.2" src='<%=Form.makeUrl(
request, "/wdk/include/timeoutControl.js")%>'>
</script>

3. Include a hidden frame in the top level frameset. In the following example, the
top frame calls the manageTimeout() JavaScript function in the JavaScript file
timeoutcontrol.js when the top frame is unloaded:
<frameset rows="0,38,*,30" border="0" framespacing="no" frameborder="no"
onunload='manageTimeout(frames["timeoutcontrol"])'>
<frame name="timeoutcontrol" src='<%=Form.makeUrl(
request, "/wdk/timeoutcontrol.jsp?Reload="
+ System.currentTimeMillis())%>' marginwidth="0" marginheight="0"
frameborder="no" border="0" scrolling="no" noresize>

</frame> ...
</frameset>

4. Configure the timeout override parameters in app.xml. Add an element
<session_config>.<timeout_control> as a child element of <application>. The value
of <client_shutdown_session_timeout> specifies the number of seconds before the
session will be shut down after the main frame has been unloaded by user action.
For example:
<session_timeout_control>

102 Web Development Kit and Client Applications Development Guide

Conguring and Deploying Applications

<client_shutdown_session_timeout>60
</client_shutdown_session_timeout>

</session_timeout_control>

The default value is 120 seconds if no configuration element is present, and the
minimum is 15 seconds. If the timeout is larger than the actual HTTP session timeout
configured in web.xml, the session timeout will not be overridden.

Virtual document operations timeout — The setting <modified_vdm_nodes>.
<unsaved_changes_session_timeout> in /webcomponent/app.xml overrides the session
timeout when a user has launched an operation on unsaved virtual documents. The
default value is –1, so that the session does not time out during the operation. After the
operation has completed, the timeout is reset to the value in web.xml.

You can copy the parent element <modified_vdm_nodes> and its child to your custom
app.xml and override this setting.

Note: Setting the timeout value to a large number could improve performance but can
also result in data loss for users whose sessions time out during a lengthy action.

Application login and authentication
Several types of login connections are supported in the WDK authentication framework:
• Per-session authentication (login dialog), page 104
• J2EE principal authentication, page 104
• Single sign-on, page 107
• Ticketed login, page 108
Refer to the following additional login topics:
• Skip authentication, page 110
• Silent login, page 542
• Explicit login, page 111
• Login preferences, page 111
• Login locale, page 111
• Number of user sessions, page 112
The WDK framework employs lazy authentication in which authentication occurs on the
first access to a specific repository. If your custom application employs a login dialog,
you can force authentication by calling the authenticate() method in the Login class.

If a component is called by URL or Java method, the component dispatcher
determines whether the user has a valid Documentum session. If there is
no session, the dispatcher calls the authentication service, which attempts
authentication using authentication schemes in the order specified in the

Web Development Kit and Client Applications Development Guide 103

Conguring and Deploying Applications

com.documentum.web.formext.session.AuthenticationSchemes.properties file:
per-session or manual login, single sign-on, ticketed login, or J2EE principal login. Place
your preferred authentication scheme first in this list. If none of these authentication
schemes succeeds, the dispatcher calls the login component.

In addition to the topics listed above, refer to Table 2–7, page 64 for a description of the
authentication configuration elements in app.xml. For information on customizing login,
refer to Authentication service, page 539.

Per-session authentication (login dialog)

The WDK framework employs lazy authentication in which authentication occurs on
the first access to a specific repository. The user will be presented with a login dialog
when they connect to a component that requires a session.

In a portal environment, a user must first authenticate against the Portal environment
via the portal’s login page and then authenticate against each Content Server via a
WDK login page.

Per–session authentication logs a user into a repository when the user supplies the
username, domain (if required), and repository. The user’s entries, except for password,
are stored in a cookie for subsequent login default values.

First-session authentication uses the same scheme. After a successful Content Server
connect it will store the password in the portal server’s preference store by making a call
to the environment’s IPreference.writeString() method.

If your custom application employs a login dialog, you can force authentication by
calling the authenticate() method in the Login class.

J2EE principal authentication

J2EE principal-based authentication allows a single login to the Web server and the
Content Server. Each J2EE-compliant server has its own documented procedures for
setting up server-based authentication. WDK supports server-authenticated users by
means of a trusted authenticator login to each repository. The identity of the user
who logs in to the Web application must match the login identity in the repository.
This identity (username) is passed to the Web application, but the user’s password is
not passed. WDK then logs into the repository for the user by employing a trusted
authenticator identity. The trusted authenticator must be a superuser for the given
repository.

104 Web Development Kit and Client Applications Development Guide

Conguring and Deploying Applications

To set up J2EE principal authentication

1. Make sure that J2EE principal authentication is listed first in the list of authentication
schemes in the com.documentum.web.formext.session.AuthenticationSchemes.
properties file. Authentication will be attempted in the order that they are listed. For
example, if repository authentication is listed first, a login dialog is always presented.

2. Encrypt the superuser’s password and paste the encrypted form of the password
into web.formext.session.TrustedAuthenticatorCredentials.properties. Refer to the
steps below for encrypting the password.

3. Set up J2EE principals in the application deployment description web.xml and in
application server-specific files. Refer to the instructions below for information
on modifying web.xml. Refer to the server documentation for application-server
specific setup.

4. Stop and restart the application server to enable J2EE authentication.
In a portal environment, user principal authentication requires that the user log on to
the portal. The portal user name must match the repository user name, although the
passwords do not have to match. After authentication with the portal, a WDK session is
established automatically and the user can access the Content Server through the WDK
portlet components. The user’s privileges in the repository are assigned through the
user’s role or permissions, so that the user does not acquire the superuser’s privileges.
The default or preferred repository for the user is stored automatically the first time the
user logs on. This can be changed manually using the Documentum portlet preferences.

The WDK framework uses the Content Server ticketing mechanism to obtain a ticket for
a Superuser. The actual user name, and the Superuser’s ticket, are used to establish a
connection for the user. The user’s identity remains authenticated until a new identity
for the same repository is provided or the Documentum session terminates via HTTP
session timeout or client logout.

To use the password encryption tool:
You can encrypt the Superuser’s password for the repository with the trusted
authenticator tool (com.documentum.web.formext.session.TrustedAuthenticatorTool).
This tool uses a Caesar cipher for encryption. You can use your own tool for encryption
as well.

1. From the command line, with com.documentum.web.formext.session.
TrustedAuthenticatorTool and the Java SDK in your classpath, run the following
command on a single line. Substitute the actual repository password to be encrypted:
java -classpath "%CLASSPATH%;T:\app\WEB-INF\classes"
TrustedAuthenticatorTool password

The output will look similar to the following:
Encrypted: [d7d1d6e383d6d4e1d0], Decrypted: [my.pwd6\]

Web Development Kit and Client Applications Development Guide 105

Conguring and Deploying Applications

2. Paste the encrypted form of the password into web.formext.session.
TrustedAuthenticatorCredentials.properties. Each repository must have three entries
(substitute the actual repository name in the sample entries below):

Repository_name.user
Repository_name.password
Repository_name.domain

If no domain, then type the following:
Repository_name.domain=

For example:
mydocbase.user=superuser1
mydocbase.password=d7d1d6e383d6d4e1d0
mydocbase.domain=

To set up J2EE principals:
To enable J2EE principals to log in to repositories (single login), you must modify the
deployment descriptor file (/WEB-INF/web.xml) and follow the procedures that are
specific to your J2EE server.

1. In /WEB-INF/web.xml, remove the comments around the security constraints
element. This sets up a user role called "everyone”. The web-resource-name value
should match the context name of the Web application. For example:
<security-constraint>
<web-resource-collection>
<web-resource-name>Webtop</web-resource-name>
<url-pattern>/*</url-pattern>
<http-method>POST</http-method>
<http-method>GET</http-method>

</web-resource-collection>
<auth-constraint> <role-name>everyone</role-name>
</auth-constraint>

</security-constraint>

<login-config>
<auth-method>BASIC</auth-method>

</login-config>

2. Follow the J2EE server procedure for setting up J2EE principals. Each J2EE server
has its own procedure. For example, in WebLogic, you can use the management
tool to create users with names that are Documentum logins. You can set the
password to anything, and the password does not have to match the Documentum
password. In Tomcat, you specify the J2EE principals in a configuration file,
/conf/tomcat-users.xml.

106 Web Development Kit and Client Applications Development Guide

Conguring and Deploying Applications

Single sign-on

Content Server version 5 and higher supports pluggable authentication or single sign-on
(SSO). You must also set up a SiteMinder realm to perform authentication for WDK
applications. The dm_netegrity plugin installed in the Content Server decodes the
SMSESSION token sent fromWDK for authentication. The plugin contacts the Netegrity
policy server to verify that the token is valid. Errors in authentication are logged in the
/Documentum/dba/log/dm_netegrity.log file.

To summarize, perform the following steps to enable single sign-on in a WDK-based
application:

1. Configure SiteMinder to authentication Documentum users. (Refer to the Netegrity
SiteMinder documentation.)

2. Configure the Web application server to use an external HTTP Server supported by
Netegrity SiteMinder. (Refer to the SiteMinder documentation.)

3. Configure the Content Server plugin. (Refer to the Server documentation.) Since
the plugin is considered a custom Web Agent, there are no additional Web Agents
needed for WDK.

4. Configure the WDK-based application (app.xml settings), described in this topic.

The single sign-on (SSO) authentication scheme SSOAuthenticationScheme is
registered in the authentication properties file com.documentum.web.formext.session.
AuthenticationScheme.properties located in /WEB-INF/classes. You must modify the
properties file to make the SSO authentication scheme first in the list of authentications
that are attempted during login. If the Docbase Login scheme is listed before the SSO
scheme, the user will be presented with a login screen instead of single sign-on.

The WDK SSO Authentication Scheme needs three pieces of information in order to
authenticate an HTTP session against a docbase:
• The name of the Authentication Plugin (dm_netegrity) that is used in the content

server.
• The name of the ticket that will be retrieved from a vendor-specific (Siteminder)

cookie.
• User name, which is retrieved form a vendor-specific (Siteminder) HTTP request’s

header or remote user.
Edit the app.xml file in your application’s /custom directory. Update the element <sso>
under the existing <authentication> element as follows, replacing the repository name in
the <docbase> element. (These elements are described in detail in Table 2–7, page 64,
especially the possible values of <user_header>.)
<authentication>
<domain/>
<docbase>repository_name</docbase>

Web Development Kit and Client Applications Development Guide 107

Conguring and Deploying Applications

<service_class>
com.documentum.web.formext.session.AuthenticationService

</service_class>
<sso_config>
<ecs_plug_in>dm_netegrity</ecs_plug_in>
<ticket_cookie>SMSESSION</ticket_cookie>
<user_header>SM-USER</user_header>

</sso_config>
</authentication>

Note: Restart the application server so that the application setting changes may be
picked up.

The login process is described below in the order that it occurs:

1. User issues URL request to the web application and is presented with the WDK login
component, displaying only the repository chooser control.

2. Login component interrogates the HTTP request, checking for the additional
Netegrity information (smsession cookie and the sm-user header values). When
these are found, SSO component processing continues.

3. The login component performs the authentication with the following values created
from smsession cookie and sm-user header values:

• userName

Value in the sm-user header

• userPassword

Plugin name concatenated with the smsession cookie value

• docbase

Repository selected by the user in the modified login component display

4. Field contents are bound to an IDfSessionManager instance and a session becomes
available to the application/user.

Ticketed login

A Web application that already has a Documentum session can link to a WDK-based
application using a ticketed login. The ticket logs the user in without a login screen,
because the user is already logged in through the calling application.

The link (URL) containing a ticketed login is in the following form, with spaces escaped:
http:// server_name:port_number/ application_name/component/
component_name?
locale= locale_code&ticket= DM_TICKET%3d0000001a3dd7626e. docbase_name@ host_name&
username= username&docbase= docbase_name

108 Web Development Kit and Client Applications Development Guide

Conguring and Deploying Applications

Key:
• server_name:port_number

Host-specific alias for accessing the server
• application_name

Virtual name for your application, used to access the application
• component= component_name

Redirects to a specific component. You can also redirect to an action by substituting
action= action_name. Specifies a specific component to be launched. If redirecting to
an action, specify action name.

• locale= locale_code

Sets the locale for the session using Java locale code. Localized strings for that locale
must be present.

• ticket= ticket number

Specifies a ticket that has been generated within the required time frame (default 5
minutes) generated by the DFC call getLoginTicket() or getLoginTicketEx()

• docbase_name

Target repository, appended to the ticket with ".”
• host_name

WDK application server host name
• docbase= docbase_name

Name of target repository
For example, the following URL contains a login ticket (line break inserted for display
purposes only):
http://localhost:8080/webtop/component/main?locale=en_US&ticket=
DM_TICKET%3d0000001a3dd7626e.viper@
denga000&username=randy&docbase=viper

Note: Arguments must escape single quotes as %27 and embedded equal
signs as %3d. The ticket argument in the example above, before escapes, is
DM_TICKET=0000001a3dd7626e.viper@denga0008. The argument after escapes is
DM_TICKET%3d0000001a3dd7626e.viper@denga0008

The URL can have an optional startupAction parameter so that the action is called after
the ticketed login. If you specify a startup action, you must also provide required action
arguments in the URL.

In the following example, the startup action arguments are provided, with all spaces and
embedded equal signs escaped.
http://localhost:8080/webtop/component/main?startupAction=
search&query=select%20object_name%20from%20dm_document
%20where%20r_object_id%3d%2709aac6c2800015b7%27

Web Development Kit and Client Applications Development Guide 109

Conguring and Deploying Applications

&queryType=dql&ticket=DM_TICKET%3d0000001a3dd7626e.viper
@denga0008&username=testuser&docbase=viper

The ticket is generated by an API call and expires by default in 5 minutes. The ticket
expiration time can be set in the login_ticket_timeout attribute of the content server
configuration object. Your code should generate a new ticket every time a user clicks on
the link that launches the WDK-based application.

To get a login ticket for a user who is currently logged in, use DFC calls similar to
the following. (The class that encodes embedded characters to make them URL-safe
is java.net.URLEncoder).
IDfSession sess = null;
try
{
IDfSessionManager sessionManager =
SessionManagerHttpBinding.getSessionManager();

sess = sessionManager.getSession(strDocbase);
String strPrefix = "http://localhost/wtapp/
component/main?ticket=";

String ticket = sess.getLoginTicket();
String strSuffix = "&username=myname&docbase=mydocbase";
String fullUrl = strPrefix + URLEncoder.encode(ticket) + strSuffix;
System.out.println(fullUrl);

}
finally
{
if(sess != null)
{

releaseSession(sess);
}

}

Skip authentication

All components automatically call the login dialog if the user does not have a
session. If your custom component does not require a Documentum session, you can
configure skip authentication for the component. Skip authentication is configured
in the resource file Environment.properties, which is located in the directory
/WEB-INF/classes/com/documentum/web/formext. To add a component that skips
authentication, add a line with the key value non_docbase_component. In the following
example, the custom component bluesheet does not require a Documentum session:
non_docbase_component.6=bluesheet

You can use JSP pages and server-side classes from your JSP pages that do not require
a repository connection. Do not use these pages within a component so that the login
dialog is not called.

110 Web Development Kit and Client Applications Development Guide

Conguring and Deploying Applications

Explicit login

You can launch the login component explicitly using the standard component URL:
/component/login.

After successful explicit login, the login dialog will forward to either a component or a
URL that is specified in the login component definition.

To navigate to a given component after login, type a URL in the following form:
/my_app/component/login?entryComponent=acme

To navigate to a given component and an entry page that is named in the component
definition, type a URL in the following form:
/my_app/component/login?entryComponent=acme&entryPage=welcome

To navigate to any URL after login, type a URL in the form:
/my_app/component/login?entryUrl=/acme/index.jsp

Login preferences

The login component uses the WDK Preferences service to store the following login
settings in a cookie:

user name
repository
domain
language
show options flag (default true)

When a user changes one of these settings, the new setting is written to the preference
store. If the user has never chosen a repository or domain, the advanced options are
shown regardless of the login component showOptions configuration value.

If the user selects a value (such as a repository) that is valid for one server but not for
another server, the preference is ignored, and the default value for the server is presented
in the login dialog. The user may then select another value through the UI.

Login locale

The initial locale for the UI presentation at login is determined by the locale of the J2EE
server host. The login component presents a language dropdown control that lists all
of the installed locales for the application. When the user selects the locale, the UI is
refreshed with the UI strings of the selected locale.

Web Development Kit and Client Applications Development Guide 111

Conguring and Deploying Applications

Number of user sessions

To set the maximum number of application server sessions, specify an integer value in
the <session_config>.<max_sessions> element of your custom app.xml file. After the
maximum number of sessions has been reached, requests are redirected to the JSP page
/wdk/serverBusy.jsp. A value of –1 means that there is no limit to the number of sessions.

Using events and JavaScript
An event calls specific application code. Controls raise events on the client, and you can
configure the events to be handled on the client or server. Server events are raised in
server-side code and can be handled on the client or server.

Server event handling provides code reuse across the application, state management,
and better performance. Client-side event handling is also supported, to enable dynamic
form behavior, standard HTML events such as body onload(), reduced round-trips to the
server, and frameset processing.

Server events are raised by controls in a JSP page and are handled in the component
class that owns the JSP page. For a description of control events and event handling,
refer to Control events, page 165.

The following information is available on client-side events:
• Navigating with an event handler, page 112
• Client-side navigation, page 113
• Registering client event handlers, page 114
• Using client-side scripts, page 115
• Events between frames, page 117
• Managing frames, page 120
• Calling JavaScript functions from server-side classes, page 121

Navigating with an event handler

In a JavaScript event handler, you can navigate to a component from within a JSP page.
For example, a button in the about component UI sets the runatclient attribute to true.
The button’s onclick eventhandler is specified as onIAPIEditor. The event handler is in
the same JSP page, and it navigates to the API component as follows:
function onIAPIEditor()
{
postComponentNestEvent(null, "api", "api");

112 Web Development Kit and Client Applications Development Guide

Conguring and Deploying Applications

}

Components are addressed by URLs to the component dispatcher servlet. The syntax of
the URL that calls a component is:
/ app/component/ component_name/ [/ page_name][? params]

where:
• app: Deployed application root context directory.
• component_name: Name of the component defined in the component definition

XML file.
• page_name: Logical page name defined in the component definition XML file. If not

present, the page defined by the <start> element is used.
• params: (Optional) Scope parameter and value pairs. If there are scoped definitions

for the component, the parameters specified in the URL are used to dispatch the
appropriate component definition.

Following are two examples of URLs to components:
/wp/component/publish?objectId=xxx

/webtop/component/properties?objectId=yyy

A JavaScript function that calls a component is shown below:
function onClickDQL()
{
newwindow = window.open(
"/" + getVirtualDir() + "/component/dqleditor", "dqleditor",
"location=no,status=no,menubar=no,toolbar=no,resizable= yes,scrollbars=yes");

newwindow.focus();
}

Note: URLs in JSP pages must have paths relative to the Web application root context or
relative to the current directory. For example, the included file <%@ include file='doclist_
thumbnail_body.jsp' %> is in the same directory as the including file. The included file
<%@ include file='/webcomponent/navigation/drilldown/drilldown_body.jsp' %> is in
the /webcomponent subdirectory of the Web application.

Client-side navigation

Use client-side navigation functions when you need to handle a client-side
event by nesting or jumping to another component. The JavaScript file
/wdk/include/componentnavigation.js contains the following client-side component
navigation methods:
• postComponentJumpEvent(): Jumps to another component. For example,

in Webtop the page tabbar.jsp contains a JavaScript function that calls
postComponentJumpEvent(). The parameters are the form ID (can be null), source

Web Development Kit and Client Applications Development Guide 113

Conguring and Deploying Applications

component, (optional), target frame, (optional) event name, and (optional) event
argument. For example, in the Webtop page titlebar.jsp:
function onSearch()
{
postComponentJumpEvent(null, "search", "content");

}

To open the new component in the same frame, use "_self” for the target frame
parameter.

• postComponentNestEvent(): Nests to another component. This function has the
same arguments as postComponentJumpEvent(), above. For example, in Webtop
classic.jsp:.
function
authenticate(docbase)
{
// nest the modal authentication dialog ready for login
postComponentNestEvent(null, "authenticate", "content", "docbase", docbase);

}

Registering client event handlers

Event handler registration provides control over where events are handled. WDK
provides a registerClientEventHandler() method to register client event handlers. This
script is automatically included in all pages rendered to the browser. The signature of
the method is:
function registerClientEventHandler(strSrcWindowName, strEventName,
fnEventHandler);

where:

• strSrcWindowName: String (optional) source frame or window name
• strEventName: String event name
• fnEventHandler: The event handler function pointer
If the source frame or window name is NULL, the event is handled by any parent
window in the hierarchy regardless of which frame fired it. If the frame name is not null,
the event is handled only if it was fired from the specified frame.

The following example registers an event handler for the event "treeNodeSelected” that
is fired from the tree frame. The event handler is registered in the parent JSP page to
handle the event named treeNodeSelected when the event is fired from the tree frame.
The registration sets onNodeSelected to handle the event:
<script>
registerClientEventHandler("tree", "treeNodeSelected", onNodeSelected);
function onNodeSelected(nodeId)
{ ... }

</script>

114 Web Development Kit and Client Applications Development Guide

Conguring and Deploying Applications

<frameset cols="50%,50%">
<frame name="tree" src="tree.jsp">
<frame name="list" src="list.jsp">

</frameset>

Using client-side scripts

You can include client-side scripts such as JavaScript or VBScript (supported by IE
browsers only). There are two ways to include scripts in WDK: manually and registered.
Script usage is described in the following topics:
• Manual scripts, page 115
• Registered scripts, page 115
• WDK scripts, page 116
• Generated script tags, page 116
• JavaScript tracing, page 117

Manual scripts

JavaScript functions can be manually included within the HTML elements of a JSP
page. The following example includes the script and calls a method from the body
onload event:
<head>
<script src="/myapp/scripts/calendar.js" language="javascript1.2">
</script>

</head>
<body onload="initCalendar()”>

Registered scripts

Registered scripts are automatically inserted into every rendered WDK form by the
WDK framework. Use registered scripts to provide infrastructure and behavior
that is reused across the application. Scripts are registered in a Java properties file:
com.documentum.web.form.WebformScripts.properties. Each registry entry has the
following syntax:
index_name.property=value
where:
• index: Order of inclusion in the HTML form
• name: Logical name of the script

Web Development Kit and Client Applications Development Guide 115

Conguring and Deploying Applications

• property: Type of property. Valid values are href, language, and trace.
• value: Value of the property. Valid values are a URL for the href property, a scripting

language name for the language property, and true or false for the trace property
(enables script tracing).

• forceinclude: Set to true to force inclusion of the href, required for a portal
environment

In the following example, the first JavaScript file that supports the help system will load
before the second JavaScript file:
7_Help.href=/wdk/include/help.js
7_Help.language=javascript1.2 8_Help.href=/wdk/include/modal.js
8_Help.language=javascript1.2

WDK scripts

WDK registers its own scripts to support the client-side infrastructure. Do not modify
the script registry entries for the WDK scripts:
• trace.js: Enables client-side tracing
• locate.js: Locates browser window frames
• events.js: Enables client-side events
• scroll.js: Stores and retrieves the scroll position
• formnavigation.js and componentnavigation.js: Enables navigation between forms

and components
• framenavigation.js: Enables frame and browser identification by assigning IDs to

frames and browser windows, and sets an in-memory cookie to identify the browser
window

• help.js: Enables the online help to launch in a browser window
• modal.js: Enables modal dialogs
• contenttransfer.js: Registers an event handler for HTTP download

Generated script tags

Script tags are generated by the WDK framework when a <dmf:webform> tag is
rendered. The generated script tag is similar to the following:
<script>
var Trace_CLIENTEVENTS=true;
var Trace_CALENDAR=false;

</script>
<script src="/myapp/include/calendar.js" language="javascript1.2"/>

116 Web Development Kit and Client Applications Development Guide

Conguring and Deploying Applications

The script variable (e.g. Trace_CLIENTEVENT) is taken from the script entry name. The
src attribute value of the script tag is taken from the script property href. The language
attribute value of the script tag is taken from the script property language. Any valid
HTML language value may be specified in the script registry

To generate script tags, place the <dmf:webform> tag within the head elements of a JSP
page. Many WDK controls are dependent on the scripts that are included by the scripts
registry. The <dmf:webform> tag also invokes the form processor before any other
tags are processed.

JavaScript tracing
Script tracing — If script tracing is enabled (refer to Client-side tracing, page 342), a
separate browser window opens with the WDK application, and client-side tracing
messages are sent to the tracing window while the application executes. To add tracing
messages to your client-side script, use the following syntax:
if (Trace_ ScriptName)
{
Trace_println("tracing message here");

}

For example:
if (Trace_Calendar)
{
Trace_println("Calendar initialized");

}

Events between frames

Client-side processing is often required to synchronize the content of each frame in the
application frameset to reflect user interaction with the application. Typically, inter-frame
events are fired by client-side control event handlers. The control sets the runatclient
attribute to true to specify that the event is handled on the client. The event handler is
specified as the value of the onclick or onselect attribute. This is illustrated by a folder
browser. In the following example, two frames are used: One contains a folder tree, and
the other contains a list of objects that exist in the selected folder of the folder tree. The
tree frame contains a tree control that fires the onclick event. In order to propagate the
onclick event to the list frame, a client-side onclick event handler is used.

Web Development Kit and Client Applications Development Guide 117

Conguring and Deploying Applications

Figure 2-2. Folder tree frame interaction

If your event handler is not in a parent window of the frame in which the event is fired,
the event will not be handled. You can control where the event is handled by registering
the event handler. (Refer to Registering client event handlers, page 114.)

WDK JSP pages can fire an inter-frame event using the fireClientEvent() function. This
function is defined in the JavaScript file events.js. This scrip file is automatically included
in all rendered HTML pages. The fireClientEvent() function informs other pages of
the event. The signature of this method is:
function fireClientEvent(strEventName);

where strEventName is a String representing the event to fire. You can specify additional
parameters which are then passed on to the event handler as event parameters. All
arguments that are given to fireClientEvent are passed automatically to the registered
event handler.

Example 2-1. Firing an inter-frame event
In the following example from Webtop tabbar.jsp, the onComponentSelect event is fired
when the user clicks a tab, and the component for the selected tab is passed as an event
argument:
function onClickTab(component)
{
refreshCurrentComponent(component); fireClientEvent(
"onComponentSelect", component);

}

The JSP page streamline.jsp has registered an event handler for this event:
registerClientEventHandler(
"tabbar", "onComponentSelect", onComponentSelect);

The handler processes the event arguments and sets the current component:
function onComponentSelect(component)
{
g_strCurrentComponent = component;

}

118 Web Development Kit and Client Applications Development Guide

Conguring and Deploying Applications

Inter-frame event handlers

Events are propagated through the client-side window hierarchy. When fireClientEvent()
is called, the framework searches for windows that contain an associated event handler.
The window that fired the event is checked first, followed by a recursive pattern
where the parent window is visited until the root window is reached. Forms are thus
encapsulated and can be reused in other applications without pulling in dependent
forms.

For control over the location of event handlers, register the event handler. Refer to
Registering client event handlers, page 114 for more information.

Inter-frame server events

Inter-frame event handlers can post server-side events using postServerEvent() (refer to
Firing a server event from the client, page 417). This allows the behavior or layout of one
form to be synchronized with the user input or other operation in another form.

Example 2-2. Using postServerEvent() to trigger container navigation
In the following example, a JSP page loads and checks whether applets are installed. If
they are not, a server event is posted that is handled by the container class. The container
class jumps to another JSP page.

In the webcomponent page checkApplet.jsp, a server event is posted in the JavaScript
finish() function (which is called in the body onload event):
function finish()
{
var bInstalled =
checkContentXferAppletInstall(
"<%=IContentXferConstants.VERSION_NUMBER%>", false,
<%=bIsPlugInBeingUsed%>);

if (bInstalled == true)
{
postServerEvent(null, null, null, "onCheckAppletComplete");

}
else
{
postServerEvent(null, null, null, "onNeedInstall");

}
}

If the user does not have the applets installed, the onNeedInstall event is posted. This
event is handled in the class ContentTransferContainer:
public void onNeedInstall(Control control, ArgumentList arg)
{
setComponentPage("installapplet");

Web Development Kit and Client Applications Development Guide 119

Conguring and Deploying Applications

}

This method onNeedInstall() jumps to the component page named installapplet, defined
in the contentxfercontainer component definition as /webcomponent/library/contentxfer/
installContentXfer.jsp.

Managing frames

Frames in a WDK application are given frame IDs and browser IDs to preserve browser
history and state. To take advantage of frame history and preserve memory usage on
the J2EE server, use the <dmf:frameset> and <dmf:frame> tags from the WDK dmf:form
library to generate framesets.

For information on client-side, server-side, and inter-frame events and JavaScript
functions in the WDK framework, refer to Using events and JavaScript, page 112.

The <dmf:frameset> and <dmf:frame> tags generate framesets in which each browser
window is assigned a browser ID and each frame is assigned a frame ID. These IDs
are assigned by the JavaScript functions in framenavigation.js. (This JavaScript file is
included in all JSP pages that have the <dmf:webform/> tag.)

A frame ID is static and is bound to the frame. The browser ID is generated for the
top frame the first time the frame loads. The combination of frame ID and browser ID
allows the application to maintain browser history for more than one browser window
sharing the same frameset.

The <dmf:frameset> and <dmf:frame> tags generate HTML similar to the following.
Source:
<dmf:webform/><dmf:frameset rows="0,38,*,30">

<dmf:frame name="titlebar" src="/component/titlebar">
</dmf:frame>
<dmf:frame name="status" src="/webtop/status/status.jsp">
</dmf:frame>

</dmf:frameset>

Generated HTML. On the first request to the page containing the frameset, the browser
ID is set as an in-memory cookie:
<script language="javascript1.2">
setCookie('__dmfClientId', getBrowserId(), null, '/');

</script>
<frameset rows="0,38,*,30">
<frame name="titlebar" id="Main_titlebar_0"
src="/webtop/component/titlebar?
Reload=1051237917848&__dmfFrameId=Main_titlebar_0"></frame>

<frame name="status" id="Main_status_0"
src="/webtop/webtop/status/status.jsp?
Reload=1051237917848__dmfFrameId=Main_status_0"></frame>

</frameset>

120 Web Development Kit and Client Applications Development Guide

Conguring and Deploying Applications

The configurable attributes for the frame and frameset controls are described inWeb
Development Kit Reference Guide.

For navigation from one frame to another, you should use the JavaScript function
changeFrameLocationInFrameset(). This function will ensure that the frame and browser
IDs are appended to the URL. In the following example, the client-side (JavaScript) event
handler calls the navigation function to accomplish a frame.location.replace() navigation:
function onStreamlineView(view)
{
changeFrameLocationInFrameset(parent.parent, "view",
"<%=request.getContextPath()%>/webtop/streamline/streamline.jsp");

...
}

To call a component in another frame, use the JavaScript function
postComponentNestEvent(). For example, the Advanced Search link in Webtop’s
titlebar.jsp specifies that the advanced search component will load in the content frame
(the third argument):
function onClickAdvancedSearch()
{
var contentPage = eval(getAbsoluteFramePath("content"));
if (contentPage != null)
{
var textField = document.getElementById("txtSearch");
var strValue = textField.value;
...
postComponentNestEvent(null, "advsearchcontainer","content","
component","advsearch", "type", "dm_sysobject", "basetype", "
dm_sysobject", "usepreviousinput", "false", "query", strValue);

...
}

}

Calling JavaScript functions from server-side classes

Your JavaScript function may require information from the component class. For
example, a body onload event calls a server-side event handler, perform some
computation, and return a value. You need to get the value in another JavaScript function:
<script>
function invokeComputation()
{
postServerEvent(null, null, null, "onComputation");

}
</script><body onload='invokeComputation()' ...>

In your component class, you pass the required information back to the client
by calling setClientEvent(). Do not encode client event arguments using

Web Development Kit and Client Applications Development Guide 121

Conguring and Deploying Applications

SafeHTMLString.escapeText(). Instead, use SafeHTMLString.escapeScriptLiteral() to
encode client arguments.
public void onComputation()
{
//do computation
ArgumentList arg = new ArgumentList;
arg.add("variable1", value1); //your return value
setClientEvent("getComputation", arg);

}

In your JSP file, the named client event gets the argument value:
<script>
function getComputation(arg)
{
alert(arg);

}

You can also call setClientEvent() from an action execution method. Then you handle
the client event in the component JSP page from which the action was launched. Do
not encode client event arguments using SafeHTMLString.escapeText(). Instead, use
SafeHTMLString.escapeScriptLiteral() to encode event arguments.

Branding an application
The branding service allows you to customize the look of your application user interface
(UI) by incorporating colors, fonts and images. The branding service manages the UI
appearance using themes, which incorporate images, icons, and cascading style sheets
(CSS). Resource files for your themes are organized into resource directories.

The default portal theme is iconic, which allows the portlets to use the portal styles.

The information about themes and tasks to extend or create a theme include:
• Registering a theme, page 123
• Creating a theme directory, page 124
• Making a theme available, page 125
• How themes are located, page 126
• Using style sheets, page 127
• Identifying styles in WDK applications, page 130
• Adding images and icons, page 133
• Configuring buttons, page 134
• Configuring the file selector applet, page 135
• Branding examples, page 135
The example in the topics listed above sets up a new theme named topteam. The example
covers all of the tasks required to create the new theme.

122 Web Development Kit and Client Applications Development Guide

Conguring and Deploying Applications

Registering a theme

Branding themes are defined in the <themes> element in the custom application app.xml
file. In the following example from a custom app.xml file, the <themes> element specifies
a default theme, a resource bundle for theme names that are displayed in the UI, and a
set of themes including a custom theme. Note that the <nlsbundle> element points to a
custom properties file that you will create:
<!-- List of themes available in general preferences -->
<themes>

<!-- Default theme to use when webtop starts up -->
<default-theme>trendy</default-theme>

<nlsbundle>com.documentum.custom.BrandingServiceNlsProp</nlsbundle>
<theme>
<name>documentum</name>
<label><nlsid>MSG_BRAND_DOCUMENTUM</nlsid></label>

</theme>
...
<theme>
<name>topteam</name>
<base-theme>documentum</base-theme>
<label><nlsid>MSG_BRAND_TOPTEAM</nlsid></label>

</theme>
</themes>

Note: If your theme does not extend another theme, you do not need the <base-theme>
element.

Inheritance occurs only at the <themes> primary element level, so you must copy
the entire contents of the <themes> element from the /wdk/app.xml file into the
/custom/app.xml file.

The <themes> element contains the following elements:
• <default-theme> – Defines the name of the default theme
• <nlsbundle> – Defines which NLS bundle to use to interpret localized strings (in this

case, BrandingServiceNlsProp contains the mapping table). This element is optional
and, if omitted, its value is inherited from <application>.

• <theme> – Defines a unique theme. The <themes> element can contain one or more
<theme> elements. Each <theme> element contains the following elements:

— <name> – Defines the unique name of the theme, as used by the <default-theme>
element and the <base-theme> element. This name is not visible to users.

— <base-theme> – Defines the name of the theme on which the current theme is
based. By default, the current theme inherits the type icons and format icons
from the directory structure of the specified base theme.

— <label> – Defines the user-readable, internationalized name of the theme (that is,
the text that appears in the General Preferences dialog box).

Web Development Kit and Client Applications Development Guide 123

Conguring and Deploying Applications

Note: After saving your changes (for example, when adding a new theme directory),
you must make them known to the application by navigating to the refresh utility page
/wdk/refresh.jsp.

Creating a theme directory

Each application layer directory contains a theme directory that contains several themes.
A theme in one layer is available to the application layer and to other themes that
extend that theme.

The root WDK directory (/wdk) contains a theme directory. The /webcomponent
directory contains a theme directory whose themes contain additional resources that are
used in the components in that application layer. For example, the luxury theme in the
webcomponent layer inherits all of the luxury theme resources in /wdk/theme and adds
a style sheet and images used by components in the webcomponent layer.

Your custom application can have its own themes directory or directories. You must
register your theme in the custom application app.xml file (refer to Registering a theme,
page 123).

Your new theme directory must contain the following subdirectories for the theme
resource files:
• /custom/theme/ theme_name/css

This directory stores all of the CSS for the theme. In most cases, there is only one CSS
per theme. If more than one CSS per theme exist, they are used in alphabetical order.

• application_layer/theme/ theme_name/icons

This directory stores all of the icons for the theme.
• application_layer/theme/ theme_name/images

This directory stores all of the images for the theme. The images are used by controls,
as defined in the control attributes in each JSP.

Note: The theme directories are present in the installed application only if they contain
files or other directories.

Creating a new theme with all new content — When you create a new theme, create all
of the subdirectories listed above. Copy content into these directories for all of the images,
icons, and styles that you will be using in your application. Copy these from the existing
theme directories in the /wdk, /webcomponent, and application layer theme directories.
For example, if your new topteam theme uses all of the icons from the documentum
theme but doesn’t extend the documentum theme, copy all of the files and subdirectories
under /wdk/theme/documentum/icons, /webcomponent/theme/documentum/icons, and
/webtop/theme/documentum/icons into /custom/theme/topteam/icons. Do the same for

124 Web Development Kit and Client Applications Development Guide

Conguring and Deploying Applications

the /images and /css subdirectories of the documentum theme in the application layers.
Then you can substitute your own images, icons, or styles as appropriate.

Creating a theme that extends another theme — Unless you intend to create new
images, icons, and styles for every component, you should extend an existing theme
so that you can simply override the images, icons, and styles in that theme. Create
directories only for the resources that override content in the parent theme. For example,
if you are extending the trendy theme and you are using the same styles in the trendy
stylesheets webforms.css, webcomponents.css, and webtop.css, then you do not need a
/css directory.

Making a theme available

When you add a new theme, you must make it available in the UI by adding it to the
list of themes in a properties resource file.

The following example extends the list of themes by using NLS_INCLUDES, which
reads the included properties file into your custom file. Create a text file named
BrandingServiceNlsProp.properties in /custom/strings/com/documentum/custom or
the location that you have specified for the value of the <nlsbundle> element in the
custom app.xml file.

Add the following content to the custom BrandingServiceNlsProp.properties file:
NLS_INCLUDES=com.documentum.web.common.BrandingServiceNlsProp
MSG_BRAND_TOPTEAM=TopTeam

The resulting dropdown theme list is similar to the following:

Figure 2-3. Custom Theme

Web Development Kit and Client Applications Development Guide 125

Conguring and Deploying Applications

How themes are located

A control (such as the OK button, label title, View tab bar, and so on) can be configured
with the CSS style and the location of the image files used to render that control. The
branding service searches for each referenced style and image as follows: The current
theme, then the base theme, then the base theme of the base theme, and so on. In the
standard installation, the base theme is the documentum theme.

The dependencies between the application layers are the same as the dependencies as
specified by the extends attribute in an application layer app.xml file:

1. wdk: The base layer (no dependency on any other layer)

2. webcomponent: Dependent on the WDK layer

3. application-specific directory: If present, dependent on the webcomponent layer or
another application-specific layer

4. custom: The most dependent layer, dependent on either the webcomponent layer
or an application-specific layer

For example, to load /icons/type/t_dm_document_16.gif in the coolblue theme, the
resource loader loads the first file named /t_dm_document_16.gif that it finds from
the following search path:
/custom/theme/coolblue/icons/type/t_dm_document_16.gif
/webtop/theme/coolblue/icons/type/t_dm_document_16.gif
/webcomponent/theme/coolblue/icons/type/t_dm_document_16.gif
/wdk/theme/coolblue/icons/type/t_dm_document_16.gif
/custom/theme/documentum/icons/type/t_dm_document_16.gif
/webtop/theme/documentum/icons/type/t_dm_document_16.gif
/webcomponent/theme/documentum/icons/type/t_dm_document_16.gif
/wdk/theme/documentum/icons/type/t_dm_document_16.gif

Branding is configured in the same way as other features in WDK. You should make all
your changes in copies of the original files and then store your changes in the /custom
application directory.

The branding service processes theme files as follows:

1. When a form is rendered, the branding service searches for and processes CSS files.
Most applications use only one CSS but can use more than one. The branding service
processes first the CSS in the base application directory and then works through the
application hierarchy, processing each CSS file it finds.

2. When a form is rendered, the form contains references to resource files, which in
most cases are image (graphic) files. The branding service searches for and resolves
each reference into a URL for the appropriate GIF or other image file. The branding
service searches first for the resource files in the most dependent application

126 Web Development Kit and Client Applications Development Guide

Conguring and Deploying Applications

directory (that is, the /custom directory), then works up through the application
hierarchy to the base application.

Using style sheets

Each theme directory contains a /css subdirectory with styles that apply to controls in
the application layer. In most cases, there is one .css file in each theme /css folder, or the
folder does not exist at all. The branding service includes and renders a reference to
each CSS file that exists.

All controls that use Cascading Style Sheet (CSS) classes and styles use either a default
class from webform.css or a custom class that is set as a control tag attribute. The default
class for a control is overridden by a class or style that you set as a control tag attribute in
a JSP page. To override a style, specify the CSS style definition as the value of the style
attribute on a control. In the following example, the style rule overrides the default
label style defined in the CSS files:
<dmf:label nlsid = "LABEL_DESCRIPTION" style=style='font-family:Courier
New,Courier;font-size:9px'/>

You can override a style globally by defining the style in your custom CSS file, because
your custom application styles overrides all other style rules with the same name.

Note: When you override a style, it still inherits rules within the style that
are not overridden. You may need to override all rules within the style. For
examle, you wish to override the background color in following style within
/app/webtop/theme/tahoe/css/webtop.css:
.webtopTitlebarBackground
{
background-color: #ffcc33;
background-image: url("../images/titlebarbg.gif");

}

If you override in the following way, the image will still display:
.webtopTitlebarBackground
{
background-color: red;

}

You must add a rule that overrides the image, as follows:
.webtopTitlebarBackground
{
background-color: red;
background-image: url("");

}

A style that is defined in the base theme (or lower application layer) can be redefined in
a derived theme or a higher application layer. For example, the style .myStyle defined

Web Development Kit and Client Applications Development Guide 127

Conguring and Deploying Applications

in /wdk/theme/documentum/css/webforms.css will be replaced by the definition of
.myStyle in /custom/theme/topteam/css/custom.css.

The list of style sheets to be applied to a JSP page is assembled at run time. The branding
service searches theme folders in the application folder path, searching for files with a
.css extension. The style sheets for the base theme, defined in app.xml, are included
before the style sheets for the theme itself. For a specific theme, the branding service
searches for the theme based on the application layer hierarchy. For example, if the user
has selected the topteam theme, which extends the documentum theme, the service
searches directories in the following order (reading from top to bottom) to render a
list of style sheets:

/wdk/theme/documentum/css/webforms.css
/webcomponent/theme/documentum/css/webcomponents.css
/webtop/theme/documentum /css/webtop.css
/custom/theme/topteam /css/custom.css

The list of style sheets is rendered into HTML similar to the following:
<link type="text/css" rel="stylesheet"
href="/webtop/wdk/theme/documentum/css/webforms.css">

<link type="text/css" rel="stylesheet"
href="/webtop/webcomponent/theme/documentum/css/webcomponents.css">

<link type="text/css" rel="stylesheet"
href="/webtop/webtop/theme/documentum/css/webtop.css">

<link type="text/css" rel="stylesheet"
href="/webtop/custom/theme/topteam/css/custom.css">

Style sheets in the same directory are added to the list in alphabetical order. For
example, if a directory /custom/topteam/css contains custom_a.css and custom_b.css, the
custom_b.css file will be listed second, and styles in the second CSS file will override
styles with the first CSS file. The last definition encountered for a style is used by the
browser.

Using images in style sheets
Images referenced within style sheets — Images can be referenced within a style
sheet using relative paths. For example:
.drilldownHeader { BACKGROUND-COLOR:
transparent; BACKGROUND-IMAGE:
url('../images/streamline/tabbarbg.gif') }

If you customize an image that is referenced within a style sheet, the style sheet that
references the image must be located in your custom folder so that the correct image is
used.

128 Web Development Kit and Client Applications Development Guide

Conguring and Deploying Applications

Default WDK style sheet

The following table lists the WDK-specific styles in the WDK layer themes. The table
does not define general HTML styles, such as TD or TH; for details of their usage, refer to
a CSS or HTML reference. Several styles with similar application are grouped together
with the notation style_name.XXX.

Table 2-43. webforms.css (WDK layer)

Style Description

.accessiblemenustyle Sets the style on the text for menu icons that display
strings for accessibility (image accessibility strings).
(Refer to Image accessibility strings, page 587.)

.action.XXX Used by drilldown, searchresults and searchresultslist
to render the action button.

.buttonLink

.buttonDisabledLink
Sets styles on buttons that link to a URL.

.contentBackground Sets the background color for a content frame.

.contentBorder Sets the color of the containers (the border area
around the contained components).

.databoundXXX Used by the examples to set styles on databound
controls.

.defaultXXX Sets default styles for controls that do not have style
or cssclass attribute values set on the JSP page.

.dialogXXX Sets the style for the display of the dialog title, file
name, and details that are displayed in a dialog.

.elementBackground

.elementText
Sets background and text for samples.

.errorMessageLabel Sets the style for the label on an error message.

.headerBackground Sets the background for a table header.

.menuXXX Sets styles for menu items.

.pagerBackground Sets the background for a pager control.

.rowSeparator Sets the color of the row separator lines used in the
datagrids of the object list, resultlist, search results,
messages and drilldown.

.validatorMessageStyle Sets the style of the text in a validator error message.

Web Development Kit and Client Applications Development Guide 129

Conguring and Deploying Applications

Internationalized style sheet

The Documentum theme contains an internationalized style sheet that specifies a
Unicode font, Arial Unicode MS. You can install this font on Windows client systems to
support any language that can be encoded in Unicode.

Modifying a style sheet

You can modify style sheets to change the look of applications. Style sheets override
styles defined in application layers that are extended by the top application layer. For
example:
• The style sheet in the /webtop/shiny/css directory overrides the style sheet in the

/webcomponent/shiny/css directory.
• The style sheet in the /custom/shiny/css directory overrides the style sheet in the

webtop/shiny/css directory.
To redene a control style:

1. Inspect the JSP page or view the page source to find the name of the css class that is
used by a control. For example:
<dmf:label nlsid = "LABEL_DESCRIPTION" cssclass=
'defaultDocbaseAttributeStyle'/>

2. Create a new definition of the style andwrite it to the .css file in /custom/theme/theme
name/css. If the file does not exist, create it with any name. For example, the old
class was defined in webforms.css as:
.defaultDocbaseAttributeStyle { }

New definition:
.customDocbaseAttributeStyle { FONT-SIZE: 9px }

3. Reference the new style name as the value of the style attribute in the JSP page.
For example:
<dmf:label nlsid = "LABEL_DESCRIPTION" cssclass='customDocbaseAttributeStyle'/>

Identifying styles in WDK applications

When you are creating a new theme, you want to apply your styles to all of the UI
elements in your application. It can be daunting to look at the UI and try to figure out
which styles in the CSS files apply to which element in the UI. The following illustrations
map some of the most commonly used styles to the Webtop UI.

130 Web Development Kit and Client Applications Development Guide

Conguring and Deploying Applications

A simple way to locate an individual style is to find it in the UI and right-click to view
the source. Search for the string that is displayed by your particular style. For example,
in the illustration below you are looking for the style that is used to render the location
(with the shortcut arrow next to it). If you search on the string "Product Info” in the
source, you find the following HTML element with the style information (highlighted):
Product Info

The styles in the Webtop classic view are shown below.

Figure 2-4. Webtop classic view styles

Key: Source of class is /wdk/theme/theme_name/css/webforms.css (WDK),
/webcomponent/theme/theme_name/css/webcomponents.css (WCL), or
/webtop/theme/theme_name/css/webforms.css (WT).

Table 2-44. Styles in Webtop classic view and menus

UI Element Source Style

1. Button text WDK buttonLink

2. Toolbar text WDK menuBar

3. Breadcrumb WDK webcomponentBread-
crumb

4. Location WDK webcomponentTitle

5. Column header WDK doclistbodyDatasortLink
<tr> class colHeaderBack-
ground

6. Checkboxes WDK doclistcheckbox

Web Development Kit and Client Applications Development Guide 131

Conguring and Deploying Applications

UI Element Source Style

7. Row colors WDK White: <tr> class default-
DatagridRowAltStyle
Other: defaultData-
gridRowStyle

8. Pagination elements WDK Area: pagerBackground
Text: defaultLabelStyle

9. Button spacing WDK buttonbuffer

10. Toolbar action links WDK Active and disabled:
toolbaractions

11. Selected tab WT webtopStatusbarTabbarSe-
lectedText

12. Deselected tab WT webtopStatusbarTab-
barNormalText

13. Menu text WDK menu

14. Selected item WDK menuHighlight

15. Horizontal separator WDK menuSeparator

16. Disabled menu item WDK menuDisabled

The styles in the Webtop streamline view are shown below. Button styles are the same as
the classic view (above).

Figure 2-5. Webtop streamline view styles

132 Web Development Kit and Client Applications Development Guide

Conguring and Deploying Applications

Key: Source of class is /wdk/theme/theme_name/css/webforms.css (WDK),
/webcomponent/theme/theme_name/css/webcomponents.css (WCL), or
/webtop/theme/theme_name/css/webforms.css (WT).

Table 2-45. Styles in Webtop streamline view

UI Element Source Style

1. Tab text WT webtopStreamlineTab-
barNormalText

2. Breadcrumb text None, defaults to browser
text font

defaultBreadcrumbStyle

3. Actions title WDK defaultLabelStyle

4. Actions text WDK actions

5. Section header WCL drilldownTitle

6. Pagination elements WDK defaultLabelStyle

7. Folder names WCL drilldownDirectoryName

8. Sorting links WDK defaultDataSortLinkStyle

9. Bold labels WCL drilldownLabel

10. Horizontal rule
(bottom, not shown)

WDK/.../
dragdrop.css

Tdnd, 0dnd

Drag and drop regions and effects, whose styles are named *dnd*, are configured in
/wdk/theme/.../css/dragdrop.css.

Adding images and icons

Image and icon directories contain GIF files that are used to draw the control. Most
controls specify their image names as left.gif, bg.gif, and right.gif (where bg.gif is the
background image).

Note: Store your customized images and icons in the custom application directory.

If you are adding an icon to be displayed for custom objects or folder types, place a 16x16
pixel icon in the /custom/ theme_name/icons/type where theme_name is the theme for
which you wish the icon to be used. The icon file must be named with the custom object
type name and with a t_ prefix and a _16 postfix. For example, if you custom type is
named my_sop, the icon would be named t_my_sop_16.gif.

If you are providing an icon to replace one of the default application icons, the directory
path below /custom/theme/ theme-namemust be the same as the original. For example, if

Web Development Kit and Client Applications Development Guide 133

Conguring and Deploying Applications

you are adding custom images for the paging controls, you add images named first.gif,
last.gif, next.gif, and previous.gif to the directory /custom/theme/topteam/images/paging.

A custom image file must have the same name as the file that is used by the control in
other themes. For example, if you use your own images for the paging controls, you
must provide images named first.gif, last.gif, next.gif, and previous.gif. If the type or
format is not databound or an image is not found, the icon resolves to t_unknown_16.gif
or t_unknown_32.gif.

Note: Make sure that your customized images and icons have exactly the same
dimensions as the originals. Images that do not have the same dimensions will have
unpredictable effects on the UI.

Images can be referenced within style sheets. For details of how to configure such
images, refer to Modifying a style sheet, page 130.

Accessibility — All graphics in the /images and /icons directories must have an entry in
an accessibility resource file to support accessibility. The NLS string is displayed as an
HTML alt attribute value in browser mouseover. Refer to Image accessibility strings,
page 587 for more information.

Conguring buttons

To form the background for a text label, button, or other type of image, the control
images are displayed in order from left to right. Any text that you specify in the form of
an nlsid attribute is displayed on top of the center image (bg.gif), and the width of this
image expands to display the entire text. The style of the text or link that is displayed is
determined by the cssclass attribute on the JSP tag.

For example, the clipboard page clipboard.jsp in /webcomponent/environment/clipboard
contains a button identified by the nlsid MSG_REMOVE. The path to the button image is
specified by the imagefolder value, relative to the theme directory: images/dialogbutton.
To replace the images for the Remove button, you can replace it either in one JSP page or
in your entire application.

To change the text for a button:

1. The text for a button is specified by the nlsid attribute on the button control. Find the
nlsid attribute for the button you want to change on the JSP page. For example, the
Help button in the login page login.jsp has an attribute value of MSG_HELP:
<dmf:button cssclass='buttonLink' nlsid='MSG_HELP'.../>

2. Extend the component and override the definition for the nlsbundle in the extended
component definition. For example:
<component id="login" extends=
"login:/wdk/config/login_component.xml">

134 Web Development Kit and Client Applications Development Guide

Conguring and Deploying Applications

<nlsbundle>com.documentum.web.formext.session.LoginNlsProp
</nlsbundle>

3. Find the properties file. In the same example, the file com.documentum.
web.formext.session.LoginNlsProp.properties is located in the directory
/wdk/strings/com/documentum/web/formext/session.

4. Find the string identified by the nlsid key value on the control tag. In the same
example, the key value is MSG_HELP=Help.

5. Create a new properties file named MyLoginNlsProp.properties in the directory
/custom/strings/com/documentum/custom. Include the parent strings resource and
override the button text value. In the same example, you have the following content:
NLS_INCLUDES=com.documentum.web.formext.session.LoginNlsProp
MSG_HELP=Resources

To convert a button, tab bar, or label control to an image button:

1. Specify the imagefolder attribute in the JSP tag.

2. In the specified image directory, put the following three files: left.gif, right.gif, and
bg.gif. If any of these image files are not present, the control renders a generic HTML
button. The tab bar control requires more than three image files; refer to the files in
/wdk/theme/ theme-name/images/tabbar.

Conguring the le selector applet

The file selector applet in the import UI (importFileSelection.jsp) is configured in a file
named fileSelectorAppletStyle.properties. A copy of this file is found in each theme
directory of the WDK application layers. You can set four styles: text style, size, and
color, and background color. The settings for a given theme should match the text and
background settings for dialog buttons in the same theme.

Branding examples

Example 2-3. Change a style denition for theme "trendy"
Write a stylesheet that redefines the style. Save it as /custom/theme/trendy/css/newstyle.
css

The generated CSS include list might be something like: /wdk/theme/documentum/css/
wdk.css, /wdk/theme/trendy/css/wdk.css, /custom/theme/trendy/css/newstyle.css. The
new style is added after the others so it overwrites the out of the box style definitions.

Web Development Kit and Client Applications Development Guide 135

Conguring and Deploying Applications

Example 2-4. Add an icon for a new docbase type to theme "trendy"
Design the icon. Save large and small icons to /custom/theme/trendy/icons/type as
t_my_type_32.gif and t_my_type_16.gif.

The resource search path for icons/type/t_my_type_16.gif would be in the following
order:

/custom/theme/trendy/icons/type/t_my_type_16.gif
/webtop/theme/trendy/icons/type/t_my_type_16.gif
/webcomponent/theme/trendy/icons/type/t_my_type_16.gif
/wdk/theme/trendy/icons/type/t_my_type_16.gif
/custom/theme/documentum/icons/type/t_my_type_16.gif
/webtop/theme/documentum/icons/type/t_my_type_16.gif
/webcomponent/documentum/trendy/icons/type/t_my_type_16.gif
/wdk/theme/documentum/icons/type/t_my_type_16.gif

The search result is cached (keyed by the theme and the resource locator) so this
search is only performed once. In your style design, you may wish to add this icon to
documentum theme, as all the other themes would then inherit the new icons.

Example 2-5. Add a new theme "splashy" based on theme "mellow"

1. Write stylesheets to redefine the styles. Only include the styles which have changed
from mellow. Save the stylesheets as /custom/theme/splashy/css/newstyles1.css,
newstyles2.css, etc

2. Design the new icons and images. The image and icon names and path within the
resource folder are dictated by the controls and forms which use them.

3. Create a new strings properties file. Save the file as /custom/strings/my/
BrandingServiceNlsProp.properties. The contents are as follows:
NLS_INCLUDES=com.documentum.web.common.BrandingServiceNlsProp
MSG_BRAND_SPLASHY=splash!

4. Override the <themes> element in /custom/app.xml as follows:
<!-- List of themes available in general preferences -->
<themes>

<!-- Default theme to use when webtop starts up -->
<default-theme>trendy</default-theme>

<nlsbundle>my.BrandingServiceNlsProp</nlsbundle>
<theme>

<name>documentum</name>
<label><nlsid>MSG_BRAND_DOCUMENTUM</nlsid></label>

</theme>
<theme>

<name>mellow</name>
<base-theme>documentum</base-theme>
<label><nlsid>MSG_BRAND_MELLOW</nlsid></label>

</theme>

136 Web Development Kit and Client Applications Development Guide

Conguring and Deploying Applications

<theme>
<name>shiny</name>
<base-theme>documentum</base-theme>
<label><nlsid>MSG_BRAND_SHINY</nlsid></label>

</theme>
<theme>

<name>trendy</name>
<base-theme>documentum</base-theme>
<label><nlsid>MSG_BRAND_TRENDY</nlsid></label>

</theme>
<theme>

<name>splashy</name>
<base-theme>mellow</base-theme>
<label><nlsid>MSG_BRAND_SPLASHY</nlsid></label>

</theme>
</themes>

The change to the <nlsbundle> element picks up my/BrandingServiceNlsProp.
properties.

You can include as many of the themes in /wdk/app.xml as you like, so long as
you do include "mellow" (which splashy is based on) and "documentum" (which
mellow is based on).

Conguring and localizing strings
Attribute labels are pulled from the data dictionary. If the label strings are not displayed
in their localized version, you must update the repository data dictionary with the
localized version or provide a localized version in your WDK-based application.

Text strings in WDK-based applications are externalized into National Language
Service (NLS) properties files that you can extend and localize. The properties
files are located in the /strings directory of each application layer. The string
files are organized by component or groups of components. For example,
the strings that appear in the data paging control are externalized to the
directory /wdk/strings/com/documentum/web/form/control/databound in the file
DataPagingNlsProp.properties.

Locale support is specified in the application configuration file app.xml. When the user
selects a locale, the appropriately-named set of localized strings will be used. The
localized strings are contained in NLS properties files.

This section describes how to internationalize applications and modify UI strings in
the following topics:
• Adding locales, page 138
• Adding strings to properties files, page 138
• Naming properties files, page 140

Web Development Kit and Client Applications Development Guide 137

Conguring and Deploying Applications

• Adding localized files to your application, page 140
• Inheriting strings, page 139
• Overriding strings in the UI, page 141
• Designing for and testing internationalization, page 141
• Image accessibility strings, page 587
For information on using the Locale Service and retrieving strings in your custom
classes, refer to Locale service, page 580.

Adding locales

The application configuration file (app.xml) lists the supported locales. For example, in
your application that extends WDK’s app.xml you might have:
<language>

<supported_locales>
<locale>en_GB</locale>
<locale>en_US</locale>
<locale>de_DE</locale>

</supported_locales>
<default_locale>de_DE</default_locale>

</language>

Each locale must have a set of properties files that are named with the appropriate
naming convention (refer to Naming properties files, page 140).

Adding strings to properties les

Strings for each application layer are externalized to a /strings directory in the
application layer root directory. For example, the strings for the Preferences component
are externalized to files in /webcomponent/strings/com/documentum/webcomponent/
environment/preferences.

Strings for each component are contained in a Java *.properties file. If a button contains a
string, for example, as a label, that string is specified in the component properties file.
Each properties file contains strings for a specific locale. For example, if your application
supports three languages, you have three properties files for each component.

New action strings can be added to the NLS properties file for the component that fires
the action. If the action appears in more than one component, create a separate actions
NLS file, and include that file in the NLS resource file for each component that requires
the strings.

138 Web Development Kit and Client Applications Development Guide

Conguring and Deploying Applications

Images have an NLS entry in a resource bundle. This string is displayed as the HTML
image alt tag text. Applet strings are externalized, and the string values are passed to the
applets via HTML parameters that are generated by the content transfer applet tags.

Note: When an NLS string is found, the other included files will not be processed further.

Inheriting strings

Properties files are not inherited. Specify an nlsbundle or nlsclass for your extended
component. The component NLS properties file must include the properties files from
the component that it extends as well as any properties files that are included in the
parent component’s properties file.

You can include NLS files within other NLS files. This reduces the number of NLS
strings in your application and makes string values consistent across components. The
included NLS files will be processed only if the NLS key is not defined in the current
file. To include NLS files, add a key NLS_INCLUDES whose value is a comma-separated
list of other property files. The following example breaks the line for display purposes,
but your list should be on a single line):
NLS_INCLUDES=com.documentum.webcomponent.GenericActionNlsProp,com.
documentum.webcomponent.GenericObjectNlsProp

NLS strings for actions are contained in the NLS resource file for the component that
contains the <dmfx:actionmenuitem> tag. Some NLS strings for WDK actions are in
/webcomponent/strings/com/documentum/webcomponent/GenericActionsNlsProp.
properties. You can override these in the NLS properties file for the component
that contains the <dmfx:actionmenuitem> tag. For example, the Webtop
menubar component contains action menu items whose strings are located in
GenericActionsNlsProp.properties. To override these strings, extend the menubar
component and reference your own properties file. Make sure that your properties file
includes GenericActionsNlsProp.properties so that your menus will inherit any new
actions that are added to the application when you upgrade.

To add strings to an extended component:

1. Define a new resource file. For example, you are extending the renditions
component and adding strings. The component definition specifies that strings are
located in the resource bundle com.documentum.webcomponent.library.renditions.
RenditionsNlsProp. This resolves to a file named RenditionsNlsProp.properties in
the directory /webcomponent/strings/com/documentum/webcomponent/library/
renditions. To extend this, create a file MyRenditionsNlsProp.properties in
/custom/strings/com/documentum/custom.

2. Include the WDK renditions NLS resource bundle:
NLS_INCLUDES=

Web Development Kit and Client Applications Development Guide 139

Conguring and Deploying Applications

com.documentum.webcomponent.library.renditions.RenditionsNlsProp

3. In your extended component definition, override the strings resource with the new
strings resource. For example:
<nlsbundle>com.documentum.custom.MyRenditionsNlsProp</nlsbundle>

4. Delete generated class files for JSP pages that could contain your strings.

5. Restart the application server in order to apply your changes.

Naming properties les

Every properties file in the Web application must be translated for each supported locale.
NLS properties files must be named with the proper Java locale naming convention.

Properties files are named using the Java standard combination of the base name
(specified in the associated resource bundle class), plus the suffix "Prop”, and the
code string for the supported locale. If no locale is specified in the file name, then the
properties file serves as the default for applications. For a resource bundle class named
com.acme.nls.AcmeSearch, you might have the following .properties files:

AcmeSearchProp_fr_CA.properties: French Canadian
AcmeSearchProp_fr.properties: French standard
AcmeSearchProp.properties: Default locale (German)

All of the following bundle prefixes are valid:

• [bundle name] +"Prop"+ "_" + [locale language] + "_" + [locale country] + "_" + [locale
variant]

• [bundle name] +"Prop"+ "_" + [locale language] + "_" + [locale country]
• [bundle name] +"Prop"+ "_" + [locale language]
• [bundle name]+"Prop"

Adding localized les to your application

Properties files contain the string resource data for a specific locale. They are named
using the Java standard combination of the base name (specified in the associated
resource bundle class), plus the suffix "Prop”, and the code string for the supported
locale. If no locale is specified in the file name, then the properties file serves
as the default for WDK-based applications. For a resource bundle class named
com.acme.nls.AcmeNLSSearchComponent, you might have the following .properties
files:

• AcmeNLSSearchComponentProp_fr_CA.properties: French Canadian

140 Web Development Kit and Client Applications Development Guide

Conguring and Deploying Applications

• AcmeNLSSearchComponentProp_fr.properties: French standard
• AcmeNLSSearchComponentProp.properties: Default locale (German)

Overriding strings in the UI

You can override a string in the UI by hard-coding it in the JSP page. This is not
recommended for strings that will be reused elsewhere in the application, but it may be
necessary on occasion to change a string in one page but not in every page that it is used.

The following example overrides a string that is configured with an nlsid attribute in a
JSP page. The original JSP page has the following control:
<dmf:label name="label1" nlsid="MSG_EXAMPLE");

Remove the nlsid attribute and replace it with a label attribute. refer to for the specific
attribute that overrides the nlsid for each control. In the following example, the label
attribute overrides the nlsid attribute in a label control:
<dmf:label name="label2" label="My example");

Note: Delete generated class files for JSP pages that could contain your strings.

Designing for and testing internationalization

If your application will be localized, youmust design it to accommodate the requirements
of various locales. The following design guidelines will help you in analyzing your
application:
• Externalize all strings so that they can be easily localized. Turn on the NLS strings

test in the debug_preferences component to show strings that have not been
externalized. (Refer below for details.)

• Eliminate concatenated strings. Concatenated strings assume that all languages
will use the same order. Additionally, translators do not always known how the
substrings are going to be put together. For example, a menu item concatenates
"Undo” and "Cut” to create "Undo Cut”. The concatenation in German, "Widerrufen
Ausschneiden” is incorrect. You must store entire sentences in your properties files
instead of sentence fragments or sentences with interpolated data.

• Design the UI for string growth. Translated strings are usually longer than the
original, and they may have unpleasant effects on the UI. Turn on the long strings
test in the debug_preferences component to show the effect of string growth. (Refer
below for details.)

You can navigate to the debug_preferences component to turn on debugging for
internationalization. You can debug the following types of errors:

Web Development Kit and Client Applications Development Guide 141

Conguring and Deploying Applications

• Strings that have not been internationalized

These strings will show up in the UI with an NLS key rather than a string
• Strings that will change the UI when translated to double-byte languages
• Strings that are too long for the UI

Many localized strings grow in length after translation.
To turn on debugging for these types of errors, navigate to the preferences component
and click the Debug Preferences tab using a URL similar to the following:
http://server_name/app_name/component/preferences

If a localized string does not exist, the corresponding English string is displayed. This
fallback is governed by the value of the <application>.<language>.<fallback_to_english_
locale> element in app.xml. Set this value to false for I18N testing, so that non-localized
strings will be displayed as xxNLSID_valuexx. You can use theNlsResourceClass and
NlsResourceBundle method stringExists() to determine whether a string exists.

You will see "xx” surrounding each UI string for the Test NLS Strings checkbox. Strings
that are provided by user input, queries, or image files are not affected. UI strings that
you have not internationalized will not have the surrounding xx:

Figure 2-6. NLS strings test

You will see each UI string displayed with a space between each letter for the Test Far
Eastern Characters checkbox. Strings that are provided by user input, queries, or image
files are not affected. Long UI strings that will negatively affect the UI when translated to
double-byte languages should negatively affect the UI in this test:

142 Web Development Kit and Client Applications Development Guide

Conguring and Deploying Applications

Figure 2-7. Far Eastern characters test

You will see each UI string displayed with an underscore between each letter for the Test
Long Strings checkbox. Strings that are provided b yuser input, queries, or image files
are not affected. UI strings that will negatively affect the UI when viewed on a small
screen should negatively affect the UI in this test:

Figure 2-8. Long strings test

Other tests or debugging strategies for internationalization of your application include
the following:
• Check date and time display. For example, users on a German application would

expect a display of 7.3.92 for the English date March 7, 1992.
• Check for truncated string inputs. Enter ASCII characters, extended ASCII

characters, and double-byte characters on all text inputs to make sure they are
displayed and rendered correctly.

• Check number formatting. For example, the number 123456.89 in English should
be displayed as 123.456,89 in German.

Web Development Kit and Client Applications Development Guide 143

Conguring and Deploying Applications

• Question marks (????) or glyphs such as | or ~ instead of text in the display indicate a
browser encoding problem. Make sure the browser has fonts that can display the
character encoding of your application.

• Check for high ANSI characters, for example, ¼, ¶, †, ‰, which indicate the wrong
code page for the application server.

• Delete generated class files for JSP pages that could contain your strings.

Conguring search
Search has been redesigned for the 5.3 release to enable searching across repositories
and external sources. The old WDK 5.2.5 and the new WDK 5.3 search components are
versioned, so that if a request is made for a search component, the new component is
returned by default.

Search sources — Multiple repositories can be added to the user’s search preferences.
If ECI Services is installed, the user can select external sources for search and import
results into the current repository. Included files within HTML or XML documents
are not imported.

Search on attribute values — The attributes for search criteria are supplied by the data
dictionary of the selected repository. If value assistance is defined in the data dictionary,
the values are supplied for "is” and "is not” search criteria, but conditional value
assistance is not implemented. Verity operators such as "not containing” or "between”
are not supported.

Note: Only one repeating attribute can be queried in a single search. If repeating
attributes are present in the list, they must be either of type DM_STRING or DM_ID.

Saved searches — Searches are saved as smartlist objects. Users can revise a saved
search using the advanced search component. Saved searches save the display
configuration as well as the query.

Smartlists created with Documentum Desktop can be executed or edited in the advanced
search UI. Smartlists that are created in WDK applications cannot be used or edited in
Desktop.

DQL search — The WDK 5.3 basic search component can be configured to perform
a DQL search, but the DQL search is delegated to the WDK 5.2.5 search component,
resulting in the search of a single repository. The user cannot set preferences for the
results displayed by the DQL search.

Full-text search — Simple and advanced search support full-text queries. The search
text box can contain a string within quotations marks to search for the exact string,

144 Web Development Kit and Client Applications Development Guide

Conguring and Deploying Applications

for example, "this string”. The box also supports the operators AND and OR (not
case-sensitive). Searches all indexed documents as well as indexed properties.

Value assistance — Value assistance as defined within a doc app is supported. The
assistance within the doc app should provide a union of values for a type across
lifecycles. The following types of assistance are supported:
• Fixed list value assistance, for example, A,B,C with no mapped labels.
• Fixed list value assistance with mapped labels, for example, A,B with labels Label A,

Label B.
• Query value assistance, for example:

SELECT "MyDocbase"."MyTable"."MyColumn" FROM "MyDocbase"."MyTable"

• Conditional value assistance with optional default value assistance, for example, if
condition: authors (any) = "MyAuthor".

Limitations:
• Only one repeating attribute can be queried in a single search.
• Query value assistance with a reference ($value(attribute)), for example:

SELECT "MyDocbase"."MyTable"."MyColumn1" FROM "MyDocbase"."MyTable"
WHERE "MyDocbase"."MyTable"."MyColumn2" = '$value(MyAttribute)'

• Not all values in value assistance may be available across repositories in a logical
OR operations. (Not a limitation for AND operation.)

• Locale-based assistance values may not be available in a search of repositories on
multiple locales.

The following topics describe search configuration:
• Configuring search controls, page 145
• Configuring basic search, page 146
• Configuring advanced search, page 147
• Configuring search results, page 151
• Making search results configurable by users, page 153
• Using 5.2.5 custom search components, page 154
For information on customizing search, refer to Chapter 20, Customizing Search.

Conguring search controls

You can globally configure all instances of certain advanced search controls by extending
the control configuration file /wdk/config/advsearchex.xml. The following controls
can be configured:

match case attribute on any search attribute control
searchsizeattribute control

Web Development Kit and Client Applications Development Guide 145

Conguring and Deploying Applications

searchdateattributecontrol

The following example extends advsearchex.xml by copying it to /custom/config with
the following content:
<config version='1.0'>
<scope type='dm_sysobject'>
<searchsizeattributerange>
<option>
<label>Any old size</label>
<operator>LT</operator>
<value>-1</value>
<unit>KB</unit>

</option>
...

</searchsizeattributerange>
</scope>

</config>

The resulting UI:

Figure 2-9. Search size custom dropdown list

Refer toWeb Development Kit Reference Guide for details on each control’s configuration.

Conguring basic search

Basic search searches all sysobjects in the current repository for the user-supplied string
or query in indexed attributes and full-text. The default base type for the search can be
configured in the search component definition. The default preferred sources can also be
specified in the component definition. These sources can include multiple repositories,
and external sources if ECI Services is installed.

The default search is for a string query type, which is used for a full-text search. If the
content server is not configured to create a full-text index, the query is transformed into
constraints against object_name, title, and subject with an OR operator. If you wish
the query to include attributes, those attributes must be indexed. (All dm_sysobject
attributes that are configured as searchable in the doc app are automatically indexed by
the 5.3 Content Server indexer.)

146 Web Development Kit and Client Applications Development Guide

Conguring and Deploying Applications

If you wish to search attributes only and not full text, you must use the null query type,
which is treated as DQL and passed to the 5.2.x search component. This 5.2.x search is
limited to a single repository, and the user cannot configure search results columns. The
results are limited to the display of dm_sysobject attributes, which are configurable
in the 5.2.x search component definition.

Case sensitivity — Basic search of full-text or attributes against a 5.3 indexed repository
is not case-sensitive. If the repository is not indexed, queries are case-sensitive by
default. Case sensitivity for non-indexed repositories can be turned on or off in
/wdk/config/advsearchex.xml, as the value of the <defaultmatchcase> element. By default
it is turned off, for performance enhancement. To make case-sensitivity checkboxes
display next to each property, set the casevisible attribute on the search controls to true.

Query types — The following query types can be supplied to the simple search
component, which will be used to interpret the query string from the simple search box
(or string supplied to the component URL):
• string

Specifies that the query string consists of one or more keywords for a full-text search
• objectId

Specifies that the query string is the object ID of a saved search
• querydef

Specifies that the string consists of the content of a smartlist
• queryId

Specifies that the string consists of the internal ID for the current query, to be used
for revising the current search

• null or other value

Specifies that the string is a DQL statement and should be passed to the
dqlsearchdelegate, which calls the 5.2.x search component. Search is limited to the
current repository.

Note: The list of object types and their attributes comes from the reference repository.
The reference repository is the first repository selected by the user. If external sources
only are selected, then the list of object types in the current repository is used.

Conguring advanced search

The data dictionary provides the following data to the search UI:
Default and other searchable attributes for a given object type
The default and other search operators for a given type and attribute

Web Development Kit and Client Applications Development Guide 147

Conguring and Deploying Applications

Value assistance values for "is” and "is not” search operations, if defined

Search controls — The WDK search UI contains search controls. All search controls are
contained with a dmfxs:repositorysearch control, which uses the values of the contained
controls to build the search query. The interaction of search controls is described below.
For details on the configurable attributes of these controls, refer toWeb Development
Kit Reference Guide.
• searchlocation

Displays the current search location. Can be hidden.
• searchattributegroup

Container for one or more searchattribute controls, which are added or removed
dynamically when the user clicks the Add or Remove button. These buttons can be
hidden by setting the addvisible attribute to false.

• searchattribute

Base control to display any single attribute. When value assistance is defined for an
attribute, a dropdown list for Equal and Not Equal will be shown to allow user
select an input value. If value assistance is not defined for an attribute, you can add
it programmatically. (For more information, refer to Programmatic search value
assistance, page 557.) Subtypes of this control can be user-defined or can include
the following:

— searchsizeattribute

This control is configured by settings in the search control configuration file
/wdk/config/advsearchex.xml: <searchsizeattributerange> SeeWeb Development
Kit Reference Guide for details on this configuration.

— searchdateattribute

This control is configured by settings in the search control configuration file
/wdk/config/advsearchex.xml: <inthenextdate>. See Web Development Kit
Reference Guide for details on this configuration.

• searchobjecttypedropdownlist

Generates a list of object types from the repository data dictionary. The basetype
attribute can filter the list for only the specified type and its subtypes. The list can be
overridden programmatically by settings the options for the dropdownlist.

• searchscopecheckbox

Sets a value for a search setting or capability. Currently it can be used to enable
finding all versions, hidden objects, or objects of a specific type.

• searchfulltext

Accepts keywords for a fulltext query

148 Web Development Kit and Client Applications Development Guide

Conguring and Deploying Applications

Case sensitivity — Advanced full-text or attributes search is not case-sensitive for a 5.3
indexed repository. The case sensitive checkboxes are not generated in the UI because
the casevisible attribute is set to false on searchattribute and searchattributegroup tags.

For 5.2.5 Server or non-indexed 5.3 Server, case sensitivity is set by the value of the
element <defaultmatchcase> in /wdk/advsearchex.xml. By default this value is set to true
to turn on case sensitivity. Case-sensitive queries perform faster. If your environment
has Server 5.2.5 or non-indexed Server 5.3 repositories only, you can add a checkbox
for each attribute to the advanced search JSP page for case-sensitive search. Give the
checkbox controls unique names. Set the casevisible attribute on searchattribute and
searchattributegroup tags to true.

You can specify attributes for your search rather than allowing them to be generated
by the searchattributegroup control. In the following example of a custom advsearch
component, specific attribute controls have replaced the searchattributegroup control in
the JSP page:
...
<td align=left valign=top nowrap>
<dmfxs:searchobjecttypedropdownlist name='objecttypectrl' .../>

</td>
</tr>

<tr><td colspan='2' class='spacer' height='10'> </td></tr>
<tr>
<td align=right valign=top nowrap><dmf:label label='Name' cssclass="
fieldlabel"/></td>

<td align=left valign=top nowrap>
<dmfxs:searchattribute name='searchname' attribute='object_name'>
</dmfxs:searchattribute>

</td>
</tr>
<tr>
<td align=right valign=top nowrap><dmf:label label='Type' cssclass="
fieldlabel"/></td>

<td align=left valign=top nowrap>
<dmfxs:searchattribute name='searchtype' attribute='r_object_type'>
</dmfxs:searchattribute>

</td>
</tr>...

Before this customization, the user must select properties from a dropdown:

Web Development Kit and Client Applications Development Guide 149

Conguring and Deploying Applications

Figure 2-10. Attribute selection dropdown

The resulting UI shows the individual attributes "Name” and "Type” as search criteria:

Figure 2-11. Specic attributes as search criteria

150 Web Development Kit and Client Applications Development Guide

Conguring and Deploying Applications

If you wish to display specific custom attributes as search criteria, extend the advanced
search component, scope the definition to your custom type, and provide a custom JSP
page. In that page, add attribute controls for your attributes. When the user selects the
custom type, the scoped definition will be read by the configuration service and the
custom JSP page will be displayed. The custom attributes will be displayed similar to
the following:

Figure 2-12. Custom attributes as search criteria

Conguring search results

You can configure the maximum number of search results and turn off term hit
highlighting. After you have made custom types and their attributes available for
search, you can configure the display of custom attributes in the search results. You
can configure the display_preferences component to allow users to configure their
preferences for displaying custom attributes.

Maximum number of search results — The maximum number of search results is
configured in dfc.properties. The maximum number of search results is divided by the
number of search sources. For example, if a maximum of 1000 results is specified in
dfc.properties, and the user specifies 10 search sources, only 100 results will be displayed
for each source. If some sources return fewer than 100 results, the other sources do not
display more than 100 results.

Term hit highlighting — Term hit highlighting (highlighting of the search term in the
results) can be set as a user preference. The default value is set as the value of the element
<highlight_matching_terms> in the search component definition, which is located in

Web Development Kit and Client Applications Development Guide 151

Conguring and Deploying Applications

/webcomponent/config/library/search/searchex. If you are customizing Webtop or an
application that extends Webtop, you must add a <highlight_matching_terms> element
to the top-level search component definition.

Configuring the display of attributes in search results — Default search result
columns are configured as <column> elements in the basic search configuration file
search_component.xml in /webcomponent/config/ibrary/search/searchex. Because
Webtop extends this definition, your customization in /custom/config should extend
the Webtop definition and override the <columns_drilldown>, <columns_list>, and
<columns_saved_search> elements in your definition. Only searchable attributes can
be specified as columns. Users can set a preference for search results columns in the
display_preferences U, which will then override the default settings in the configuration
file.

Your custom search component definition must specify a scope for the custom type in
order to define visible columns for custom attributes. For example, if the user selects a
custom type for the advanced search, the columns specified in your scoped basic search
component will be displayed in the results. Details of the columns configuration can be
found inWeb Development Kit Reference Guide

In the following simple configuration, the definition extends the WDK search component
definition and adds some custom attribute columns:
<scope type='technical_publications_web'>
<component id="search" extends="
search:webcomponent/config/library/search/searchex/search_component.xml">

<nlsbundle>com.documentum.webcomponent.library.search.SearchExNlsProp</nlsbundle>
<type>technical_publications_web</type>

<columns_drilldown>
<loadinvisibleattribute>true</loadinvisibleattribute>
<column>
<attribute>object_name</attribute>
<label><nlsid>MSG_NAME</nlsid></label>
<visible>true</visible>

</column>

<column>
<attribute>tp_edition</attribute>
<label>Edition</label>
<visible>true</visible>

</column>

<column>
<attribute>tp_web_viewable</attribute>
<label>OK to display</label>
<visible>true</visible>

</column>
...

The following example shows the results of a scoped basic search component with
custom attributes:

152 Web Development Kit and Client Applications Development Guide

Conguring and Deploying Applications

Figure 2-13. Custom search results for custom type

Making search results congurable by users

The user can select attributes for display in search results, which overrides the default
display. The preferences UI allows users to specify the attributes that will be displayed
for specific object types. If the user configures different display columns, the query will
not be reissued, so data may not be displayed in the new columns until the search is
performed again. Calculated columns such as score or summary will not display any
values unless they are selected before the query is run.

To make a custom type available in preferences

1. Extend the display_preferences component in your custom/config directory. Change
the <component> element as follows:
<component id="display_preferences" extends="
display_preferences:webcomponent/config/environment/preferences/
display/display_preferences_component.xml">

2. Add your custom type to the <display_docbase_types> element. For example:
<display_docbase_types>
<docbase_type>
<value>dm_document</value>
<label><nlsid>LBL_DOCUMENT</nlsid></label>

</docbase_type>
...
<docbase_type>
<value>my_custom_type</value>

Web Development Kit and Client Applications Development Guide 153

Conguring and Deploying Applications

<label>My type</label>
</docbase_type>

</display_docbase_types>

Note: You can also put a <display_docbase_types> element within a <preference>
element in this component. This will make your custom type available for display
only in the component that named within that preference. (The component is named
within the <preference>.<value> element.)

3. Save this file and refresh the configuration files on the application server by
navigating to /wdk/refresh.jsp.

Using 5.2.5 custom search components

The old (5.2.5) and new search components are versioned, so that if a request is made for
a search component, the new component is returned by default. Customizations that
extend 5.2.5 search components are supported and do not require versioning. That is, if
your custom search component extends the Webtop search or advsearch component in
search_component.xml or advsearch_component.xml, it should work out of the box. If
you are not extending Webtop, your search component can extend the dqlsearchdelegate
component, which simply extends the 5.2.5 search component.

To take advantage of new search functionality, you can extend the new search
components by extending search or advsearch in searchex_component.xml or
advsearchex_component.xml.

To use your customized WDK 5.2.5 search component, make sure your component and
container extend the WDK 5.2.5 component and container.

A special component, dqlsavesearchdelegate, executes the view action for saved 5.2.5
queries by extending the 5.2.5 savesearch component.

Packaging and deploying Web applications
The contents of a Web application must conform to the J2EE directory structure for Web
applications as specified in the J2EE Servlet specification. WDK supplies the required
content for a Web application. You must include your application content within an
installed WDK application such as WDK, Webtop, or Web Publisher.

Documentum Web applications are packaged into a Web application archive (WAR) for
deployment on a J2EE-compliant application server. The following steps will ensure a
deployment to a production application server from your development environment.

154 Web Development Kit and Client Applications Development Guide

Conguring and Deploying Applications

Deploying to a production application server

1. Customize a WDK-based application such as Webtop on a certified environment.
(Refer to the release notes for the certified application server environments.)

2. If your development application server is not Tomcat, copy your customizations over
to an installation of the WDK-based application on a certified Tomcat environment.

3. Package the WAR using a Java tool such as the tool provided by WDK (refer to
WAR packaging tool, page 155).

4. Use the WDK-based application installer for your production operating system to
deploy the application. (The installer will add Documentum native libraries to the
J2EE server host machine and configure a start script that starts the Web application
with the appropriate classpath and library references.)

Caution: The installer must be correct for the application server operating system.
For example, you cannot use a Windows installer to deploy onto a UNIX operating
system.

The following topics describe Web application packaging:
• WAR packaging tool, page 155
• Deploying with the application installer, page 156
• Development update tool, page 156
• Compiling and precompiling JSP pages, page 157

WAR packaging tool

You can use the tool CreateInstallerWAR to package your Web application for
deployment. Youmust use this tool on a certified Tomcat application server environment.

Caution: You cannot deploy the packaged WAR file within an application server. You
must place the packaged WAR file within the WDK or WDK-client installer, because the
installer adds Java libraries, native libraries, and classpath information to the application
server start script. Refer to Deploying with the application installer, page 156 for more
information.

The CreateInstallerWAR tool strips out all comments from files with the following
extensions: .html, .htm, .js, and .jsp. This improves the performance of your Web
application.

To create a WDK-based WAR le

1. Ensure that you have the Sun Java SDK root directory on your system path.

Web Development Kit and Client Applications Development Guide 155

Conguring and Deploying Applications

2. Include \WEB-INF\classes on your classpath:
set
classpath App_root_directory\WEB-INF\classes

where App_root_directory is the root directory for your custom Web application.

3. From the command prompt, enter the following command on a single line:
java com.documentum.web.tools.CreateInstallerWAR

source_virtual_directory
destination_file

where source_virtual_directory represents the Tomcat root directory for your custom
Web application and destination_file represents a name for your new WAR file.

4. Remove the entry in your system classpath that you created in step 2, in order to run
the WDK application.

Deploying with the application installer

You must use the WDK or WDK client application installer to deploy your packaged
WAR file. For example, if you have customized Webtop, use the Webtop installer to
deploy your custom WAR file. The installer adds Java libraries, native libraries, and an
appropriate start script for the application server.

Caution: The installer must be correct for the application server operating system. For
example, you cannot use a Windows installer to deploy onto a UNIX operating system.

To package a custom WAR le within the installer:

1. Navigate to the directory that contains the WDK or Webtop installer and expand
the installer archive file.

2. Name your WAR file wdk.war if you are using the WDK installer for a development
update. Name your WAR file webtop.war if you are using the Webtop installer for
deployment or wp.war if you are using the Web Publisher installer.

3. Copy the new WAR file to the installer directory, replacing the war file in that
directory.

4. Run the installer. It will deploy the new WAR file.

Development update tool

WDK contains a deployment tool ExpandInstallerWAR that expands an archive
(unstripped.jar in the WDK installer) to a development directory. You can use this tool
to update Web applications that are under development.

156 Web Development Kit and Client Applications Development Guide

Conguring and Deploying Applications

If the destination directory already contains WDK files, and the file size of an existing
file is different from the file size of a file in unstripped.jar, the existing file is renamed
with an extension ".old” before the file in unstripped.jar is expanded. This protects your
customized files from being overwritten.

Note: If you follow Documentum’s recommended customization model, you do
not modify any of the files in the WDK installation. All of your custom files are
contained within the /custom directory or other new directory of your choice, and
your custom class files are contained within their own directory under /WEB-INF. The
ExpandInstallerWAR tool will not overwrite your custom files.

To install the WDK JSP pages with comments:

1. Ensure that you have the Sun Java SDK on your system path.

2. Ensure that you have run the WDK installer, that you know the location of the
WDK-based WAR file, and that a target directory exists for the expanded Web
application.

3. Include the path to WEB-INF/classes on your classpath. For example (Windows):
java -cp Web_root_directory\WEB-INF\classes

4. At the command prompt, enter the following command:
java com.documentum.web.tools.ExpandInstallerWAR

source_war destination_virtual_directory

where source_war represents the root directory for your custom Web application and
destination_virtual_directory represents the name of the directory that will contain
your expanded Web application.

Compiling and precompiling JSP pages

The first time a user loads a particular JSP into the browser, the JSP file and any
graphics and other JSP pages or files that it includes are first translated into a Java
source file (.java) and then compiled into a .class file. When the user makes a request
of the application (for example, by entering data into a form and clicking Submit), the
application handles any data the user submits or retrieves data dynamically from the
repository and returns the data to the .java file, where it is recompiled in the .class file.
The .class file returns the data to the client Web browser.

Caution: (WebSphere) The java.compiler option must be set to none for compilation of
WDK JSP pages to work properly. This value is set by the WDK installer. You can verify
this setting in the administration client console by expanding the WDK application
node and application server. The JVM settings tab displays System properties including
java.compiler and java.library.path, both of which are modified by the installer.

Web Development Kit and Client Applications Development Guide 157

Conguring and Deploying Applications

Most J2EE application servers will compile a JSP page into a Java class the first time
the page is requested. To enhance performance, precompile the application JSP pages
before starting the application.

If your application server does not have a compiler, you must compile the application
JSP pages using an external compiler. You must set the classpath for the precompiler to
include all of the contents of the classpath as configured by the WDK installer in the J2EE
server start script. That is, when you run the WDK installer, it creates a start script for the
application server that contains the required classpath.

WDK andWDK-based applications do not contain precompiled JSP classes, because each
application server has its own naming convention and mapping between JSP pages and
the corresponding class.

158 Web Development Kit and Client Applications Development Guide

Chapter 3
Conguring Controls

A control is a Java object that models the attributes of HTML UI elements. The application user
interface (UI) is built from controls that generate HTML and maintain control state on the server. The
user interface design is configured by setting JSP tag library attributes for a control tag class. The
control state is maintained on the server by the control class.

Each control has a corresponding control tag class that initializes the control and generates the user
interface. The tag class implements tag library accessor methods to get and set the control’s attributes.
You can configure controls by setting these attributes on the JSP page. The control tag class then
generates HTML and JavaScript elements that are rendered into an HTML page to the browser.

Some controls fire events that are handled either on the client or the server. The component class that
uses the control in a component JSP page defines an event handler method to handle the server-side
control events.

In a desktop-style application design, the user selects operations and views from menus. Menu
controls generate cascading menus for classic or list-style applications. In a Web-style application
design, the user selects sets of operations or views through links of buttons on tabs. Tab controls
generate tabs for streamline or drilldown applications.

The following topics describe controls:
• What controls do, page 160
• How to configure controls, page 160
• Finding files to configure controls, page 162
• Using tag libraries, page 164
• Control events, page 165
• Types of controls, page 169
• Action-enabled controls, page 171
• Controls that can be globally configured, page 175
• Hiding controls, page 177
• Configuring dates, page 177
• Configuring menus, page 178

Web Development Kit and Client Applications Development Guide 159

Conguring Controls

• Configuring tabs, page 181
• Configuring dropdown lists, page 181
• Configuring scrollable controls, page 183
• Configuring databound controls, page 184
• JSP fragment control, page 189
• Configuring rich text, page 190
• Displaying and validating attributes, page 192
• Validating user input, page 202
• Working with images and icons, page 206
• Working with tooltips, page 208
For information on individual controls and their configuration, refer toWeb Development Kit Reference
Guide.

What controls do
You can use controls for the following purposes:
• Accept user input (refer to Types of controls, page 169)
• Raise events that change the behavior of the component that contains the control

(refer to Control events, page 165)
• Format output (refer to Types of controls, page 169)
• Change the display of repository data (refer to Types of controls, page 169)
• Launch an action (refer to Action-enabled controls, page 171)
• Bind to and display data (refer to Configuring databound controls, page 184)
• Display a different set of attributes for each component UI (refer to Displaying and

validating attributes, page 192)
• Validate user choice (refer to Validating user input, page 202)

How to congure controls
Each Documentum control has a corresponding control tag in the WDK tag libraries.
Controls are configured by setting attributes on the control tag in a JSP page.

Tags are organized by functionality into the following libraries in the folder
/WEB-INF/tlds:

• dmform_1_0.tld

160 Web Development Kit and Client Applications Development Guide

Conguring Controls

Contains tags that generate basic controls, such as buttons, links, lists, and trees.
These controls support data binding to generic data sources (JDBC) as well as DFC
connections.

• dmformext_1_0.tld

Contains repository-enabled controls that can display values from the repository or
validate user input based on the repository data dictionary.

• dmwebtop_1_0.tld

Contains Webtop-specific controls. (Installed by the Webtop installer.)
• dmcontentxfer_1_0.tld

Contains tags that generate content transfer applets.
• dmda_1_0.tld

Contains controls used for repository administration.
• dmfxsearch_1_0.tld

Contains controls that are used by the advanced search component (advsearch)
• dmlayout_1_0.tld

Contains controls that generate HTML layout tags
Caution: You must use action controls or controls that get data from a repository
(dmfx:...) within a component. Documentum control tags will not work properly in JSP
pages that are not within the component framework.

Follow this procedure to configure JSP control tags when you configure Webtop or a
WDK-based application:

To congure a control tag:

1. Name the control. The control name is an attribute of the control tag. Named
controls are cached on the server and maintain state when the user navigates through
browser history. Controls with the same name are indexed automatically.

2. Set the control tag attributes. Most controls have common attributes that you can set
by assigning values to JSP attributes, such as cssclass, datafield, enabled, name, nlsid,
onchange, runatclient, style, and visible. Individual controls can also have attributes
specific to the control. For specific control attributes, refer toWeb Development Kit
Reference Guide.

3. Add any arguments. Some controls take arguments that are passed with control
events.

4. Specify the control event handlers. For server-side event handlers, the event handler
method is named in an event attribute. For client-side events, set the runatclient
attribute to true and add a JavaScript event handler on the JSP page. (Dynamic
action control events cannot be handled on the client.)

Web Development Kit and Client Applications Development Guide 161

Conguring Controls

Example 3-1. Adding Control Tags
Add control tags into the JSP within the HTML elements (<html> and </html>) of the
page. The following example adds a help button in a table cell (<td>):
<td>
<dmf:button name='Help' cssclass="buttonLink" nlsid='MSG_HELP'
onclick='onClickHelp' runatclient='true' height='16'
imagefolder='images/dialogbutton'/>

</td>

In the above example, the button tag is configured with the following settings:

• cssclass: Specifies a class that sets the style for the button.
• nlsid: Specifies a lookup key that will be replaced by a localized string at run time.
• onclick: Specifies the name of the function that will be called when the button

is clicked.
• runatclient: Specifies that the event will be handled by a JavaScript event handler on

the client, not the server.
• height: Specifies the image height, which will be rendered as an HTML attribute.
• imagefolder: Specifies the location of the control images. An absolute folder path

(leading ’/’) is relative to the Web virtual directory. A relative path (no leading ’/’) is
relative to a theme folder.

Some controls have additional configuration through an XML configuration file. For
information on these controls, refer to Controls that can be globally configured, page 175.

Finding les to congure controls
The files that control a particular feature in the UI or a particular application behavior
may be located in more than one application layer and in more than one directory within
an application layer. (Application layers are described in Application layer inheritance,
page 42.) The following instructions describe how to find the right files in order to
configure a control:

1. Locate the string in the UI that accesses the feature you wish to configure

2. Find this same string in a properties file in the highest application layer.

3. Find the XML configuration file that uses this properties file

4. Copy the XML configuration file and JSP page into your custom directory for
configuration.

5. Make your changes in your custom JSP page.

6. Refresh the application server configuration cache and view your changes.

162 Web Development Kit and Client Applications Development Guide

Conguring Controls

To nd conguration les for buttons or links:

1. Identify a string in the UI that is associated with the feature of interest. For example,
in the Webtop streamline view of the Home Cabinet tab, you see a series of buttons
across the top. You are interested in launching your own custom search component
from the Advanced button.

2. Using a multi-file search tool, which most IDEs have, search all *.properties files for
the string in the /strings directory of the top folder in your Web application. For
example, you would first search /custom/strings to see whether your application has
already customized this button. Then you would search /webtop/strings. If you don’t
find it in /webtop/strings, search /webcomponent/strings and last, /wdk/strings.
In this example, the string "Advanced...” is found in the file TitleBarNlsProp.
properties. The key to this string is MSG_ADVANCED_SEARCH, which you will
find later in the JSP page that you customize.

3. Search *.xml files for the configuration file that contains this resource bundle.
Drop the .properties, because the bundle name does not have an extension. In this
example, you search on "TitleBarNlsProp.”. Use the same application layer hierarchy
to search that you used to search for the string.
TitleBarNlsProp is found in /webtop/config/titlebar_component.xml. This is the
component you will need to extend, because the advanced search button on the JSP
page must launch your custom component.

4. Copy the configuration file to your /custom/config directory and open it in your
editor.

5. Locate the <pages>.<start> element, which contains the reference to the start page
/webtop/titlebar/titlebar.jsp. Change this to /custom/titlebar.jsp and save and close
the XML file.

6. Copy the original component JSP page to your custom directory so that you can
edit it. In this example, copy /webtop/titlebar/titlebar.jsp to /custom and open the
file in your editor.

7. Locate the UI feature that will launch your custom component. In this example,
search on the NLSID key MSG_ADVANCED_SEARCH. You will find this key as the
nlsid attribute value for a button tag. Note that the onclick attribute specifies an event
handler, onclick="onClickAdvancedSearch". The runatclient attribute is true, so you
will search for this event handler on the JSP page. In our example, the event handler
is on the page. If you don’t find it on the page, another JSP page may have registered
this event handler, so you would have to search for onClickAdvancedSearch in
your JSP pages using the same application layer hierarchical search that you used
previously.

8. In the event handler, find the call to nest to the advanced search component:
function onClickAdvancedSearch()
{

Web Development Kit and Client Applications Development Guide 163

Conguring Controls

var contentPage = eval(getAbsoluteFramePath("content"));
if (contentPage != null)
{
postComponentNestEvent(null,
"advsearchcontainer","content","component","advsearch");

}
}

Change this call to nest to your custom component:
{
postComponentNestEvent(null,
"customadvsearchcontainer","content","component", "customadvsearch");

}

(You will need a custom search container that specifies your custom search
component within it, because the default search container contains the default
advanced search component).

9. Save and close your JSP page.

10. Refresh the configuration files in memory by navigating to /wdk/refresh, and then
view the page that contains your customized button or link. Your custom component
should be launched when you click the button or link.

Using tag libraries
WDK provides JSP tag libraries of custom tags. The tag libraries must be included in
your Web application, and you can add your own tag libraries. The Documentum tag
libraries are located in the /WEB-INF/tlds directory.

The following table lists the WDK tag libraries and their purposes:

Table 3-1. WDK tag libraries

Library Prefix Purpose

Basic
dmform_1_0.tld

dmf Generates basic HTML and
JavaScript

Extended
dmformext_1_0.tld

dmfx Generates HTML
and JavaScripts using
repository data

Content transfer
dmcontentxfer_1_0.tld

dmxfer Generates content transfer
applets

Search
dmfxsearch_1_0.tld

dmfxs Generates search controls

164 Web Development Kit and Client Applications Development Guide

Conguring Controls

Library Prefix Purpose

Laytout
dmlayout_1_0.tld

dml Not used

Administrator
dmda_1_0.tld

dmda Generates administrator
HTML and JavaScript

Tags in the WDK tag library are referenced with prefixes such as dmf, dmfx, or dmxfer.
To include the tag library in a JSP page, insert the directive at the beginning of the page.
For example:
<%@ taglib uri="/WEB-INF/tlds/dmform_1_0.tld" prefix="dmf" %>
To insert a tag from the tag library, use the tag name with the prefix. For example, the
version label is inserted as follows:
<dmf:label name="version" nlsid="MSG_VERSION" cssclass="checkinFontVerySmall"/>

Control events
A WDK control such as a button or text input field can fire one or more events or
it can launch an action. Most control events are handled on the server by an event
handler that is named as the value of the event attribute. For example, the following
button control specifies an onclick event handler that corresponds to a handler method
onClickMakeCurrent():
<dmf:checkbox name="makecurrent" value="true" nlsid="MSG_MAKE_CURRENT"
onclick="onClickMakeCurrent"/>

Some control events submit the form and are handled immediately. Other control events
do not submit the form and are handled only after the form has been submitted. For
example, the controls that have an onclick or onselect event submit the form. Controls
that have an onchange event do not submit the form. Controls that have an onload
and onunload event are handled when the browser loads or unloads the page. The
onfileselect event renders a postServerEvent function call, which is handled immediately.

The server-side event handler must be in the class of the component that owns the
control’s JSP page, in a parent class of the component, or in the class of the container
that contains the component. In the following example, when the user clicks the Show
All checkbox in the attributes page attributes_all.jsp, the onclick event specifies an
onShowAllClicked event handler, as follows:
<dmf:checkbox name='show_all' onclick='onShowAllClicked'
nlsid='MSG_SHOW_ALL_PROPERTIES'/>

This handler is in the component class Attributes:
public void onShowAllClicked(Checkbox showAll, ArgumentList arg)
{
if (showAll.getValue())

Web Development Kit and Client Applications Development Guide 165

Conguring Controls

{
// show the layout for all properties
setComponentPage("all");

}
...

}

Control events are described in the following topics:
• Types of control events, page 166
• Configuring control events, page 168
• Control event arguments, page 168
• Handling a control event on the client, page 168
For information on general client-side pre-processing before a JSP form is submitted,
refer to Presubmission client events, page 242.

Types of control events

Controls can fire the following types of events:

• Control state change events

Control state change events are raised on the server when the state of a control
has changed. All accumulated state change events are invoked after the form is
submitted. You cannot configure these events unless the event is set to run on the
client (the control attribute runatclient = "true”). Dynamic action control events
cannot be handled on the client.

• User-originated events (refer to Control events, page 165)

User-originated events are raised by controls in reaction to user actions in the UI,
such as clicking a Close button. Includes action events, where the control supports
an action attribute that calls an action. (Refer to Action-enabled controls, page 171
for more information on control action events.)

Many controls that accept user input support the following event attributes. The value of
the event attribute corresponds to the name of an event handler. The event is generally
handled in the calling component class unless the control has the runatclient attribute set
to true. To find the exact event attributes that are supported by a control, refer to the tag
library descriptor (*.tld file) for that control.

166 Web Development Kit and Client Applications Development Guide

Conguring Controls

Table 3-2. Event attributes

onchange Sets the event that is fired when the control is
changed by the user. The onchange event handler
cannot run on the client (runatclient cannot be true).
The onchange event is not handled immediately.
It is handled on the server only when the form is
submitted (for example, by an onclick event). Some
controls do not implement an onchange event.

onselect Sets the event that is fired when the user selects the
control, such as an option in a list. The onselect
event is handled immediately, either on the server
(when runatclient=”false”) or on the client (when
runatclient=”true”). Some controls do not implement
an onselect event.

runatclient Specifies that the onchange event should run on the
client, not the server. Some controls do not support a
runatclient attribute.

onclick Sets the event that is fired when the user clicks
the control, such a button. The onclick event
is handled immediately, either on the server
(when runatclient=”false”) or on the client (when
runatclient=”true”). Some controls do not implement
an onclick event.

defaultonenter If set to true, calls the keyboard Enter key JavaScript
event. Another control on the page must have a
default attribute set to true, so that when a user
clicks the Enter key, the default control event is fired.
For example, the JSP page acllist.jsp contains a text
tag with defaultonenter=”true”. The Jump To button
has the attribute default=”true.” When the user
enters a value in the text box, the Jump To button
uses that value to navigate. It is the responsibility of
the default control event handler to get the value of
the defaultonenter control.

Refer to the individual control descriptions inWeb Development Kit Reference Guide for the
specific events that are defined for each control.

Web Development Kit and Client Applications Development Guide 167

Conguring Controls

Conguring control events

Controls that fire events have one or more event attributes that you can set on the JSP.
You can specify a client-side event handler for a control event by setting the runatclient
attribute value to true if the runatclient attribute is specified in the tag library for
the control. Additionally, WDK provides JavaScript resource files to support modal
windows, navigation, progress bar, scrolling, tracing, and other client functionality.

Control events are often handled in a component class. This allows a control to be used
in different ways depending on its component context. For example, an OK button can
be handled one way in the import component and a different way in a delete component.
For information on configuring control events, refer to Control events, page 165

Control event arguments

You can add custom arguments using the to an event handler using the <argument> tag.
WDK does not limit the number of arguments that can be specified. For example:
<script>
function handleClick(srcObject, customArg1)
{
alert("Argument = " + customArg1);

}
</script>
...
<dmf:button name=‘mybutton’ onclick=‘handleClick’
runatclient=‘true’>
<dmf:argument name=‘anArgument’ value=‘One’/>

</dmf:button>

Custom <argument> tag values are passed as JavaScript function arguments in the order
in which the arguments are defined in the JSP. For the event handler to gain access to
the custom arguments, the function signature must include the initial object argument,
regardless of whether it is used or not, plus one argument for each <argument> tag. The
names of the JavaScript function arguments are arbitrary and do not have to match the
names specified in the <argument> tags.

Handling a control event on the client

Sometimes events must be handled within the browser, for example, to implement
dynamic HTML behavior. To handle the event on the client, set the control attribute
runatclient to true.(Consult the tag library to make sure the runatclient attribute is
supported for the control.) This forces all events fired by the control to be handled on
the client by a registered event handler.

168 Web Development Kit and Client Applications Development Guide

Conguring Controls

To handle a client-side event, add the JavaScript event handler function to the same
layout JSP page that contains the event-firing control, or include a JavaScript file that
contains the event handler. The event handler function name must match the control’s
event handler name. In the following example, the button specifies a handleClick event
handler for the onclick event. Because the runatclient attribute is set to true, the event
handler must be on the client:
<script> function handleClick()
{
alert("Button click has been handled!”);

}
</script>
<dm:button name="‘mybutton’
onclick=‘handleClick’ runatclient=‘true’>

</dm:button>

Types of controls
Basic controls in WDK generate HTML and JavaScript that is sent to the browser. These
controls are located in the com.documentum.web.form package and subpackages.
Additional controls that get or set data in the repository are provided in the
com.documentum.web.formext package and subpackages.

The following types of controls are provided in the WDK tag libraries:

• Basic

The basic controls in the com.documentum.web.form.control package generate
HTML widgets. These tags are defined in the tag library dmform_1_0.tld.

• Repository-enabled

The repository-enabled controls in the com.documentum.web.formext.control
package get information from the repository using the current session. Many
of them perform attribute validation. These tags are defined in the tag library
dmformext_1_0.tld.

• Action-enabled

Action-enabled controls in the package com.documentum.web.formext.control.action
launch an action that is specified as the value of the action attribute. Refer toWeb
Development Kit Reference Guide for more information on this attribute. These tags are
defined in the tag library dmformext_1_0.tld.

• Content transfer

The content transfer controls in the package com.documentum.web.contentxfer.
control and their configuration attributes are used by WDK 5.2.5 applet content
transfer. Refer toWeb Development Kit Reference Guide for more information. These
tags are defined in the tag library dmcontentxfer_1_0.tld.

Web Development Kit and Client Applications Development Guide 169

Conguring Controls

For information on configuring a specific control, refer toWeb Development Kit Reference
Guide.

Non-input controls — Several controls do not accept user input. They generate
output in the form of HTML and JavaScript to the browser. Each non-input control
has configurable attributes that affect the display and events of the control. Examples
of non-input controls include browserrequirements, button, formurl, image, label, link,
menu, menuitem, menuseparator, menugroup, option, panel, columnpanel.

Boolean input controls — Two tags (radio and checkbox) support true or false selection
by the user.

String input controls — String input controls accept user text input. Examples include
breadcrumb, dateinput, datetimeinput, dropdownlist, listbox, hidden, password, row,
tab, tabbar, text, textarea, tree.

Format controls — Format controls are read-only controls that format the contained
control’s value into another form. They are particularly useful for formatting data
values within datagrids. Examples of format controls include docformatvalueformatter,
docsizevalueformatter, folderexclusionformatter, rankvalueformatter, and
vdmbindingruleformatter.

Databound controls — Many WDK controls including label, text, button, link, panel,
and hidden can bind to data as a source for one of the control attributes. Databound
controls implement IDataboundControl or extend a class that implements it, for example,
datadropdownlist, datalistbox, and datagrid. The datafield attribute on a databound
control specifies the field that provides the data for the control attribute. When the
datafield attribute is set, the control is said to be databound.

Note: Any component that uses a databound control in a JSP page must establish a
session and data provider for the control. Databound controls cannot be used on JSP
page that doesn’t have a Documentum session. Refer to Providing data to databound
controls, page 186 for information on establishing a session and data provider.

Specialized controls aid in the data binding process, for example, providing data,
supporting sorting and paging. Data binding support controls in the package
com.documentum.web.form.databound include cellist, celltemplate, datadropdownlist,
datapagesize, datalistbox, dataoptionlist, datasortlink, datagrid, datagridrow, and
nodatarow.

Component Controls — WDK contains controls that assist components. Component
controls include componentinclude, componenturl, containerinclude.

Media Controls — WDK contains one media control: thumbnail. This is a media server
thumbnail control that is integrated with Content Server to display thumbnail images.

170 Web Development Kit and Client Applications Development Guide

Conguring Controls

Attribute controls — Attribute controls leverage data dictionary information by
displaying icons, labels, or values based on the Documentum object associated with
the control. For example, the rename component JSP page (rename.jsp) includes the
docbaseobject control, then gets and displays the label and value:
<dmfx:docbaseobject name=’obj’/>
...
<dmfx:docbaseattributevalue
object=’obj’ attribute=’object_name’/>

<dmfx:docbaseattributevalue object=’obj’
attribute=’r_lock_owner’/>

The docbaseattribute tag renders a label and attribute value. The attribute can be
displayed as read-only or editable. The type of HTML widget that is rendered to display
the attribute is based on the attribute datatype (for example, checkbox, date/time,
textbox). If the attribute is an editable date, a dateinput tag is rendered, and the date
range for this control is configured in the /wdk/app.xml file.

Attributes can be displayed in attribute lists based on context such as type, role, or
current component. The lists are configured either in the data dictionary or in a list
configuration file.

For general information on configuring attributes and attribute lists, refer to Displaying
and validating attributes, page 192.

Action-enabled controls
Action-enabled controls are automatically hidden or disabled if the associated action
is not resolved or one of the preconditions is not met. Buttons, menu items, links, or
checkboxes can be action-enabled. For example, if a user does not have permissions to
delete a document, the delete option may be grayed out or hidden.

Specify the action associated with the action control as the value of the action attribute
in the JSP control tag. The action is then matched by the action service to an action
definition. Optional nested argument tags pass additional arguments from the context
or query resultset to the action.

Action controls can launch a single action, such as an action button, link, or menu item.
Simple action controls specify the action as the value of the action attribute. Action
controls can also launch more than one action, such as an action button list and action
link list. The actions in the list are defined in an action XML definition.

For information on implementing multiple selection, refer to Implementing multiple
selection, page 415.

The following topics described action controls:
• Types of action controls, page 172

Web Development Kit and Client Applications Development Guide 171

Conguring Controls

• Dynamic action controls, page 172
• Using dynamic action controls, page 174
• Controlling visibility, page 174

Types of action controls

Controls are defined as static when they are configured by an action attribute in the JSP
page. Action execution is performed when the control action button, link, menu item, or
multiple checkboxes are selected. These controls do not support the "dynamic” attribute,
which is described in Dynamic action controls, page 172.

Dynamic action controls

The visibility and enabled state of a dynamic action control are based on the run time
state of other action controls on the same JSP page. This dynamic behavior is configured
using the dynamic attribute of an action control. Dynamic action controls do not support
the runatclient attribute.

multiselect — The multiselect attribute specifies whether an action can be performed
on multiple objects. If a control’s dynamic attribute is set to multiselect, the control’s
associated action can be invoked on one or more selected objects, if the action
preconditions are met. For example, in permissions.jsp the Edit actionimage control has
the argument dynamic=”multiselect”. The user can launch the edit action for multiple
selected objects.

Refer to Implementing multiple selection, page 415 for more information on using this
attribute. This multiselect attribute should not be confused with the actionmultiselect
control tag.

singleselect — If a control’s dynamic attribute is set to singleselect, the action can be
invoked when one and only one object is selected, if the action preconditions are met.
For example, the Webtop toolbar.jsp page contains a properties button that is enabled
only when one object checkbox is selected:
<dmfx:actionbutton dynamic='singleselect' showifdisabled='true'
showifinvalid='true' name='properties' action='properties'
nlsid='MSG_PROPERTIES'...>

generic — If a control’s dynamic attribute is set to generic, the action is independent of
objects selected on the page. There can be only one generic set of context and arguments.
The action is associated with the context and arguments defined in the actionmultiselect

172 Web Development Kit and Client Applications Development Guide

Conguring Controls

tag. For example, in the Webtop menubar.jsp page, the menu option Copy is enabled
regardless of whether objects or folders are selected in the content frame.

genericnoselect — If a control’s dynamic attribute is set to genericnoselect, the generic
action will be disabled if any items on the page are selected. For example, in the Webtop
menubar.jsp page, the menu option Import is disabled if an item in the classic view is
selected.

Following is a table that summarizes the rendering of links based on the value of the
dynamic attribute on an action control:

Table 3-3. State of a control cased on dynamic attribute value

Attribute Value State in UI

generic Control is always enabled

genericnoselect Control is enabled when no item is
selected in the content frame, otherwise
it is disabled

singleselect Control is enabled when there is a single
object selected in the content frame,
otherwise it is disabled

multiselect Control is enabled when there is single
object or multiple objects selected in the
content frame, otherwise it is disabled.
Requires dynamic.js in the JSP page.

Note: You must include /wdk/include/dynamicActions.js in the JSP page that contains an
action control with the dynamic attribute value of "multiselect.” For example:
<script language='JavaScript1.2' src='<%=Form.makeUrl(request,
"/wdk/include/dynamicAction.js")%>'>

</script>
...
<dmfx:actionbutton dynamic='multiselect' ...action='checkout'>
</dmfx:actionbutton>

Combining dynamic control types — If you have an action control that is enabled for
two dynamic conditions, you must create two controls. For example, you have a menu
item or action button that is enabled when either one or no check boxes are selected.
Create two controls. Set the dynamic attribute of one control, control A, to singleselect.
Set the dynamic attribute of the other control, control B, to genericnoselect. Set the
showifdisabled and showifinvalid attributes to false on both of the controls. Each control
must have a different action ID. The action definition for control B can extend the action
definition for control A. For example, the action for control B is defined similar to the
following:
<action id="B" extends="A:custom/config/A_actions.xml"/>

Web Development Kit and Client Applications Development Guide 173

Conguring Controls

Using dynamic action controls

The following example illustrates the use of the dynamic attribute to enable and
disable menu items based on the state of checkboxes on the page. In the New menu
(file_new_menu), the dynamic state of the menu item is based on the setting itself. The
New Document (newdocument) menu item has a genericnoselect dynamic property.
When this menu item is selected, the newdocument action will be executed if no
objects in checkboxes are checked. The New User (newuser) menu item has a generic
dynamic property. When this menu item is selected, the newuser action will be executed
regardless of the state of checkboxes on the page.

In the Editmenu, the Deletemenu item has a dynamic state of multiselect. The delete
action will be executed on items on the page that are checked. The Rename menu
item has a dynamic state of singleselect. This menu item will enabled if one and only
one checkbox is checked. The View Clipboard menu item will be enabled regardless
of checkbox state.
<dmf:menugroup target='content' imagefolder='images/menubar'>
<dmf:menu name='file_new_menu' nlsid='MSG_NEW'>
<dmfx:actionmenuitem dynamic='genericnoselect' name='newdocument'

nlsid='MSG_NEW_DOCUMENT' action='newdocument' showifinvalid='true'/>
<dmfx:actionmenuitem dynamic='generic' name='newuser'

nlsid='MSG_NEW_USER' action='newuser' showifinvalid='true'/>
</dmf:menu>

<dmf:menu name='edit_menu' nlsid='MSG_EDIT' width='50'>
<dmfx:actionmenuitem dynamic='multiselect' name='delete'
nlsid='MSG_DELETE'action='delete' showifinvalid='true'/>

<dmfx:actionmenuitem dynamic='singleselect' name='rename'
nlsid='MSG_RENAME' action='rename' showifinvalid='true'/>

<dmfx:actionmenuitem dynamic='generic' name='viewclipboard'
nlsid='MSG_VIEW_CLIP' action='viewclipboard' showifinvalid='true'/>

</dmf:menu>
...

</dmf:menugroup>

Controlling visibility

Two action control attributes govern a control’s visibility (both static and dynamic
control).

Show if invalid — Set showifinvalid to true if the control should be displayed when the
associated action definition cannot be resolved by the configuration service (default =
false).

Show if disabled — Set showifdisabled to true to display the control when one or more
of the action preconditions return false. (default = true).

174 Web Development Kit and Client Applications Development Guide

Conguring Controls

In addition to the showifinvalid and showifdisabled attributes, visibility is also
determined by context. The following table shows the visibility of static and dynamic
controls based on context:

Table 3-4. Control visibility based on context

Static Dynamic

Visibility is
calculated
when:

Control is
initialized

Associated actionmultiselect control is rendered

Visibility is set
when:

Control is
rendered

Associated actionmultiselectcheckbox control is
selected

Argument tags
are nested
within:

Control Associated actionmultiselectcheckbox control.
(Use this even for generic and genericnoselect
dynamic actions.)

Argument tags are passed to the action from the action control or from the associated
actionmultiselectcheckbox control. Argument tags nested within multiple selection
controls such as actionmenuitem are ignored. For more information on passing
arguments to action menu controls, refer to Passing arguments to menus or dynamic
action controls, page 180.

Controls that can be globally congured
Some controls support global configuration of all control instances through XML files.
The global configuration can be overridden by configuration of a specific control on the
JSP page. The folllowing table describes controls that support global configuration. For
more information on these controls, refer toWeb Development Kit Reference Guide.

Table 3-5. Control global conguration

Control Configuration

advsearch (various controls) Configure value assistance (refer to
Programmatic search value assistance,
page 557), default match case (refer
to Search query performance,
page 350), size and dates (refer to
Configuring search controls, page 145
in /wdk/config/advsearchex.xml

Web Development Kit and Client Applications Development Guide 175

Conguring Controls

Control Configuration

breadcrumb Configure breadcrumb controls to display
or hide last leaf of breadcrumb and
its style (refer to breadcrumb in Web
Development Kit Reference Guide)

date controls Configure dateinput, datevalueformatter,
and datetime controls (refer to
Configuring dates, page 177)

docbaseattributelist Configure the display of attributes
/webcomponent/config/library/
attributes_*_docbaseattributelist.xml
(refer to Attributelist configuration files,
page 196)

docbaseobject Configure (register) custom formatters
and handlers for attributes when a
docbaseobject is present on the JSP page
/webcomponent/config/library/
docbaseobjectconfiguration_*.xml
(refer to Modifying the display and
handling of attributes, page 395)

iconwell Configure (add to) any component
definition whose JSP page can display
an iconwell (refer to iconwell in Web
Development Kit Reference Guide)

paneset controls Configure paneset controls to govern
screen real estate. Refer to the paneset
control inWeb Development Kit Reference
Guide for details.

richtexteditor, richtextdisplay Configure allowable
HTML tags for user input
/wdk/config/richtext.xml (refer to
Configuring rich text, page 190)

xforms Customization not supported
/wdk/config/xforms_config.xml

176 Web Development Kit and Client Applications Development Guide

Conguring Controls

Hiding controls
You can configure a control on the JSP to hide it, rather than simply removing it from the
JSP page. You may want to do this because you need to information that is set by the
control but do not want to expose it to users. Or you may want to keep the control for
possible use in the future.

To hide a control, use the CSS style on the table row that contains the WDK control. The
following example hides the format selector and its label in the import JSP page:
<tr style="display:none;">
<td>
<dmf:label nlsid="MSG_FORMAT"/></td>

<td class="defaultcolumnspacer">: </td>
<td><dmf:datadropdownlist width="270" name="formatList" tooltipnlsid="MSG_FORMAT">
<dmf:dataoptionlist>
<dmf:option datafield="name" labeldatafield="description"/>

</dmf:dataoptionlist>
</dmf:datadropdownlist></td>

</tr>

Conguring dates
In addition to the configuration available on individual date controls, global date display
can be configured by extending /wdk/config/datetimecontrol_config.xml. The following
table describes date control configuration in this file:

Table 3-6. Global date control conguration elements

<dateinput> Configures all instances of dateinput
tag including those generated by the
docbaseattributelist control. Can be
overridden on an individual tag. Contains
<default-year-from>, <default-year-to>,
and <default_type>.

.<default-year-from> Sets the default beginning year in the date
input dropdown list

.<default-year-to> Sets the default end year in the date input
dropdown list

Web Development Kit and Client Applications Development Guide 177

Conguring Controls

<datetime> Sets the default date format type
for all instances of the datetime
control, including those generated by
docbaseattributelist control. Overridden
by the dateformat and timeformat
attributes on the datetime control.

<datevalueformatter> Sets the default date format type for
all instances of the datevalueformatter
control. Overridden by the type attribute
on the datevalueformatter control.

.<default_type> Specifies the type of Java DateFormat
to apply (examples in parentheses).
Valid values: short (12.13.52 or 3:30
pm) medium (Jan 12, 1952 3:30 pm)
long (January 12, 1952 3:30:32 pm) full
(Tuesday, April 12, 1952 AD 3:30:42 pm
PST)

Conguring menus
In a desktop-style application design (classic or objectlist) , the user selects operations
and views from menus. Menus are displayed at the top of the object list. In a Web-style
application design (streamline or drilldown), the user selects sets of operations or views
through links or buttons or from theMore... link. Both models are supported by WDK.

Actions can be grouped into menus, so that the set of actions available on a particular
object type, user role, or other qualifier is specified in a single location. The <actionlist>
element in an action definition lists the most commonly used actions that will be available
for the specified scope. Within the action list definition, you can specify submenus using
the <menu> element within a <moreactionsmenu> element. Menus contain one or more
<menu> elements. Each menu is named by an id attribute of the <menu> element.

The menu element contains <action> elements that represent actions to be displayed in
the menu. The id attribute of the <action> element must match the id attribute of an
action definition in the application.

You can define more than one action list for the same scope within an application,
provided that each action list has a different ID. This allows you to display different
actions for the same object type in different pages.

When the JSP page includes the <actionlinklist> or <actionbuttonlist> tag, the action
service uses the <actionlist> definition to build a JavaScript list of links or images
that is appropriate for the object type. Menus and submenus are generated from

178 Web Development Kit and Client Applications Development Guide

Conguring Controls

menu controls (<dmf:menu>). The menu items on the menu can be action items
(<dmfx:actionmenuitem>) that require evaluation before the menu action is performed,
or simple menu items (<dmf:menuitem>) that are performed for every user.

You can change the list of default actions for a given object type by editing the contents
of the <actionlist> element in the action configuration file. For example, to move
clipboard functionality from the displayed actions to the More actions link, move the
element <action id=”addtoclipboard”.../> from <actionlist> to one of the menus under
<actionmenu>, such as <menu id=”tools”...>.

To create a menu for an object type:

1. In an action definition that is scoped to your object type, create the <menu> of
available actions for the object type and specify submenus of actions using the
<menu> element. Each action listed in the action menu must be defined somewhere
in an action configuration file.

2. Add your action menu to the JSP page using the <dmf:menu> element. You must
include the menu tag and specify the menu items. For example:
<actionmenu>
<menu id="file" nlsid="MSG_FILE_MENU">
<action id="delete" nlsid="MSG_DELETE" showifdisabled="false"/>
<action id="export" nlsid="MSG_EXPORT"/>

</menu>
</actionmenu>

3. Add a menu tag for each menu and an actionmenuitem tag for each menu item.
For example:
<td>
<dmf:menu name="file_menu" nlsid="MSG_FILE" width="50">

<dmfx:actionmenuitem dynamic="multiselect" name="file_delete"
nlsid="MSG_DELETE" action="delete" showifinvalid="true">

</dmfx:actionmenuitem>
<dmfx:actionmenuitem dynamic="multiselect" name="file_export"

nlsid="MSG_EXPORT" action="export" showifinvalid="true">
</dmfx:actionmenuitem>

</dmf:menu>
</td>

In this example, the JSP will generate a File menu with the delete and export actions.
The framework will look up the action definitions based on the object type of the objects
selected in the UI. Menu items will be enabled or disabled based on the objects selected.

In addition to menus of actions, you can launch an action from an action button, action
link, or action image control. The action service will look up the action definition based
on the selected object type and then perform the same validation and launch process
outlined above for menu actions.

Web Development Kit and Client Applications Development Guide 179

Conguring Controls

Passing arguments to menus or dynamic action
controls

Menu items do not pass arguments. The object selection tag actionmultiselectcheckbox
passes the argument. This tag is used to pass all arguments, whether the action
supports multiple selection, single selection, or no selection (genericnoselect). For
example, the Webtop the home cabinet component displays objects in the user’s home
cabinet. When the user selects multiple objects in doclist_body.jsp (the UI for the home
cabinet component) and then selects a menu item, arguments are passed from the
actionmultiselectcheckbox control to the menu item’s action.

Example 3-2. Passing an argument to a menu item
Add arguments that are required by the menu item action to actionmultiselectcheckbox
tag. For example, in the Webtop menubar.jsp page, there is an actionmenuitem tag
named doc_vdm_freeze_assembly that launches the freezeassembly action. The
freezeassembly action definition requires an isFrozenAssembly param. This argument is
passed to the action through the selectable object, namely, the actionmultiselectcheckbox
tag in doclist_body.jsp:
<dmfx:actionmultiselectcheckbox name='check' value='false' cssclass='actions'>
<dmf:argument name='objectId' datafield='r_object_id'/>
...
<dmf:argument name='isFrozenAssembly' datafield='r_has_frzn_assembly'/>

</dmfx:actionmultiselectcheckbox>

To pass an argument to a custom menu item:
To pass an argument to your custom action, the argument must be specified as a
parameter in your action definition and used by either your action precondition class,
action execution class, or class of the component that is launched by the action. Then you
must perform the following steps:

1. Add the action as a menu item.

2. Add the action arguments to the actionmultiselectcheckbox (this also works
for actionlinklist tags). The following example adds objectId and ownerName
arguments to doclist_body.jsp (additional arguments for other actions are also
added to this tag):
<dmfx:actionmultiselectcheckbox ...>
<dmf:argument name="objectId" datafield="r_object_id">
</dmf:argument>
<dmf:argument name="ownerName" datafield="owner_name">
</dmf:argument>
...

</dmfx:actionmultiselectcheckbox>

3. These arguments are passed to a menu item in the Webtop menubar.jsp:

180 Web Development Kit and Client Applications Development Guide

Conguring Controls

<dmfx:actionmenuitem dynamic="genericnoselect" name="file_newfolder"
nlsid="MSG_NEW_FOLDER" action="newfolder" showifinvalid="true"/>

The arguments in actionmultiselectcheckbox are passed to the newfolder action.
If you wanted to pass the same arguments to an action in a streamline view,
add the arguments to the actionlinklist tag in the streamline UI, for example,
drilldown_body.jsp.

Conguring tabs
Tabs are displayed across the top of the Web page. Each tab displays a different set
of frames and JSP pages. Container components display tabs for each contained
component. The start page for the container includes the <dmf:tabbar> tag. The entry tab
is defined in the container component definition.

Conguring dropdown lists
Dropdown lists are used to provide a list of options that is either generated from a
datafield or from fixed options. There are two types of dropdown lists; both can have
a data source or fixed options:
• dropdownlist

Contains option tags or a dataoptionlist tag that provide options with data from
the following sources:

— Values that are provided at design time in the JSP page, for example:
<dmf:option value=”5” nlsid="Five"/>

— Values that are computed by the component class that uses the control, for
example:
<dmf:option value='<%=Integer.toString(FormatList.DISPLAY_ALL_FORMATS)%>'
nlsid='MSG_DISPLAY_ALL_FORMATS'/>

— Values that are provided by a datafield, for example:
<dmf:datadropdownlist name="<%=FormatAttributes.FORMAT_RENDITION_LIST%>"
tooltipnlsid="LABEL_RENDITION">
<dmf:dataoptionlist>
<dmf:option datafield="name" labeldatafield="name"/>

</dmf:dataoptionlist>
</dmf:datadropdownlist>

You must set the mutable attribute to true (default = false) if you wish to alter the
dropdown list programmatically from your component class.

Web Development Kit and Client Applications Development Guide 181

Conguring Controls

• datadropdownlist

Contains option tags or a dataoptionlist tag that provide options with data in the
following ways:

— Values that are provided by a datafield, for example:
<dmf:datadropdownlist name="<%=FormatAttributes.FORMAT_RENDITION_LIST%>"
tooltipnlsid="LABEL_RENDITION">
<dmf:dataoptionlist>
<dmf:option datafield="name" labeldatafield="name"/>

</dmf:dataoptionlist>
</dmf:datadropdownlist>

— Values that are provided by options, one or more of which is provided by a
datafield. For example:
<dmf:datadropdownlist name="<%=UserAttributes.USER_SOURCE%>"
tooltipnlsid="MSG_USER_SOURCE">
<dmf:panel name="<%=UserAttributes.WINDOWS_DOCBASE_USER_SOURCE_CHOICES%>">
<dmf:option nlsid="MSG_USER_AUTHENTICATE_NONE"
value="<%=Integer.toString(UserAttributes.USER_AUTHENTICATE_NONE)%>"/>

</dmf:panel>
<dmf:dataoptionlist>
<dmf:option datafield="pluginid" labeldatafield="pluginid"/>
</dmf:dataoptionlist>

</dmf:datadropdownlist>

The datadropdownlist has a query attribute that can be used to provide options.
Example 3-3. Overriding a list of options
Some Documentum components provide a list of options, such as available object types
in the import or newdocument components. You may wish to restrict this list of options.
To do this, perform the following steps:

1. Extend the component definition and create a copy of the component JSP page in
your custom directory.

2. Locate the dropdownlist tag in the JSP page. For example, in newdocument.jsp
it is the following:
<dmf:datadropdownlist name="objectTypeList" onselect="onSelectType"...>

3. Replace the following lines:
<dmf:dataoptionlist>
<dmf:option datafield="type_name" labeldatafield="label_text"/>
</dmf:dataoptionlist>With

With these lines:
<dmf:option value="custom_type1" label="Custom Type 1"/>
<dmf:option value="custom_type1" label="Custom Type 2"/>

182 Web Development Kit and Client Applications Development Guide

Conguring Controls

If you want to set the options dynamically in your component class based on some query
or test, you can get the controls in the following way:
DropDownList dropdown = (DropDownList) get Control (
DOCBASE, DropDownList.class);

if //test, use one set of options
{
Option option1 = new Option();
option1.set Value(value1);
option1.set Label (value1);
dropdown.addOption(option1);

}
else if //alternative, another set of options
{
Option option2 = new Option();
option2.set Value(value2);
option2.set Label(value2);
dropdown.addOption(option2);

}

Conguring scrollable controls
If your display is likely to be larger than the browser window, you can use scrollable
panes within a paneset control. Header and footer panes, such as OK and Cancel
buttons, will remain in view at all times.

The paneset control is the outer rectangle in the following illustration. The paneset will
hide all other controls on the page. The paneset can contain nested panesets, with only
one outermost paneset.

The paneset contains three panes: header, content, and footer. Each pane has an overflow
attribute that governs scrolling. Each of the labelled parts is configurable as an attribute
on the paneset or pane control:

Web Development Kit and Client Applications Development Guide 183

Conguring Controls

Figure 3-1. Scrollable pane controls

For more information on configuring each control, refer to the reference information
on the control.

Conguring databound controls
Databound controls read one or more values from a database or a repository and display
the data in a formatted table (a data grid) or list. The data is retrieved from a JDBC
connection, an existing in-memory recordset, or a DQL query. Other WDK controls can
dynamically bind to the resulting data and display it.

All of the standard tag library controls can bind to data from a data container (refer to
Data support classes, page 390). The datafield attribute of a control tag specifies the
name or index of the column that contains the data. If the control receives its data from a
datafield, the datafield attribute by default overrides the existing label or value attribute.
In the following example, the datafield provides the label content, overriding the label
control’s label attribute (not specified here), and a datafield in a checkbox tag provides
the Boolean value for full-text indexing:
<dmf:datagridRow>
<td><dmf:label datafield='object_name'/></td>
<td><dmf:checkbox datafield='a_full_text'/>

</dmf:datagridRow>

184 Web Development Kit and Client Applications Development Guide

Conguring Controls

Note: Any component that uses a databound control in a JSP page must establish a
session and data provider for the control. Databound controls cannot be used on a JSP
page that doesn’t have a Documentum session. Refer to Providing data to databound
controls, page 186 for information on establishing a session and data provider.

The following topics describe data binding:
• Configuring data display, page 185
• Providing data to databound controls, page 186
• Configuring data sorting, page 188
• Configuring data paging, page 189

Conguring data display

You can configure the number of columns in which your data is displayed using the
columns attribute on a datagridRow tag. This is not the same display concept as the
columns of data in the row. For example, in the drilldown (or Webtop streamline) UI, the
list of folders, with an icon and a link to the folder name, is displayed in three columns:

Figure 3-2. Number of columns in a datagrid

To generate the columns shown above, the datagridRow tag uses the column element.
The row contains two table cell tags that generate the icon and link:
<dmf:datagridRow name='objname' columns='3' width='33%'...>
<td width=28>
<dmfx:docbaseicon typedatafield='r_object_type'.../>

</td>
<td>
<dmf:link ...onclick='onClickFolder' datafield='object_name'>
<dmf:argument name='objectId' datafield='r_object_id'/>

</dmf:link>
</td>

</dmf:datagridRow>

Web Development Kit and Client Applications Development Guide 185

Conguring Controls

Providing data to databound controls

You need to provide a data source for databound controls. WDK controls that have a
tag attribute "datafield” can display data that is provided by a databound container
control such as datagrid and datadropdownlist or a provided by a data provider in the
component class. The datafield attribute extracts the value for the named attribute from
the data column that is named as the datafield.

The datafield overrides one of the control’s properties. For example, a text control has
a datafield attribute that overrides the label attribute if a data column is specified. By
default, the "value” attribute of a control is overridden. In the following example, a
data container control (datagrid) provides data to two databound controls: label and
checkbox. The datafield attribute value on the databound controls match an attribute in
the underlying recordset or query.
<dmf:datagrid name="mygrid" paged="true" pagesize="10" query="
select object_name, a_full_text from dm_document">
<dmf:datagridRow>
<td><dmf:label datafield="object_name"/></td>
<td><dmf:checkbox datafield="a_full_text"/></td>

</dmf:datagridRow>
</dmf:datagrid>

A databound control tag must be placed within a databound container control such as
datagrid, datadropdownlist, or datalistbox, or a control that extends one of these three
data provider controls, in order to get access to the data. Set the datafield attribute on
the JSP page to the name of the data column in the recordset or query. Some tag classes
have more than one datafield. For example:
<dmfx:docbaseicon formatdatafield='a_content_type'
typedatafield='r_object_type' linkcntdatafield='r_link_cnt'
isvirtualdocdatafield='r_is_virtual_doc' size='16'/>

The component class that contains databound controls in its JSP pages must initialize
the controls with a data provider. In the following example from a component onInit()
method, a datadropdown list is initialized:
DataDropDownList dropDownList = ((DataDropDownList) getControl(
FORMAT_RENDITION_LIST, DataDropDownList.class));

dropDownList.getDataProvider().setDfSession(getDfSession());

To bind a control to a data source:

1. To access the data, place the control tag within either a databound container control
(such as datagrid, datadropdownlist, or datalistbox) or a control that extends one of
those container controls.

2. Set the datafield attribute in the JSP page to the name of the data column in the
recordset or query. Some tag classes have more than one datafield. In the following
example, the list of options is populated by the name datafield:
<dmf:datadropdownlist name="<%=FormatAttributes.FORMAT_RENDITION_LIST%>">

186 Web Development Kit and Client Applications Development Guide

Conguring Controls

<dmf:dataoptionlist>
<dmf:option datafield="name" labeldatafield="name">
</dmf:option>

</dmf:dataoptionlist>
</dmf:datadropdownlist>

The control class will use the data provider and data helper to extract the value for
one of the databound control properties from the data column named as the value of
the databound control datafield attribute.

Controls can retrieve any number of rows from a data provider. A single datagridrow
tag will display all of the resulting values, each in a single row, unless the datapaging
tag is applied.

When you write a control, you must decide which control property should be overridden
by the datafield. (Some controls supply databinding to more than one property by
creating additional databound tag properties such as "typedatafield”.) Your control
class implementation of setControlProperties() should call isDatafieldHandlerClass()
to determine whether setControlProperties() was called from an extension class. If not,
setControlProperties() should determine which property to override with the datafield
value. Subclass controls can then either override the datafield property or use the super
class implementation. The control should call resolveDatafield() on the super class,
which binds to the appropriate column during rendering. For example (error-handling
code omitted):
protected void setControlProperties(Control control)
{
super.setControlProperties(control);
StringInputControl input = (StringInputControl)control;

// Set the control properties from the tag attributes
// Ctrl value is overridden by the datafield and nlsid attributes
if (getDatafield() != null && isDatafieldHandlerClass(
StringInputControlTag.class) == true)

{
String strResult = resolveDatafield(getDatafield());
input.setValue(strResult);

}

//datafield overrides NLS string
else if (getNlsid() != null &&
isNlsidHandlerClass(StringInputControlTag.class) == true)

{
input.setValue(getForm().getString(getNlsid()));

}

//If no datafield or NLS value, then set value from
//some initialization value in your class
else if (m_strValue != null)
{
input.setValue(m_strValue);

}
}

Web Development Kit and Client Applications Development Guide 187

Conguring Controls

Conguring data sorting

Data returned from a query is sorted automatically. All available data is read into
memory and sorted based on locale sort rules provided by the Java framework. You can
support sorting on a per-column basis with the datasortimage or datasortlink tag. The
datasortimage tag renders an image that launches sorting. The datasortlink tag renders
links that enable the user to sort the results by a column name. Each data sort tag must
have a name that is unique among the sort tag names on the JSP page.

To sort data:
The datasort tags can be placed inside a datagrid tag. The tag is linked to the enclosing
data container control by specifying a column name as one of its attributes.

1. Place the data provider control within a table cell. This tag will generate an HTML
table. For example:
<td>
<dmf:datagrid name='permissiongrid' paged='true' pagesize='10'

preservesort='false' cssclass='doclistbodyDatagrid' width='100%'
cellspacing='0' cellpadding='0' bordersize='0'>

2. Define the sortable columns. In this example, the first row defines three sortable
columns named ’object_name’, ’owner_name’, and description’. The column names
are matched to columname values in controls listed after the datasortlink tags:
<tr height='24'>
<td>
<dmf:datasortlink name='sort0' nlsid='MSG_OBJECT_NAME'
column='object_name' cssclass='doclistbodyDatasortlink'/>

</td>
<td>
<dmf:datasortlink name='sort1' nlsid='MSG_OWNER_NAME'
column='owner_name' cssclass='doclistbodyDatasortlink'/>

</td>
<td>
<dmf:datasortlink name='sort2' nlsid='MSG_DESCRIPTION'
column='description' cssclass='doclistbodyDatasortlink'/>

</td>
</tr>

3. Place the data column tags within a datagridRow tag:
<dmf:datagridRow height='24' cssclass='contentBackground'>
<td align="left">
<dmf:label datafield="object_name"></dmf:label>

</td>
<dmf:columnpanel columnname="owner_name">
<td>
<dmf:label datafield="owner_name"></dmf:label>

</td>
</dmf:columnpanel>
<dmf:columnpanel columnname="description">
<td>

188 Web Development Kit and Client Applications Development Guide

Conguring Controls

<dmf:label datafield="description"></dmf:label>
</td>

</dmf:columnpanel>
</dmf:datagridRow>

4. Close the data grid:
</dmf:datagrid>

Conguring data paging

The paged attribute on the datagrid control provides links that enable the user to jump
between pages of data within the enclosing data container. You should page your
data for better performance and display. If you set the paged attribute to true, the
data provider or data container will render the appropriate links only if the provider
has returned multiple pages of data from the query. The datagrid control is the only
container that supports paging.

The pagesize attribute on the datagrid control sets the number of items to be displayed
on a page. The default size is 10.

To support data paging:

1. Set the paging attribute on the data grid:
<dmf:datagrid name='<%=Messages.CONTROL_GRID%>' ...
paged='true' pagesize='15'>

2. Add the paging controls in a header or footer row (at the beginning or end of your
table, somewhere within the datagrid tag):
<!-- footer containing paging controls -->
<dmf:row height='5'>
<td colspan=2 align=center>

<dmf:datapaging name='pager1'/> </td>
</dmf:row>
...

JSP fragment control
The JSP fragment control can include into a component page JSP fragments that
are dispatched based on the client environment. To include a JSP fragment in a
component page, add a <dmfx:fragment> control. The source of the fragment is
specified as the value of the src attribute. An absolute path that begins with "/”, such as
src=”/wdk/fragments/modal/ModalContainerStart.jsp” will always include the specified

Web Development Kit and Client Applications Development Guide 189

Conguring Controls

fragment. A relative path, such as src=”modal/ModalContainerStart.jsp” will dispatch a
fragment based on runtime context.

Fragment bundles are defined in the application definition, for example, in
/custom/app.xml. The fragmentbundles element contains the fragment bundles
definition. The fragment bundle to use as a source for fragments for each client
environment at runtime is specified as the value of the <default-fragmentbundle>
element. In the following example, the client environment filter for AppConnectors
specifies the default bundle as appintg. The optional <base-fragmentbundle> element
specifies the base for lookup.
<filter clientenv="appintg">
<default-fragmentbundle>appintg</default-fragmentbundle>

</filter>
<filter clientenv="not appintg">
<default-fragmentbundle>webbrowser</default-fragmentbundle>

</filter>
<fragmentbundle>
<name>webbrowser</name>

</fragmentbundle>
<fragmentbundle>
<name>appintg</name>
<base-fragmentbundle>webbrowser</base-fragmentbundle>

</fragmentbundle>

The fragment bundle lookup mechanism is similar to that for themes (refer to How
themes are located, page 126). For example, based on the fragment bundle definition
shown above, the lookup sequence for a JSP fragment tag whose src attribute has the
value "modal/ModalContainerStart.jsp” will be the following for the Webtop application
in the appintg (Application Connectors) clientenv context:

/webtop/custom/fragments/appintg/modal/
/webtop/webtop/fragments/appintg/modal/
/webtop/webcomponent/fragments/appintg/modal/
/webtop/wdk/fragments/appintg/modal/
/webtop/custom/fragments/modal/
/webtop/webtop/fragments/modal/
/webtop/webcomponent/fragments/modal/
/webtop/wdk/fragments/modal/

The fragment bundle processing is handed by the FragmentBundleService class.
To trace problems with dispatching of fragment bundles, turn on the tracing flag
FRAGMENTBUNDLESERVICE..

Conguring rich text
The data type dmc_richtext can be used as an attribute or to store an object. Rich
text consists of HTML, including images and links. Rich text data is indexed in 5.3

190 Web Development Kit and Client Applications Development Guide

Conguring Controls

Content Server. The control richtexteditor creates or modifies rich text, and the control
richtextdisplay displays rich text.

The configuration file /wdk/config/richtext.xml configures the input and display of rich
text attributes. (This is a different editor from the xforms rich text editor. It is installed
as a DLL if enabled in app.xml.)

The following elements can be configured.

Table 3-7. Rich text conguration elements

Element Description

<inputfilter> Remove the comments from this element
to use the RichTextInputFilter class,
which processes images and links that are
entered by the user

<outputfilter> Remove the comments from this element
to use the RichTextOutputFilter class,
which processes image URLs for display
in IE and Mozilla

<html_input> Contains elements that govern HTML
input

<allowed_tags> Contains all HTML tags that are allowed
within rich text input. Must include start
and closing tag, for example, <td></td>.

<allowed_attributes> Contains all attributes that are allowed
within HTML tags. Attributes are
represented as though they were HTML
tags, for example, <href></href>.

<allowed_protocols> Contains protocols that are permitted in
links within rich text. For example, to
prevent ftp URLs, remove <ftp></ftp>
from the list.

<invalid_stylesheet_constructs> Contains stylesheet constructs that
are not permitted, such as those that
contain external links. For example:
<div style="background: url(‘
http://www.somewebsite.com/im-
age/someimage.jpg’);”>
</div>

Elements that configure the rich text editor are described in the table below. If no
minimum version is provided, the browser will not be allowed to use the rich text editor.

Web Development Kit and Client Applications Development Guide 191

Conguring Controls

Table 3-8. Rich text editor conguration elements (<editor>)

<ieminversion> Minimum version of IE supported by
editor

<mozillaminversion> Minimum version of Mozilla supported
by editor

<netscapeminversion> Minimum version of Netscape supported
by editor

<safariminversion> Minimum version of Safari supported by
editor

<iemaxversion> Maximum version of IE supported by
editor

<mozillamaxversion> Maximumversion of Mozilla supported
by editor

<netscapemaxversion> Maximumversion of Netscape supported
by editor

<safarimaxversion> Maximum version of Safari supported by
editor

Displaying and validating attributes
You can display individual attributes, both single-value and repeating, using one
of the attribute controls. The docbaseattributevalue tag displays a single attribute
value. The docbaseattribute tag displays an attribute value and attribute label. The
docbaseattributelist control displays a list of attributes for a specific object type or other
qualifier value.

You can apply special formatters and value handlers that apply to specific attributes
or attribute types.

Attribute configuration is described in the following topics:
• Single and repeating attributes, page 193
• Displaying lists of attributes, page 193
• Display of escaped HTML strings, page 201
• Configuring pseudoattributes, page 201

192 Web Development Kit and Client Applications Development Guide

Conguring Controls

Single and repeating attributes

You can display a single attribute value using a <dmfx:docbaseattributevalue>
tag. You can display an attribute value with its data dictionary label using
<dmfx:docbaseattribute>. Both docbaseattributevalue and docbaseattribute perform
data dictionary validation of the value.

You can display multiple attributes for an object type using a <dmfx:docbaseattributelist>
tag, which renders each attribute and its data dictionary label.

If a rendered single attribute is editable, a textbox is displayed for int, dbl, and string
types, a checkbox is displayed for Boolean types, and a datetime control is rendered
for date types.

If a rendered repeating attribute is editable, an Edit link that loads the repeating attribute
editor is rendered.

The docbasesingleattribute and docbaserepeatingattribute component definitions can be
extended and configured, so that you can present a different editing page for different
object types.

Displaying lists of attributes

You can display lists of attributes using the docbaseattributelist control. The
docbaseattributelist control eliminates the need to use a separate docbaseattribute control
for each attribute to be listed in the UI. The list control allows you to display a different
list of attributes for each component and for each user context such as role or object type.
The attributes that are displayed are configured in Documentum Application Builder or
directly in the attributelist configuration file, depending on which approach you choose.

You can use your own custom tags to display certain attributes or attribute types as
generated by the DocbaseAttributeListTag class. You must register your custom tags
in a docbaseobject configuration file. Refer to Modifying the display and handling of
attributes, page 395 for details.

The following topics describe how to use the control and configure a list of attributes
for various contexts:
• The attributelist control, page 194
• Context-based attribute lists, page 195
• Attributelist configuration files, page 196
• Using data dictionary attribute lists, page 199
• Supplying or overriding data dictionary attribute lists, page 200

Web Development Kit and Client Applications Development Guide 193

Conguring Controls

The attributelist control

To display a list of attributes for a specific component or context, you must place a
<dmfx:docbaseattributelist> control in a component JSP page. This control will generate
a list of attributes that is defined in the data dictionary or in a WDK attributelist
configuration file. A configuration setting in the attributelist configuration file tells
the configuration service whether to read the list from the data dictionary or from the
file itself.

The docbaseattributelist control has three required attributes and several optional
attributes:
<dmfx:docbaseattributelist
1name=list_name
2object=object_name
3attrconfigid=list_id
4visiblecategory=category_name/>

1 Names the control. The control must be named to retain state during navigation.

2 Identifies the docbaseobject control for which the attributes will be displayed, for
example:
<dmfx:docbaseobject name="obj"/>
<dmfx:docbaseattributelist name="attrlist"
object="obj" .../>

3 Identifies the attribute configuration definition.

4 Comma-separated string that specifies the categories that are visible. Default = null
(all categories are visible)

The value of the attrconfigid attribute in your list control must match the value of the id
attribute on an attributelist configuration file. For example, in the checkin component
JSP page checkin.jsp, you have a docbaseattributelist control as follows:
<dmfx:docbaseattributelist... attrconfigid="checkin">
</dmfx:docbaseattributelist>

This matches the attributelist ID in the file checkin_docbaseattributelist.xml:
<attributelist id="checkin" ...>

The configuration file that is named in the attrconfigid attribute will determine the list
of attributes that is displayed for the user’s context and the source of the attribute list
(data dictionary or XML file). Refer to Attributelist configuration files, page 196 for a
description of the attribute configuration file. Refer to Context-based attribute lists, page
195 for a description of context-based list definitions.

194 Web Development Kit and Client Applications Development Guide

Conguring Controls

You can configure the sets of attributes for display manually, bypassing the data
dictionary, by setting <data_dictionary_population> to false in the attributelist
configuration file. The two paths of attribute configuration are diagrammed below:

Figure 3-3. DocbaseAttributeList population

Context-based attribute lists

Attributes can be grouped into lists. Lists are further broken down into categories,
which are displayed in the UI as tabs. Categories can also be displayed in the UI as
separate sections on the same tab by setting the value of <showpagesastabs> to false in
the attributes component configuration file.

Attribute display lists and categories are defined either in an XML configuration file
(refer to Attributelist configuration files, page 196) or in the data dictionary. You can
define a different set of attributes to be displayed for each WDK-based component or
user context.

Web Development Kit and Client Applications Development Guide 195

Conguring Controls

If you use the configuration file to provide an attribute list, refer to Attributelist
configuration files, page 196 for details.

If you use Documentum Application Builder (DAB) to set up scopes and tabs
(categories), refer to the DAB documentation. Each scope in DAB must match a qualifier
in your application. For example, if you define a scope "type” in DAB, you must have the
qualifier "type” enabled in your application.

The data dictionary scopes that you define in Documentum Application Builder might
look like the following:

Table 3-9. Sample Documentum Application Builder scope denitions

Scope Value

application (required) Webtop

role administrator, contributor

type dm_document, custom_type

The configuration service matches the user’s context to an attribute configuration file.
For example, when an administrator is viewing the attributes for a dm_document
object, the configuration service looks at the configurations in memory to find a
definition that matches the context. It finds a definition for scope role=”administrator”,
type=”dm_document”. The definition tells whether the attribute list should be read
from the data dictionary or the configuration file. If data dictionary is specified, the
configuration service must query the data dictionary of the current repository find a
matching scope that was defined using DAB. The configuration service will then fetch
the list of attributes that was defined in the data dictionary for that scope.

Refer to Scope, page 52 for details on how to use the <scope> element in WDK
configuration files.

Attributelist conguration les

The attribute configuration file is an XML file that performs several functions:

• Specifies whether the configuration service should read attribute lists
from the data dictionary or from the configuration file. If the value of
<data_dictionary_population>.<enable> is true, the data dictionary is used.

• Controls the display of attribute lists if they are not specified in the data
dictionary (pre 5.2 repositories) or overrides the data dictionary display setting
(<data_dictionary_population> = false)

• Tells the configuration service the name of the application that is calling for
attributes, using the <ddscopes> element

196 Web Development Kit and Client Applications Development Guide

Conguring Controls

Your attributelist configuration file specifies one or more scopes and scope values that
match to scopes and scope values set up in the data dictionary, similar to the following.
(You do not need to specify the application scope, because the configuration service
adds the current application to the scope.)
<scope role="administrator", type="custom_type">

Each component that uses the docbaseattributelist control can specify its own
configuration file with a different ID. This allows you to present a different set of
attributes for each component that displays attributes. The attrconfigid attribute on the
docbaseattributelist control is matched to the attributelist ID in the configuration file. For
example, the attributes, import, and checkin components each have their own attributelist
configuration file. Specifically, the checkin component UI contains a docbaseattributelist
control whose attrconfigid value is "checkin.” The configuration service finds the correct
definition by looking for a configuration file with the following element:
<attributelist id="checkin" ...>

Tip: Extend an attributelist configuration file in the custom layer to control the display of
attributes that are displayed for a qualifier or set of qualifiers in the application. When
you extend an XML definition, you do not need to copy the entire contents of the base
definition. If you define an element in your extended definition, you must copy all of the
contents of that element if you wish them to be a part of your definition.

The configuration file has the following element hierarchy:
<config version='1.0'>
1<scope>
2<attributelist id=list_name>
3<data_dictionary_population>
4<enable>true | false</enable>
5<ddscopes>
<ddscope name="application">app_name</ddscope>

</ddscopes>

6<ignore_attributes>
<attribute name=attribute_name/>
...

</ignore_attributes>
7<readonly_attributes>
<attribute name=attribute_name/>
...

</readonly_attributes>
</data_dictionary_population>

8<category id=category_name>
<name><nlsid>NLS_key</nlsid></name>
9<attributes>

<attribute name=attribute_name/>
<separator/>
<attribute nameattribute_name/>

</attributes>
10<moreattributes>

Web Development Kit and Client Applications Development Guide 197

Conguring Controls

<attribute name=attribute_name/>
</moreattributes>
</attributelist>
</scope>
</config>

1 If a scope is specified, the attribute lists defined in the <config> element apply only to
user contexts that match the specified scope value.

2 Contains a defined list that is identified by the ID attribute.

3 Contains settings that specify the application name and turn on or off data dictionary
population

4 Set to true to use the category information, order of attributes in a category, and order
of categories from the data dictionary (Server version 5.2 and above). Set to false to use
the values in the configuration file. The client display does not write back to the data
dictionary. If enable is set to true, and the client connects to a 5.1 repository, the data
dictionary settings will be merged with the configuration file settings .

5 The value of <ddscope> specifies a valid scope for the attributelist. Currently the only
supported scope name is "application”. The value of the <ddscope> application element
must match a scope_value for the scope_class "application”that you have set up in the
data dictionary. A value of "webtop” will be assumed unless another value is supplied
for this element. Web Publisher uses the <ddscope> application value WebPublisher.

6 Contains <attribute> elements that specify attributes that should not be displayed
in the UI.

7 Contains <attribute> elements to specify attributes that should be displayed as
read-only in the UI but are editable in the data dictionary. (All standard server attributes
that begin with a_ are modifiable, but you may wish to display them as read-only.)
This readonly setting is applicable only for attributelists that are enabled to read from
the data dictionary.

8 Defines a category. The id attribute is required for this element and must match the
value of category_name for the attribute in the data dictionary for pre-5.2 repositories.
The category definition is overridden by the data dictionary if the value of <enable> is
true.

9 Contains <attribute> elements that specify attributes in the category. The value
of <attribute> must correspond to an attribute defined for the type as specified in the
<scope> element. You can generate a separator between attributes using the <separator/>
element.

198 Web Development Kit and Client Applications Development Guide

Conguring Controls

10Contains <attribute> elements that specify a secondary list of attributes in the category.
These attributes will be hidden in the UI and displayed only by a ShowMore link.

Using data dictionary attribute lists

To use the data dictionary lists of attributes, your docbaseattributelist configuration file
must set the value of the <data_dictionary_population> element to true (the default).
The runtime context will determine which set of attributes is displayed from the data
dictionary. The configuration service looks up the appropriate docbaseattributelist
configuration file whose scope matches the user context. For example, a user having the
role of administrator logs on to Webtop and views the properties of a custom_type
object. The configuration service looks for a definition with the attrconfigid named
in the docbaseattributelist control. The service then matches the user context to a
docbaseattributelist definition with the same ID and scope . In this example, the service
looks for a configuration file whose scope is role=”administrator”, type=”custom_type”.

To the context, the configuration service adds the application name, which is specified in
the docbaseattributelist definition as the value of <ddscope application=app_name>. The
configuration service queries the data dictionary in the current repository and get the set
of attributes defined for application=’Webtop’, role=’Administrator, type=’custom_type’.
Any attributes that are named in the configuration file element <ignore_attributes> will
not be displayed. Any data dictionary category that is named in the visiblecategory
attribute of the docbaseattributelist control will be displayed. If the attribute is null, all
categories defined for the scope are displayed.

Caution: Set up your scopes for displaying data dictionary values using Documentum
Application Builder. If your object type has constraints, be sure to define a scope that
displays the constrained attributes and then use that scope in your WDK-based attribute
list scope for import and checkin. If you do not display constrained attributes for import
and checkin, the validation process will fail.

The data dictionary for Content Server version 5.1 or lower has a category_name
property that allows users to assign attributes to categories. Categories will be displayed
as tabs or pages when they are displayed in a WDK-based application. Attributes with
no category_name value will not be shown in the UI.

If you are connecting to a repository version 5.2 or above, the category_name attribute is
not used. Categories (tabs) and scopes are set up in Documentum Application Builder
(DAB). Refer to the DAB documentation for information on how to set up tabs and
scopes.

Web Development Kit and Client Applications Development Guide 199

Conguring Controls

Supplying or overriding data dictionary attribute lists

If you set the value of <data_dictionary_population> to false, the categories of attributes
will be read from the attributelist configuration file and not from the data dictionary.
Use a <category> element to specify the attributes to be displayed in a tab.

If the data dictionary does not contain attributes associated with the Documentum object,
all visible (is_hidden=false) attributes will be displayed. Use the <ignore_attributes>
element to specify attributes that should not be displayed in the UI.

The process by which the configuration service determines the source for an attribute list
is shown in the following diagram:

Figure 3-4. How the conguration service determines attribute list source

You can extend a definition using the same extends attribute that is used for other WDK
configuration files. (Refer to Extending XML definitions, page 51.)

Note: The attributes defined in the <category> elements in attributes_
docbaseattributelist.xml will not be inherited by import_docbaseattributelist.xml or
checkin_docbaseattributelist.xml. You must enumerate every attribute that you want to
appear within each <category> element. This is a general principle for all configuration
elements: If you extend a definition and change an element within a parent element, the
parent element definition is overridden.

200 Web Development Kit and Client Applications Development Guide

Conguring Controls

Categories (tabs or groups of attributes) that are defined in the attributelist configuration
file can be displayed or hidden in any particular JSP by using the visiblecategory
attribute of the docbaseattributelist control.

Display of escaped HTML strings

Prior to WDK 5.3, object attributes that contained HTML-reserved characters had to
contain escape sequences in order to be displayed correctly in a browser. For example, a
document attribute with the value "<Work>" would be displayed as "<Work>" would be
displayed as <Work> in the datafield for a label. (A document attribute with the value of
"<Work>” could not be interpreted by the browser.)

To avoid the risk of cross-site scripting in which a user could enter malicious JavaScript
as an attribute value, attribute values are now displayed exactly as they are stored, so
that document attributes with a value of "<Work>" will be displayed as "<Work>", and
document attributes with a value of "<Work>" will be saved and displayed as
"<Work>".

You can change the default encoding to false by setting the value of the
<labelproperties>.<encodelabel> element in your custom app.xml file. In that case,
document attributes with a value of "<Work>" will be saved and displayed as
"<Work>".

You can override the global setting in app.xml by setting the value of the
encodeattribute to true or false in individual label controls. For example: <dmf:label
datafield="some_datafield" encodelabel="false"/>. Note that if you turn off the encoding
either globally or locally you put your application at risk for cross-site scripting.

The encoding is accomplished behind the scenes by encoding (escaping) the characters in
the attribute so they are interpreted correctly by the browser. For example, "<Work>" is
converted to "<Work>” which the browser interprets as "<Work>".

For information on methods to encode attributes and other user input, see Formating
and escaping rendered HTML, page 366. For information on configuration of
app.xml to detect URL parameters that are susceptible to cross-site scripting, refer to
<requestvalidation> element, page 71.

Conguring pseudoattributes

Pseudoattributes are defined within the WDK application and are displayed and handled
within the application. For example, WDK defines the pseudoattribute type RichText.
Any attribute of this type can be defined within the application, and those attributes will
be displayed and edited using the rich text editor. The attribute value is handled by the

Web Development Kit and Client Applications Development Guide 201

Conguring Controls

rich text attribute classes, which invoke the rich text BOF service to get and set rich
text content associated with the sysobject.

A component that displays or edits the rich text attribute must call the rich text service in
the component class. For information on creating a pseudoattribute, refer to Creating
custom pseudoattributes, page 431.

Validating user input
A validation control checks one input control for a specific type of error condition and
displays a message if an error is found. Control input can be validated by more than one
validation control.

Several validator controls are provided in WDK to validate data input. For more
information on configuring individual validator controls, refer to Web Development
Kit Reference Guide. For examples of using validators, refer to Configuring validators,
page 308.

The following topics describe validation and value assistance:
• Validator controls, page 202
• Validating an object and its attributes, page 204
• Using value assistance, page 204
• Implementing non-data dictionary value assistance, page 205

Validator controls

Validation on controls is performed when a form is submitted. Validation errors do not
prevent a control event from being fired. The component that uses validation controls
must implement error handling for validation errors.

When an input control needs validation, add the validator to the JSP page and assign
values to two attributes:

• controltovalidate

Identifies the target control.
• errormessage

Specifies the message that will be shown for validation failure. This attribute can be
replaced by the nlsid attribute, to specify the ID of a localized error message.

Some validation controls have additional attributes that configure the validation
parameters.

202 Web Development Kit and Client Applications Development Guide

Conguring Controls

By default, validation is performed on all validated controls in the form when a
server-side action event is fired on a form. You can override form validation by adding
the webform tag attribute "validation” and setting it to false. (By default this attribute
has a value of true.) You may want to do this if validation is slowing down the UI redraw
or if all events do not need validation. For example:
<dmf:webform formclass="com.documentum..."
validation="false"/>

If an input control contains a null or empty value, it is assumed to be valid. You can use
the requiredFieldValidator control to check for a null or empty value. You can combine
RequiredFieldValidator with other validators to ensure that a valid value is provided
and provide a different error message for each validation failure.

Input mask validator

The input value that is tested by an input mask validator control must match the specified
input mask pattern. The mask accepts a string of characters with the following notations:

• #: Numeric characters
• &: All characters
• A: Alphanumeric characters only
• ?: Alphabet characters only
• U: Upper case alphabetic characters only
• L: Lower case alphabetic characters only
To escape a masked character for use as a literal member of the mask string, use a double
slash ("\\") before the character. Here are some examples of popular masks:

Name Mask Example

Date ##/##/## 12/24/95

Time ##:## UU 12:35 AM

SSN ###-##-#### 148-92-1532

Phone (###) ###-#### [####] (919) 933-0863 [7]

Zip code + 4 #####-#### 27858-1203

First Name ??????????? Aloysius

Web Development Kit and Client Applications Development Guide 203

Conguring Controls

Validating an object and its attributes

Repository object and attribute controls display data dictionary information for a selected
object, such as labels and values. Use the tags docbaseobject and docbaseattribute, which
embed validation controls so that Documentum objects are automatically validated when
validation is turned on.

The docbaseattribute tag class calls docbaseattributelabel to render a label for the value
and docbaseattributevalue to render the read-only or editable display of the attribute.
The type of control that is rendered for display is based on the attribute datatype (for
example, checkbox, date/time, textbox).

To use and validate a repository object:
Use the docbaseobject tag in your JSP page to display attributes of a Documentum
object. The following example sets the object and then validates and displays attributes
for the object:

1. Add a docbaseobject tag. For example:
<dmfx:docbaseobject name="myobject"/>

2. Add a docbaseattribute tag to be validated and displayed. For example:
<dmfx:docbaseattribute
object="myobject" attribute="r_object_type" readonly="true"/>

Using value assistance

The docbaseattributevalue and docbaseattribute controls detect the possible values in
the data dictionary for a Documentum object attribute. If there is no value assistance
in the data dictionary for an attribute, a simple text box is generated for editing the
value of the attribute. If value assistance is tied to the attribute, the control generates a
list of suggested values. The type of list that is generated is dynamically determined,
based on the type of attribute:

• Non-repeating attribute, closed-end

A list values is presented for selection in a drop-down list control.
• Repeating attribute, closed-end

A link is presented. The link opens a JSP page with dictionary-backed selections for
the attribute

• Non-repeating attribute, open end

A list box is presented for selection or for adding a value.
• Repeating attribute, open-end

204 Web Development Kit and Client Applications Development Guide

Conguring Controls

A link is presented. The link opens a JSP page with dictionary-backed selections for
the attribute as well as an editable text field.

For example, you have two docbaseattributevalue controls for the "day” and "chore”
attributes. You have set up the list of valid values of chore in the data dictionary to
depend on the value of day. When the drop-down list value for day changes, the
drop-down list for chore is repopulated. Changes to other controls on the page that do
not represent related attributes will not cause a page refresh.

To enable validation on a repository attribute, you must set the validation attribute of the
webform tag to true in the parent form. If you set validation to false, validation is turned
off for all controls inside the container:
<dmf:webform validation="true"/>

For information on setting up value assistance outside of the data dictionary, refer to
Implementing non-data dictionary value assistance, page 205.

Implementing non-data dictionary value assistance

Repository attributes are displayed with value assistance if value assistance has been
set up in Documentum Application Builder. The docbaseattributevalueassistance
control provides value assistance that is not based on data dictionary. Set the
docbaseattributevalueassistance attribute of docbaseattribute or docbaseattributevalue
control to use your custom value assistance list, and then provide the value assistance
values using docbaseattributevalueassistance controls in the JSP or by setting the values
in the component class.

You can use non-data dictionary based value assistance if you have not set up value
assistance in the DocApp. If a particular attribute contains data dictionary based value
assistance, the values specified in the docbaseattributevalueassistance control will be
ignored.

For more information on each non-data dictionary value assistance control, refer toWeb
Development Kit Reference Guide.

To set up value assistance in the JSP page:

1. Set the docbaseattributevalueassistance attribute on the docbaseattribute or
docbaseattributevalue tag to the name of a docbaseattributevalueassistance control
to specify non-data dictionary assistance. For example:
<dmfx:docbaseattribute object="obj" attribute="keywords"
docbaseattributevalueassistance="my_resultset" size="48"
cssclass="defaultLabelStyle"/>

2. Add values using the docbaseattributevalueassistance and
docbaseattributevalueassistancevalue tags. Set the attribute islistcomplete to true

Web Development Kit and Client Applications Development Guide 205

Conguring Controls

for a closed list of values and false for an open-ended list. The following list is
open-ended, so the user can add values that are not in the list:
<dmfx:docbaseattributevalueassistance name="my_resultset" islistcomplete="false">
<dmfx:docbaseattributevalueassistancevalue label="Value A" value="valA"/>
<dmfx:docbaseattributevalueassistancevalue label="Value B" value="valB"/>

</dmfx:docbaseattributevalueassistance>

To set up value assistance in the component class:

1. Set the docbaseattributevalueassistance attribute on the docbaseattribute or
docbaseattributevalue tag to the name of a docbaseattributevalueassistance control
to specify non-data dictionary assistance. For example:
<dmfx:docbaseattribute object="obj" attribute="keywords"
docbaseattributevalueassistance="my_resultset" size="48"
cssclass="defaultLabelStyle"/>

2. Add an empty docbaseattributevalueassistance tag whose values will be supplied
by the component class. For example:
<dmfx:docbaseattributevalueassistance name="my_resultset" islistcomplete="false">
</dmfx:docbaseattributevalueassistance>

3. Add values in your component class:
DocbaseAttributeValueAssistance attributeVA =
(DocbaseAttributeValueAssistance) getControl(
"my_resultset", DocbaseAttributeValueAssistance.class);

attributeVA.setMutable(true);

DocbaseAttributeValueAssistanceValue attributeVAValue =
new DocbaseAttributeValueAssistanceValue();

attributeVAValue.setLabel("Value A");
attributeVAValue.setValue("valA");
attributeVA.addValue(attributeVAValue);

DocbaseAttributeValueAssistanceValue attributeVAValue2 =
new DocbaseAttributeValueAssistanceValue();

attributeVAValue2.setLabel("Value B");
attributeVAValue2.setValue("valB");
attributeVA.addValue(attributeVAValue2);

Working with images and icons
You can specify the path to individual images or icons used in controls with the
imagefolder attribute. If the imagefolder attribute starts with http: or https, it is handled
as a complete URL. If the imagefolder attribute starts with a forward slash (/), it is
handled as a path relative to the virtual root (for example, to the root of the WAR). If

206 Web Development Kit and Client Applications Development Guide

Conguring Controls

the imagefolder attribute has no prefix, the imagefolder is handled as a path relative
to the current theme directory.

Button, tab bar, and label controls can render themselves with or without images.

All graphics in the /images and /icons directories must have an entry in an accessibility
resource file to support accessibility. The NLS string is displayed as an HTML alt
attribute value in browser mouseover. For more information, refer to Image accessibility
strings, page 587.

Icon controls

Icon controls resolve the state of the icon and the image file that is displayed, based on
repository attributes. If the type or format is not databound or an image is not found,
the icon resolves to t_unknown_16.gif or t_unknown_32.gif. You can also set the state
programmatically.

The following icon controls are provided in the tab libraries:

• docbaselockicon

Displays a lock if the object is checked out.
• docbaseicon

Displays an image based on document format or document type.
• docbasepriorityicon

Displays an icon representing the task priority in a user’s inbox.

Using icons

To use an icon for a custom type:

1. Prepare two icons for the custom type in GIF format: one sized at 16x16 pixels,
the other at 32x32 pixels.

2. Name the icons with the prefix "t_” and suffix "_16” or "_32”. The name between these
two strings must be the type name. For example, for your custom type acme_sop,
your image files would be named t_acme_sop_32.gif and t_acme_sop_16.gif.

3. Place the two image files in custom/theme/documentum/icons/type. For information
on the theme directory structure, refer to Creating a theme directory, page 124.

To replace an image or icon on a single JSP page:

1. Open the JSP page and locate the button or icon.

Web Development Kit and Client Applications Development Guide 207

Conguring Controls

2. Enter a new value for the imagefolder attribute on the button or icon. The path must
be relative to the theme folder in which the graphic is located, with no leading slash.

To replace an image or icon across your application:

1. Create a custom style sheet, as described in Modifying a style sheet, page 130.

2. Create a new class with a path to your image. For example:
.removeButton { BACKGROUND-COLOR: transparent;
BACKGROUND-IMAGE: url('../images/removebg.gif') }

3. Add your image to the theme directories for which the image will be used. (You
must provide your image for all themes, in the /custom/theme/theme_name/images
directory.)

4. Reference your cssclass whenever a remove button is used. For example:
<dmf:button nlsid = "MSG_REMOVE" cssclass='removeButton'/>

Working with tooltips
A tooltip is displayed by mouse hover in the browser. The Control class supports a
tooltip, tooltipnlsid, and tooltipdatafield, but not all controls expose a tooltip in the
tag library. This means that you can set the tooltip string, or NLS key, or datafield
programmatically for any control. To use the tooltip attributes, the attribute must be
present in the tag library descriptor.

Some of the controls that expose tooltip as a configurable attribute on the JSP tag include
the following: link, text, label, button, checkbox, option, tab, and many others. Others
such as button, datagridRow, and actionbutton expose support for the tooltipdatafield.
Two text formatters have a showastooltip attribute that allow you to configure whether
the entire contents should be displayed as a tooltip or truncated.

A tooltip, if configured on the JSP page or set by the container class, is rendered as a title
attribute on an HTML element. A tooltip value is overridden by a tooltipnlsid, if present.
Both are overridden by a tooltipdatafield, if present.

Controls that are rendered by DocbaseAttributeList controls do not provide access to
the tooltip, either by configuration or programmatically.

208 Web Development Kit and Client Applications Development Guide

Conguring Controls

Note: When the user has turned on accessibility mode, tooltips for images are not
displayed. Instead, alt text is rendered for the reader. For more information on this
accessibility feature, refer to Configuring accessibility, page 310.

Web Development Kit and Client Applications Development Guide 209

Conguring Controls

210 Web Development Kit and Client Applications Development Guide

Chapter 4
Conguring Actions

Any action-enabled control can launch an action. The action named as the value of the action attribute
for the control must match an action ID in an action definition file. When a control launches an action,
or an action launched by URL, the WDK framework searches for the action definition by action ID.
Refer toWeb Development Kit Reference Guide for the action attributes that configure action controls.

Actions can also be called by URL or from a component class.

The following topics describe action configuration and implementation:
• What actions do, page 211
• How to launch an action, page 212
• Generic actions using LaunchComponent, page 215
• Action configuration file, page 215
• Precondition permissions, page 218
• Hiding an action for subtypes, page 218
The common action definition settings and action-specific settings are described inWeb Development
Kit Reference Guide.

What actions do
An action is an operation that is typically invoked when a user interacts with the UI. You
can also use an action to launch an operation when the action doesn’t require a UI,
such as the logout action.

The action service determines whether a user can perform an action based on
preconditions. This ensures that buttons, links, menu items and tabs are active only
if the related action can be performed in the current context of the UI. If the action
has no precondition, such as the login action, it is executed for every context. Action
preconditions are specified in the action definition and implemented in a precondition
class. Actions are executed by an execution class, which is also specified in the action
definition.

Web Development Kit and Client Applications Development Guide 211

Conguring Actions

Actions are defined in an action configuration file (refer to Action configuration file, page
215). Actions can inherit and customize an action definition from another application
layer in the same way that components and applications inherit their definitions. You
can also override elements in the parent definition. For more information on inheritance,
refer to Extending XML definitions, page 51.

The action can be launched from the UI, from a repository operation, or from the action
dispatcher by URL:
• UI: Actions can be launched when a user initiates a UI event such as opening a dialog

window, navigating, or clicking a link, button, list item, or menu item
• repository operation: Actions can be launched as part of a component operation such

as checkin, checkout, or import
• Action dispatcher: Actions can be launched by a URL. Refer to How to launch an

action, page 212 for details.

Actions can be role-based. Refer to Chapter 16, Customizing Roles for further
information on role-based actions.

How to launch an action
Actions can be invoked in the following ways:

• URL to the action dispatcher servlet

The action dispatcher servlet operates similarly to the component dispatcher. Use a
URL in the following format, substituting the actual application name and action
name:
/my_application/action/action_name[?action_arguments]

For example:
http://myserver:8080/webtop/action/view?objectId=0901d8ab80015b6b

Note: URLs in JSP pages must have paths relative to the Web application
root context or relative to the current directory. For example, the
included file <%@ include file=’doclist_thumbnail_body.jsp’ %> is in
the same directory as the including file. The included file <%@ include
file=’/webcomponent/navigation/drilldown/drilldown_body.jsp’ %> is in the
/webcomponent subdirectory of the Web application.

• Action-enabled controls

Specify the action name as the value for the "action” attribute of a control such as
actionlist, actionimage, actionlink, or actionmenuitem.

• Component method

212 Web Development Kit and Client Applications Development Guide

Conguring Actions

To launch an action from a component method, call the action service and pass the
action name in a component class. For example:
public void onClickObject(Control control, ArgumentList args)
{
try
{
ActionService.execute("view", args, getContext(), this, null);

}
}

• Startup action in the application URL

You can log into an application with a URL that specifies the startup action to
perform after login. The action’s required parameters and their values must be in
the URL. You can also pass optional parameter values in the URL. In the following
example, the application opens with a login dialog and then presents the results of
the query in the URL (line break inserted for display purposes):
http://myserver/webtop/component/main?startupAction=search&queryType=string&query=
some_query_string_here

Adding action controls to a JSP page

Many of the WDK controls such as buttons, menu items, or links are action-enabled.
Action-enabled controls are automatically hidden or disabled if the associated action
is not resolved or the precondition is not met. For more information on the individual
controls, refer to Action-enabled controls, page 171.

These action controls, when selected, invoke an action that is defined in the action
attribute of the control tag. The parameters and context for the action are specified
using the <argument ...> tag. For example:
<dmfx:actionlink cssclass='actions' name='renamefolderbtn'

nlsid='MSG_RENAME' action='rename'>
<dmf:argument name='objectId' datafield='r_object_id'/>

</dmfx:actionlink>

Note: You must include /wdk/include/dynamicActions.js in the JSP page that contains
a dynamic action control. For example:
<script language='JavaScript1.2' src='<%=Form.makeUrl(request,
"/wdk/include/dynamicAction.js")%>'>

</script>

Passing arguments to actions

You can pass required or optional arguments from a control on a JSP page to an action.
When an action is launched from an action control, add your arguments to the action

Web Development Kit and Client Applications Development Guide 213

Conguring Actions

control using a <dmf:argument> or <dmfx:argument> tag. The argument can pass a value
using the value attribute, the datafield attribute (which overrides the value attribute), or
the contextvalue attribute, which overrides the datafield attribute.

Argument values can be hard-coded specifically to the preconditions or execution class
by adding an <arguments> element. The following example from the Web Publisher
action definition workflowstatusclassic adds an argument and value that is used by
the execution class:
<execution class="com.documentum.wp.action.LaunchWpComponent">
<arguments>
<argument name='wpcontext' value='wpdefaultmyworkflow'/>

</arguments>
<component>workflowstatusclassic</component>
</execution>

You can pass arguments from an action to a component. All defined parameters in the
action definition are passed to the component from the action. The objectID argument
value is always passed by the LaunchComponent execution class, so you do not need to
explicitly pass this argument when you are using LaunchComponent.

Note: Arguments cannot be nested within dynamic action controls having the attribute
value dynamic=singleselect or dynamic=multiselect, because the arguments are passed
by the selection control (checkbox).

Example 4-1. Passing multiple selection values to an action
In the following example from acllist.jsp, two arguments are passed to all actions that
support multiple selection on the JSP page:
<dmfx:actionmultiselect name="multiacl">
<dmf:argument name="type" value="dm_acl"></dmf:argument>
<dmf:argument name="objectId" value="newobject"></dmf:argument>
...

</dmfx:actionmultiselect>

Example 4-2. Passing a dataeld to an action
In the next example from the same JSP page, datafield and type arguments are passed to
an actionimage control. The datafield argument must be passed in a <dmfx:argument...>
control:
<dmfx:actionimage nlsid="MSG_PROPERTIES" name="propImage"
action="properties" src="icons/info.gif">
<dmfx:argument name="objectId" datafield="r_object_id">
</dmfx:argument>
<dmf:argument name="type" value="dm_acl"></dmf:argument>

</dmfx:actionimage>

214 Web Development Kit and Client Applications Development Guide

Conguring Actions

Example 4-3. Passing context values to an action
The datafield attribute on an action tag must correspond to a datafield for the selected
object type. The context value can be supplied from the JSP page or from the component
class. In the following example, a context value is set by the component class as follows:
boolean canAcquireTask = (state != ITask.DF_WF_TASK_STATE_PAUSED
&& state != ITask.DF_WF_TASK_STATE_ACQUIRED && state !=
ITask.DF_WF_TASK_STATE_FINISHED);

context.set("canAcquireTask", String.valueOf(canAcquireTask));

The context value is then passed as an action button argument in the JSP page:
<dmfx:actionbutton ...contextvalue='canAcquireTask'/>
The context value is then acquired in the action precondition class as follows:
if((strCanAquire = args.get(
"canAcquireTask")) != null && strCanAquire.length() > 0

...

Generic actions using LaunchComponent
Generic actions are not based on object type or any other scoped qualifier. They use
the LaunchComponent execution class to launch a specified component. If the generic
action definition does not contain precondition elements, then the action is always
executed. Generic actions are defined in /wdk/config/actions/generic_actions.xml. For
more information on the LaunchComponent class, refer to LaunchComponent execution
classes, page 496.

Action conguration le
Actions are defined in XML configuration files. The configuration file contains one
or more action definitions within <action></action> elements. The action definition
provides the action with its context sensitivity. The action configuration settings are
read into memory and retrieved by the configuration service. Definitions are cached
for performance optimization.

Action definitions can be extended in the same way that application and component
definitions are extended. Refer to Application layer inheritance, page 42 for more
information.

All action definitions have the following form. Italics denotes user-defined content. An
asterisk (*) shows elements that can be repeated.
<config>
1<scope qualifier_name*=qualifier_value>
2<action id=action_id>

Web Development Kit and Client Applications Development Guide 215

Conguring Actions

3<params>
<param name=param_name required=true|false>
</param>*
</params>

4<preconditions
5<precondition class=action_precondition_class>
6<role>role_name</role>
7<argument>argument_name</argument>
8<custom_precondition_element/>*

</precondition>*
</preconditions>]

9<execution class=action_execution_class>
10<permit>permit_level</permit>
11<olecomponent enabled="true_or_false"/>
12<navigation>jump_type</navigation>
13<component>component_name</component>
14<container>launch_container</container>
15<custom_execution_element>*
16<arguments>
<argument name='argName' value='argValue'/>*

</arguments>
</execution>
</action>
</scope>
</config>

1 Defines the context for the action. Contains one or more primary elements and zero
or more attributes. The scope is implemented by a qualifier such as object type, user
role, or repository name. The attributes of the scope apply to the primary elements
within the scope. An empty scope element applies to all conditions. For example, <scope
type=dm_folder> applies to folders only, but <scope> applies to all objects.

2 An action is resolved by the ID attribute on the action element.

3 Defines parameters (<param>) that are passed to the precondition and execution
class. <params> contains one or more elements. Attributes of <param>: name (string)
and required (true | false).

4 (Optional) Contains one or more <precondition> elements that define preconditions
for the action.

5 Contains zero or more custom-defined elements whose values are passed to the
precondition class. The class attribute value specifies a fully qualified class name of
a class that implements IActionPrecondition. The same class is sometimes used for
preconditions and execution.

6 Determines whether the user has the required role. Valid values are role names
defined in the repository.

216 Web Development Kit and Client Applications Development Guide

Conguring Actions

7 This element is used with the precondition class ArgumentNotEmptyPrecondition.
The value names a parameter contained within the <parameters> element that cannot be
empty or null.

8 Custom precondition elements can be children of the <precondition> element.
Precondition elements are defined by the precondition class.

9 (Required) Defines an execution class that implements IActionExecution. Attribute
"class” has a fully qualified class name as its value. Contains zero or more user-defined
child elements. Sometimes the same class is used for preconditions and execution.
The LaunchComponent class can be used to launch a component that will perform the

action after preconditions are met. When LaunchComponent is used, you can add the
optional child elements <navigation>, <component>, and <container>.

10Determines whether the user has the required permission on the object. This element
is used with the LaunchComponentWithPermitCheck execution class. Valid values are:
DELETE_PERMIT | WRITE_PERMIT | VERSION_PERMIT |
RELATE_PERMIT | READ_PERMIT | BROWSE_PERMIT | NONE_PERMIT

11 Specifies whether the launched component class is able to process compound
documents. This element is supported by the LaunchComponentWithPermitCheck
execution class and is valid only for that class or a subclass of that class. WDK
components do not process compound documents.
12 Specifies the type of navigation from the current component to the component being
launched. Valid values: jump | returnjump | nested (default).

13 Specifies the component to be launched. If none is specified, the default value is
a component with the same ID as the action. Can contain <arguments> element which
itself contains <argument> names and values that are passed to the component.

14 Specifies the container that will launch the component.
15 Specifies custom elements whose values are read by the execution class.

16 Specifies arguments to be passed to a component or container when you use the
LaunchComponent execution class or a class that extends LaunchComponent. The
argument tag has the following syntax:
<execution class='com.documentum.web.formext.action.LaunchComponent'>
<component>component-id</component>
<container>container-component-id</container>
<arguments>
<argument name='arg-name'value='arg-value'>

</arguments>
</execution>

Web Development Kit and Client Applications Development Guide 217

Conguring Actions

Precondition permissions
To use a permission precondition for an action, use the execution class
LaunchComponentWithPermitCheck in the package com.documentum.web.formext.
action. In the action definition, add a <permit> element as a child of the <execution>
element. Valid values for <permit> are:
DELETE_PERMIT | WRITE_PERMIT | VERSION_PERMIT | RELATE_PERMIT|
READ_PERMIT | BROWSE_PERMIT | NONE_PERMIT

Hiding an action for subtypes
If an action definition is scoped to a specific object type, the definition applies to subtypes
of the type. You may wish to turn off the action for certain subtypes. To do this, create
a scoped definition for the subtype and use the notdefined attribute. In the following
example, the checkout action does not apply to folders:
<scope type='dm_folder'>
<action id="checkout" notdefined="true"></action>

</scope>

The type "foreign” is a pseudo-type defined with WDK that is assigned by the
DocbaseTypeQualifier class to reference objects. A list of actions scoped to the foreign
type has the notdefined attribute set to true, so that those actions cannot be performed
on reference objects. This list of undefined actions is combined with a dynamic filter on
the action definition so that foreign objects display an invalid action message when the
user selects the action. Refer to Dynamic component launching, page 498 for details on
the filter.

218 Web Development Kit and Client Applications Development Guide

Chapter 5
Conguring Components

A component consists of a component definition within an XML configuration file, one or more layout
JSP pages, and a component behavior class. The component definition configures the behavior
of a component.

For information on configuring specific WDK components, refer toWeb Development Kit Reference
Guide.

Components are described in the following topics:
• Component features, page 219
• Component configuration file, page 221
• Component inheritance (extends), page 224
• Component scope, page 225
• Hiding components, page 227
• Hiding component features, page 228
• Configuring data columns, page 229
• Component layout (JSP pages), page 233
• Component navigation, page 237
• Component operations on foreign objects, page 242
• Presubmission client events, page 242
• Configuring containers, page 243
• Configuring locators, page 251
• Using JSP pages outside a component, page 257

Component features
The Documentum component library contains a set of components that provide all of
the common Documentum functions such as content transfer, inbox, folder browser,
properties, and permissions.

Web Development Kit and Client Applications Development Guide 219

Conguring Components

Components have the following features:

• Composition

Components are composed of an XML definition that references JSP pages, a
component behavior class, and an externalized strings resource file. Component
layout and logic are defined in the following types of resource files:

— Layout: Layout is defined in JSP pages using HTML and configurable
Documentum JSP tags..

— Logic: Component behavior is defined in a component class, and component is
referenced by a logical name (component ID). .

• Independence from presentation technology

A component may be implemented using one of many presentation technologies
such as JSP, XSLT, and WDK 5.x. This allows for the most appropriate user
interface presentation technology to be chosen for the component or application. A
component implementation may be migrated or updated from one presentation
technology to another with minimal impact to the caller of the component, for
example, JSP to WDKWDK 5. Context sensitivity may be applied to any component
regardless of presentation technology employed.

• Context-sensitivity

Components can be configured to support context-based UI alternatives for each
component. Context can be defined as the user role, the object type, or the object
lifecycle state, for example. The component can have several different user interfaces
and behaviors based on the context. The specific UI that is presented to the user
is driven by the context parameters that are sent to the component, such as the
object ID or user role. These component parameters are specified in the component
definition XML file.

Context sensitivity allows for the extension of a component, for example, to support
the introduction of new types, without affecting the caller.

• Reuse

Each component supports a contract public interface) through which all other
components and containers (application or portal) communicate with the component.
The contract consists of parameters for initializing the component, events for
responding to interactions made by the user, and properties for interrogating
the state of a component at any given time. The contract discourages access to
the internals of a component, thus allowing the implementation to change over
time without impact to the caller. Dependencies between components are broken,
allowing individual components to be reused in multiple containers without the
need to pull in dependent components.

• Configurability

220 Web Development Kit and Client Applications Development Guide

Conguring Components

Component exhibit configurable aspects of their user interface. Both the layout and
behavior of the component may be declaratively modified without rebuilding the
component. As the component is initially developed, the configuration points must
be taken into account and built into the component. Generally, each configuration of
a component is tied to a different calling context.

• Customizabililty

To achieve reuse, a component can be extended and customized through code
development. This allows an extended component to provide additional or
alternative behavior based on the calling context.

• Implementation

When components are addressed via URL, the URL points to a specific UI
implementation (early binding). URLs for components can also be determined by
context and dynamically generated at run time (late binding). WDK supports the
following component implementation mechanisms: JSP, XSLT, or WDK 5. Select the
appropriate UI implementation for your component. You can have components of
several implementations in the same Web application.

The WDK framework uses a component dispatcher to call components.
The component dispatcher maps each component URL to the appropriate
implementation URL. With the exception of the login and changepassword
components, each Documentum component requires a repository connection. If that
connection is not available when the component is called, the component dispatcher
opens the login component to create one. You can establish this connection silently
by using a trusted connection.

• Loose coupling with component caller

In a Web-based application, the container (application or portal) issues a direct
reference to a reusable page via a URL. The URL points to a specific user interface
implementation, therefore restricting the configuration and extensibility of the
application. In effect, the container and component are early bound, that is,
tied together at development time. In order to support the WDK component
requirements, the component definition infrastructure calls components indirectly.
In effect, late binding is provided in which the user interface implementation is
derived and the appropriate URL generated at runtime.

Component conguration le
The UI of a component is configurable via an XML configuration file. The file contains a
component definition within the elements <component></component>. Both the layout
and behavior of the component may be modified in the configuration file without
rebuilding the component.

Web Development Kit and Client Applications Development Guide 221

Conguring Components

Each definition of a component is tied to a different calling context. The context
is specified as the value of the scope element in the component definition by the
configuration service. The user’s context is used to look up the appropriate component
definition.

Note: After you change XML configuration files, you must refresh the configuration
definitions stored in memory. To refresh component definitions, navigate to the
refresh-utility page APP_HOME/wdk/refresh.jsp, or restart the application server.

A sample component configuration file is displayed below. Strings in italics are
customer-defined.
<config version="1.0">
1<scope qualifier_name="qualifier_value">
2<component id="component_name" version="version_number">
3<desc>Description goes here.</desc>
4<params>
<param name="some_param" required="
true">

</param>
</params>

5<pages>
<start>/custom/.../some_page.jsp</start>
<custom_page_name>path_to_custom_page
</custom_page_name>

</pages>

6<class>com.documentum.webcomponent.library.contenttransfer.importcontent.
ImportContent
</class>

7<service>
<service-class>com.documentum.web.contentxfer.impl.ImportService
</service-class>
<transport-class>com.documentum.web.contentxfer.ucf.UcfContentTransport
</transport-class>
<processor-class>com.documentum.web.contentxfer.impl.ExportProcessor
</processor-class>

</service>

8<init-controls>
<control name="downloadDescCheckbox" type="
com.documentum.web.form.control.Checkbox">
<init-property>
<property-name>value</property-name>
<property-value>true</property-value>

</init-property>
</control>

</init-controls>

9<nlsbundle>com.documentum.webcomponent.library.
attributes.AttributesNlsProp</nlsbundle>

10<custom_element>custom_element_value</custom_element>
11<helpcontextid>attributes</helpcontextid>
</component>

222 Web Development Kit and Client Applications Development Guide

Conguring Components

</scope>
</config>

1 Defines the context in which the component definition is applied. This context is
defined by a scope qualifier (attribute on the <scope> element) such as type, role,
repository, location in the tree, or other qualifier that is defined for the application.
To add a user-defined scope, you must create a qualifier class and declare it in the
application app.xml file.

2 Defines the component. The component is identified by its id attribute. The optional
component inheritance from a parent component definition is specified in the extends
attribute. For more information on inheritance, refer to Extending XML definitions, page
51. The component version support is described in Versioning, page 55.

3 Optional element that describes the component. The description is displayed in the
componentlist component, which displays information about each component in the
application.

4 The params element contains the parameters used by the component behavior class.
The <param> element names a parameter that is used by the component class. If the
value for the attribute ’required’ is true, the framework enforces the presence of an
input value to the component. The component behavior class must implement code to
use the value for each named parameter.

Caution: If the <params> element is empty, the configuration service will not check for
the presence of parameters that are required in the parent definition. You must include
all parameters defined in the parent definition as well as any new parameters that are
used by your behavior class.

5 Contains all named component presentation pages. The component behavior class
or start JSP page must implement code to call each named page. The <start> element
value specifies the full path, relative to the Web application root directory, to the first
component JSP page to be displayed. You can add custom elements whose name
corresponds to the name of a custom page. The value of the custom element is the
full path, relative to the Web application root directory, to the named component JSP
page. The component is responsible for implementing navigation to the custom page.
For information on implementing navigation within a component, refer to Navigating
within a component, page 437.

6 Contains the fully qualified class name for the component class.

Web Development Kit and Client Applications Development Guide 223

Conguring Components

7 <service> contains the service class and transport class elements, for content transfer
containers, and the processor class, for content transfer components. For more
information on these classes, refer to Content transfer service classes, page 532.

8 Contains control initialization settings for controls in the component JSP pages.
For more information on these classes, refer to Content transfer control initialization,
page 534.

9 Specifies the class that contains externalized strings for the component class and JSP
pages. Properties files in the bundle can be localized. The file is located in the /strings
directory under the application layer root directory.

10One or more user-defined elements that are used by the component behavior class.
The component must implement code to use the tag value.
11 Specifies an ID that is matched to the help component list of help topics. The
referenced topic HTML page will be displayed in the help window when the user clicks
a help button or link in the component UI.

An optional <filter> element can contain other elements such as <component> or a
user-defined element. The filter element specifies a qualifier value for the filter. For
example, the attributes component definition contains a filter element around the
<enableShowAll>. The filter specifies the attribute role and value of administrator. This
is matched to the user context, so that a user with the role of administrator is permitted
to see all attributes of an object.

Component inheritance (extends)
You can extend a component to inherit the configuration of the parent component,
override part of the configuration, or add to the definition. This inheritance is based
on the extends attribute of the <component> element. There is no limit to the number
of levels of inheritance. For example, a base properties component scoped on the
dm_sysobject type can represent the default behavior of all type-scoped properties
components. The properties component can then be extended to define a properties
component scoped to a user-defined SOP type. The extended component inherits its
definition from the base definition and overrides values or adds parameters specific
to the new scope.

When you extend a component definition, define only the elements that override the
base definition. All other elements are inherited. Make all of your modifications to a
component definition in the /custom application directory. This ensures that when
you subsequently migrate to a newer version of WDK or Webtop, your definition will
inherit changes to the underlying component. Alternatively, if you do not want your

224 Web Development Kit and Client Applications Development Guide

Conguring Components

component to be subject to changes upon upgrade, copy from the base definition the
elements that you do not want to change.

The strings for a component can be inherited from a component that you extend. Refer
to Inheriting strings, page 139 for details.

Example 5-1. Extending a component
A base properties component scoped on the dm_sysobject type can represent the default
behavior of all type-scoped properties components. The properties component can
then be extended to define a properties component scoped to a user-defined type. The
extended component inherits its definition from the base definition and overrides values
or adds parameters specific to the new scope.

The inheritance is specified as an extends attribute on the <component> element. In
the following example, the definition extends the properties component definition for
dm_sysobjects:
<scope type="SOP">
<component name="properties"
extends="properties:dm_sysobject_properties.xml">

The extends attribute has two parts:

• Name of the component in the parent component definition
• Name of the parent component definition
Continuing the above example, the SOP properties component can override the start
page:

Base value in the dm_sysobject definition:
<pages>
<start>/app/properties/properties.jsp</start>
...

New value in the SOP definition:
<pages>
<start>/sop/properties/properties.jsp</start>
...

Component scope
You can limit the definition of a component to user contexts that match a particular
qualifier value. For example, you can limit the definition based on type, role, docbase,
or custom qualifier. This limitation based on qualifiers uses the scope attribute on the
<component> definition.

Web Development Kit and Client Applications Development Guide 225

Conguring Components

The configuration service supports one or more scopes and one or more component
definitions within each scope. For example, your properties component can have a
component definition for dm_document and one for the custom SOP object type.

Note: Because component definitions can be extended, it is easier to maintain scalability
in your application by using a separate configuration file for each scoped component
definition. In this way, each definition can be maintained separately.

Figure 5-1. Scoped conguration

Scope based on object type is implemented by com.documentum.web.formext.config.
DocbaseTypeQualifier. This class determines the type of the object by using the
component parameter "type” or "objectId”. Your component definition should have one
of these two parameters as a required parameter. For example:
<config>
<scope type="dx_document">
<component id="dx">
<params>
<param name="objectId" required="true"></param>

</params>
</component>
</scope>
</config>

226 Web Development Kit and Client Applications Development Guide

Conguring Components

Hiding components
You can hide component functionality for contexts that match a qualifier value using the
scope attribute on the <component> element. You can also hide component functionality
for a defined scope using the notdefined attribute.

If you scope a component definition to one qualifier value, the definition will apply
only to contexts that match that qualifier value. For example, if you scope a properties
definition to dm_folder, the definition will apply only to dm_folder and its subtypes but
will not apply to dm_document objects.

You can also hide a component using the notdefined attribute of the <component>
element. You would use the notdefined attribute to exclude a specific value of a qualifier.
In the following example, the checkout component is not available for objects of type
dm_folder:
<scope type='dm_folder'>
<component id="checkout" notdefined="true"></component>

</scope>

In another example, when you display the properties page for folders, you want to
display the permissions component only to administrators. You create two component
definitions: one for the role of administrator, one for all roles. The scope type value in
both definitions is dm_folder. The first definition below hides the properties component
for folders for all users. The second definition makes the component visible for users
with the role of administrator:
<scope type="dm_folder">
<component id="properties" notdefined="true">

</scope>

<scope type="dm_folder" role="administrator">
<component id="properties" extends="
properties:webcomponent/library/properties/properties_component.xml">
...

</scope>

The decision whether to hide a component using scope or notdefined depends on
how specific your exclusion must be. For example, if all qualifier values except one
can use your definition, you can exclude the one value using notdefined. If you have a
component that only applies to a specific qualifier value, you can hide the component
from all others by limiting your definition to the specific value. In the following example,
the checkout component is limited to dm_document objects. All other objects types
(except subtypes of dm_document) will not have a defined checkout component and
thus cannot be checked out:
<scope type="dm_document">
<component id="checkout">
...

</scope>

Web Development Kit and Client Applications Development Guide 227

Conguring Components

Caution: You may find that other context values are not excluded by this component
definition, if the component has been defined elsewhere in the application. For example,
there is a checkout component in the WDK library that applies to dm_sysobject types. To
exclude context values, you must add a definition that uses notdefined. In the following
example, the checkout component is excluded for dm_folder objects:
<scope>
<component id="checkout">

</scope>

<scope type="dm_folder">
<component id="checkout" notdefined="true"></component>
...

</scope>

Hiding component features
Filter tags within configuration blocks allow parts of the definition to be shown or
hidden based on the <filter> element. The filter is defined as the value of a qualifier
attribute on the <filter> element. A filter can be set for any type of configuration service
qualifier such as role, object type, or repository. The filter is applied to the user’s context
to evaluate whether the element is in force or not.

You can think of filters as an AND operation of qualifiers. The scope qualifier on the
<component> element limits the application of the definition, and the scope qualifier on
the <filter> element limits part of the definition even further.

Filters define the visibility of the contained elements. The filter scope name/value
attribute pairs define the scope for the elements contained within the filter element. In
the following example, the filter configures a tree component to display the admin node
for the administrator role only:
<filter role="administrator>
<node componentid="admin">
...
</node>

</filter>

Filters can use the clientenv qualifier so that the contents of the filter element apply to a
specific client environment such as a Web browser, portal application, or Application
Connectors. The default value is *, meaning all client environments. This default is set
in /wdk/app.xml as the value of <environment>.<clientenv>. This default is overridden
in the Webtop app.xml to be webbrowser and a portlet application to be portal. Valid
values are webbrowser, appintg (Application Connectors), portal, and the not operator,
such as not appintg.

Filter tags can be placed anywhere below a primary element.

228 Web Development Kit and Client Applications Development Guide

Conguring Components

Conguring data columns
The following table shows the elements that are generally available in components that
support configuration of data columns. For components that support preferences, the
columns configuration elements in the component definition set the default view, before
the user has selected column preferences.

<showfilters> Set to true to show the objectfilters drop-down control

<objectfilters> Contains filters that define which objects should be
shown in the objects selection list.

<objectfilter> Specifies a filter for the items that are displayed. Contains
<label>, <showfolders>, <type>

<label> Displays a label such as Folders or All. Can contain a
string or <nlsid>.

<showfolders> | <type> To show folders only, set <showfolders> to true and
<type> to null (no value). To show objects only, set
<showfolders> to false and <type> to dm_sysobject.
To show all, set <showfolders> to true and <type> to
dm_sysobject. <type> can take any value that is a valid
Documentum type.

<columns>.
<loadinvisibleattribute>

Uncomment this element and set to true to get invisible
attribute values for use in your component. The invisible
attributes can then be passed by configuring a column
in the <columns> element. Refer to Adding custom
attributes to a datagrid, page 407 for details.

<columns><column> Specifies columns to show or hide

<column><attribute> <attribute> sets the attribute to be displayed in the
column.

<attribute>
<label>

The value of <label> sets a label for the column.

<column><attribute>
<visible>

Set <visible> to true to show the column.

Adding or removing static data columns

Most common sysobject attributes are included as columns included in the WDK
component definitions. You can change the column visibility to show or hide the
defined columns. Insert new attribute columns that you require, such as r_object_id and

Web Development Kit and Client Applications Development Guide 229

Conguring Components

object_name. You can add a static column as a label, image, or datasortlink (making a
sortable column). For example:
<dmf:columnpanel columnname='namePanel'>
<th align='left' scope='col'>
<dmf:datasortlink name='sortcol1' nlsid='MSG_NAME' column='object_name' .../>

</th>
</dmf:columnpanel>
<dmf:columnpanel columnname='propbutton'>
<th align='left' scope='col'>
<dmf:image name='prop' nlsid='MSG_PROPERTIES' src='images/space.gif'/>

</th>
</dmf:columnpanel>

If you need to display custom attributes, you must use dynamic columns. Refer to
Configuring dynamic data columns, page 232 for information.

To congure default columns for a component:
The steps to configure columns in a new component defnition are the following:

1. Add settings for each column in the component definition. In the following example,
the alias element is optional:
<columns>
<column>
<attribute>object_name></attribute>
<alias>name</alias>
<label><nlsid>MSG_NAME</nlsid></label>
<visible>true</visible>

</column>
...

</columns>

2. In your custom component class, import the utility class com.documentum.web.
formext.component.ComponentColumnDescriptorList. This will automatically set
the fields and label attribute on celltemplate controls on your component JSP page.

3. Process the configuration in your component class. The following call in a
component class readConfig() method reads the list of visible columns:
private void readConfig()
{
// read the list of visible columns
m_columns = new ComponentColumnDescriptorList(this, "columns");

// read and process other config element values
// read the show folders boolean value
Boolean bShowFolders = lookupBoolean("showfolders");
if (bShowFolders != null)
{
m_fIncludedFolders = bShowFolders.booleanValue();

}
}

The ComponentColumnDescriptorList object will read in the column configuration
in the component definition and will then set the fields and labels attributes on

230 Web Development Kit and Client Applications Development Guide

Conguring Components

celltemplate controls on the component JSP page during rendering. For example,
in the JSP page you have a column defined as follows:
<dmf:celltemplate type="date">
<dmf:label/>:
<dmf:datevalueformatter type="short">
<dmf:label datafield="CURRENT"></dmf:label>

</dmf:datevalueformatter>
</dmf:celltemplate>

All date attributes in the component definition that are specified as visible will be
rendered. In the example below, two date columns will be rendered:
<columns>
<column attribute="owner_name">singleselect</column>
<column attribute="group_name">false</column>
<column attribute="r_creation_date">true</column>
<column attribute="r_modify_date">true</column>
<column attribute="r_access_date">false</column>
<column attribute="r_version_label">true</column>

</columns>

The columns of data are rendered by <dmf:datagridRow>. If you need to add static
rows between each row, close the table row generated by datagridRow using </tr>, then
open an HTML table row and add your static row. The closing datagridRow tag will
close your HTML table row tag.

Example 5-2. Adding a static row between each data row
The following example adds a space between each data row:
<dmf:datagridRow height='24'>
<dmf:columnpanel columnname = 'name'>
<td width=250>
<dmf:label datafield='name'/>

</td>
</dmf:columnpanel>
<dmf:columnpanel columnname = 'description'>
<td width='500'>
<dmf:label datafield='description'/>

</td>
</dmf:columnpanel>

<!-- to add a separator row in the grid -->
<!-- we must close the table row here and open another -->

</tr>

<!-- open the static row here -->
<tr height='1' class='doclistbodySeparator'>
<td colspan='4' class='rowSeparator'>
<img src='<%=Form.makeUrl(request,
"/wdk/images/space.gif")%>' width='1' height='1'>

</td>
<!-- close the datagrid row here -->
</dmf:datagridRow>

Web Development Kit and Client Applications Development Guide 231

Conguring Components

Conguring dynamic data columns

Instead of a fixed set of columns in a fixed order, you can define a list of template
columns. A template defines the pattern for an unkonwn number of columns that are
based on type, a specific attribute, or generic (any attribute). This allows you to create
pages that do not specify which attributes are available or in which order they should
be displayed.

The attributes and their order are resolved by the template system at run time. These
unknown columns are formatted based on the type-based or generic templates.

To congure dynamic column display:

1. Add a celllist tag to a datagridrow element. Specify all of the possible data source
field names as values for the celllist fields attribute. If one of the columns will
display a custom attribute, set the hascustomattr attribute for the celllist tag to true.
For example:
<dmf:celllist hascustomattr="true"
fields='object_name,modifier,r_modify_date, r_creation_date, submitcode'>

Alternatively, you can open <dmf:celllist> and specify your fields in the
<dmf:celltemplate> tag. If you do this, then the template will match only the fields
specified in the celltemplate tag.

2. Add a celltemplate tag for each type of column that will be displayed. If more than
one field matches the template, a column will be rendered for each match. In the
following example, the first template is matched based on field name, so there is
only one match. The second template matches by type, so two fields match and two
columns are generated. The third template is generic, so it renders all remaining
columns of data. The dmf:label tag displays the data dictionary label for the attribute.
<dmf:celltemplate field='object_name'>
<td><dmf:label datafield='CURRENT'/></td>

</dmf:celltemplate>

<dmf:celltemplate type='date'>
<td>
<dmf:datavalueformatter type='short'>
<dmf:label datafield='CURRENT'/>

</dmf:datavalueformatter></td>
</dmf:celltemplate>

<dmf:celltemplate>
<td><dmf:label datafield='CURRENT'/></td>

</dmf:celltemplate>

Note: If your component definition specifies columns and labels, the label in the
definition overrides the label in the JSP page.

232 Web Development Kit and Client Applications Development Guide

Conguring Components

Column order: The actual order of rendering is controlled by the order of fields in
the fields attribute. The templates should be ordered as most specific first (field
name), then semi-specific (type), and then generic.
Labels: The label datafield value of ’CURRENT’ specifies that the label data value is
taken from the current field. The actual value is determined dynamically.
HTML elements: HTML within a celllist tag is not rendered. The HTML must be
within a celltemplate tag.
Sorting: You can place a datasortlink tag within a celltemplate without assigning
a value to column, label, or datafield attributes. The following example makes a
column sortable:
<tr>
<dmf:celllist fields="object_name,title" labels="Document,Title">
<dmf:celltemplate>
<td align="left">
<dmf:datasortlink name="sortcoll" datafield="CURRENT"/></td>

</dmf:celltemplate>
</dmf:celllist>

</tr>

Component layout (JSP pages)
A JSP file contains layout for components. The layout is made up of HTML, JavaScript,
and Documentum JSP tags.

The following topics describe the use of JSP pages in components:
• JSP pages modeled by form class, page 233
• Contents of a WDK JSP page, page 234
• JSP includes, page 235
• Creating a component JSP page, page 236
• Using messages and labels, page 236

JSP pages modeled by form class

The JSP page is modeled by a Form class that models a single web page, except in the
case of included forms or containers. Each JSP page, unless it is an included page, has a
<dmf:form> tag. The parent JSP page, which invokes form processing and the standard
WDK JavaScript includes, has a <dmf:webform/> tag.

Web Development Kit and Client Applications Development Guide 233

Conguring Components

The Form class extends the Control class and implements event handler and navigation
methods. Because the Component class extends Form, components inherit all of the
behavior and methods of the Form class.

Forms are not configurable. Elements in the form are configurable, as JSP and HTML
tags. Components that contain the form are configurable using a component definition.

WDK tags generate HTML 4.0 elements when the JSP page is rendered. Some tags
generate a <table> element, such as the data grid control. The datagridrow tag generates
a table row element (<tr>). To see how to use these tags within an HTML table, refer to
the examples in the webcomponent library JSP pages.

Contents of a WDK JSP page

Following is a typical WDK JSP file:
1<%@ page contentType="text/html; charset=UTF-8" %>
2<%@ page errorPage="/wdk/errorhandler.jsp" %>
3<%@ taglib uri="/WEB-INF/tlds/dmform_1_0.tld" prefix="dmf" %>
4<%@ page import="com.documentum.webcomponent.environment.
preferences.general.GeneralPreferences" %>

<html>
<head>
5<dmf:webform/>

</head>
<body class='contentBackground'>
6<dmf:form>
<table cellspacing=2 cellpadding=2 border=0 width="100%">
<tr>
7<td>
8<dmf:label cssclass='drilldownFileName'
nlsid="MSG_CHOOSE_HEADER"/>

</td>
<td width='32' class='doclistHeader'>
9<dmfx:docbaseicon size='32' name="object_icon"/>

</td>
</tr>
10...
</table>
</dmf:form>
</body>
</html>

1 Sets the encoding of the page to a global character set (mandatory)

2 Specifies the error handling JSP (mandatory)

3 Specifies the tag libraries (mandatory if tags are used in the JSP). For example:
<%@ taglib uri="/WEB-INF/tlds/dmform_1_0.tld prefix="dmf"%>

234 Web Development Kit and Client Applications Development Guide

Conguring Components

4 Imports the class that is referenced in a JSP scripting element on the page. For example:
<%@ page import="com.documentum.wp.app.WpTracing"%>
...
<dmf:text
name="<%= WpTracing.DFC_TRACE_FILE_PATH %>" size="30"/>

5 Starts the form processor and generates the JavaScript includes to support client-side
events. The tag must occur in every top-level form, before the HTML <body> tag. If a JSP
is included in another JSP parent, it cannot have a <dmf:webform/> tag. Your component
JSP page should not declare values for the formclass, nlsclass, or nlsbundle attributes on
the <dmf:webform/> tag, because these values are defined in the component definition.
The objects used for form class, nls class, and nls bundle can change dynamically
depending on the component’s context.

7 Prevent table cell contents from wrapping by adding a nowrap declaration, for
example, <td nowrap>.

6 Generates the HTML form that is returned to the browser. The tag must occur
between the <html> and <body> tags, after a <dmf:webform/>tag.

8 Specifies an HTML control that is defined in a Documentum tag library. The
control tag generates HTML to the browser. The control can be configured to specify
its appearance and data source. Controls can also specify an event handler, which is
generally located in the component that includes the control in the JSP page. This allows
the control event to be handled differently based on the component implementation.
For example, an OK button in the import component behaves differently from an OK
button in the delete component.

9 Specifies a repository-enabled control that is defined in a Documentum tag library.

10Can be any valid HTML 4.0 or JavaScript.

JSP includes

JSP pages can include other pages using the JSP include directive <%@ include file=...>.
The contents of the included file are merged before the JSP page is compiled. Subsequent
requests to the including page do not detect changes to the included file.

Note: URLs in JSP pages must have paths relative to the Web application root context or
relative to the current directory. For example, the included file <%@ include file=’doclist_

Web Development Kit and Client Applications Development Guide 235

Conguring Components

thumbnail_body.jsp’ %> is in the same directory as the including file. The included file
<%@ include file=’/webcomponent/navigation/drilldown/drilldown_body.jsp’ %> is in
the /webcomponent subdirectory of the Web application.

Creating a component JSP page

Create a layout that is appropriate for each of the contexts you have defined for your
component. For example, the attributes component definition specifies three component
definitions based on the context of object type: sysobject, folder, and document. Two
different type-based layout start pages are defined: attributes_dm_folder.jsp and
attributes_dm_document.jsp.

The top-level JSP page must contain a <dmf:webform> tag, which binds the JSP page
to the WDK runtime, generates JavaScript and CSS file inclusions, and starts the form
processor. Place the <dmf:webform/> tag before or within the HTML head elements of
the JSP. All JSP pages must have a parent page that contains the <dmf:webform tag>.

Use the <dmf:form> tag in place of HTML <form> tags in all JSP pages that require the
WDK framework. Place the <dmf:form> open tag directly after the HTML <body> tag
in your JSP. Place the </dmf:form> close tag should be placed just before the closing
HTML </body> tag. The remainder of the form contents should be placed within the
<dmf:form> tag. All control events that are handled by the WDK runtime are submitted
as HTML form POSTs.

Refer to Component navigation, page 237 for information on navigation between pages
in your component.

Add event handlers to your component class for events fired by the controls on the
JSP page. In the following example, the event handler for a Cancel button returns to
the calling component:
public void onCancelClicked(Control control, ArgumentList args)
{
setComponentReturn();

}

Using messages and labels

Components have component-specific messages for the user interface: information
messages, diagnostic error messages, labels, and window titles. For example, the
newfolder component posts a message when a new folder is created.

The content of the message is contained in the NLS properties file for the component,
and the message is retrieved as the nlsid attribute of a Documentum tag library element.
Refer toWorking with XML configuration files, page 49 for more information about the

236 Web Development Kit and Client Applications Development Guide

Conguring Components

nlsid attribute. Refer to Configuring and localizing strings, page 137 for information
on changing or adding strings to the UI.

For information on generating messages in your custom components, refer to Rendering
messages to users, page 600.

Using a raw JSP or static HTML le

Any technology that can render HTML can be used to render a component page. To
support non-WDK JSP pages, HTML pages, or pages from other scripting languages,
you must change the component definition. To use a raw JSP page or static HTML file,
create a component definition XML file to specify your JSP or HTML page as the value of
the <pages>.<start> element. Leave the component class value empty. For example:
<component name="info"
<params>
<param name>="objectId" required="true"></param>

</params>
<pages>
<start>/custom/info.html</start>
<pages>
<class></class>

</component>

There are a number of differences between this component definition XML file and
one associated with a WDK 5 component:
• The static HTML page is named within the <start> element.
• There is no reference to a component class definition through a <class> tag.
• There is no reference to a resource bundle through a <nlsbundle> tag.

Component navigation
Component navigation is described in the following topics:
• Calling components by URL, page 238
• Calling components from an action (LaunchComponent), page 239
• Calling components from JavaScript, page 239
• Including a component in another component, page 240
• Navigating using browser history, page 241
For information on component navigation using component APIs, refer to Navigating
within and between components, page 437.

Web Development Kit and Client Applications Development Guide 237

Conguring Components

Calling components by URL

Components are addressed by URLs. The component dispatcher maps the component
URL to the appropriate page implementation URL.

Caution: If you use a URL in a JSP page, the URL must have its path relative to the Web
application root context, not relative to the current directory.

The format of the URL that calls a component is the following:
/APP_HOME/component/component_name/
[/page_name][?params]

where:

• APP_HOME

Deployed application root context directory
• component_name

Name of the component, including container components, as defined in the
component definition XML file

• page_name

Logical page name defined in the component definition XML file. If not present, the
page defined by the <start> element is used.

• params

(Optional) Scope parameter and value pairs. If there are scoped definitions for the
component, the parameters that you specify in the URL are used to dispatch the
appropriate component definition.

Example 5-3. Calling a component by URL
In the following example, the publish component is called along with the object ID
parameter that is required by the publish component:
http://localhost/wp/component/publish?objectId=xxx

Example 5-4. Calling a component in a container by URL
Some components must be called within a container. Call the container component as
described above, and supply the contained component as a URL argument.

In the following example, the attributes component is called along with the object ID, so
that the attributes for the object will be displayed. Because the attributes component is
designed to be used within the properties container, the URL includes the container:
http://beauty.documentum.com/webtop/component/properties?
component=attributes&objectId=0900000180309a58

238 Web Development Kit and Client Applications Development Guide

Conguring Components

Note: You cannot call a container by URL if the container extends the combocontainer,
for example, the content transfer containers. The combocontainer is called by the
LaunchComponent action execution class, which encodes and passes the required
arguments to the container.

Calling components from an action (LaunchComponent)

Specify com.documentum.web.formext.action.LaunchComponent as the action
execution for your custom action class if your action should launch a component. The
LaunchComponent execution class invokes a component, with or without a container, on
execution. The component element is required, and a container element is optional.

When an action invokes a component that is within a container, you must specify the
container in your action definition. Use the combo container for multi-select actions. For
example, the dm_document_actions definition specifies that the delete action launches
the combocontainer.

Example 5-5. Launching a component from an action
The newcabinet action in WDK launches the newcabinet component in
newcabinetcontainer. If the container is specified but no component is specified, then the
default component for the container will be launched. If the LaunchComponent class is
used but no component or container is specified, then the component dispatcher will
launch a component with the same ID as the action.
<execution class="com.documentum.web.formext.action.LaunchComponent">
<component>newcabinet</component>
<container>newcabinetcontainer</container>

</execution>

When the LaunchComponent execution class is used, you can specify the type of
navigation to the component that is to be launched. The navigation type is specified as
the value of the <execution>.<navigation> element. Valid values: jump | returnjump
| nested.

Calling components from JavaScript

Client-side functions post navigation server events. Use client-side navigation functions
when you need to handle a client-side event by nesting or jumping to another
component. The JavaScript file /wdk/include/componentnavigation.js contains the
following client-side component navigation methods:
• postComponentJumpEvent(): Jumps to another component.

Web Development Kit and Client Applications Development Guide 239

Conguring Components

To perform the jump, the JavaScript function calls postServerEvent() with the server
event "onComponentJump”. For example, in Webtop the page tabbar.jsp contains a
JavaScript that calls postComponentJumpEvent(). The component parameter that is
supplied to postComponentJumpEvent() is the user’s selected tab:
postComponentJumpEvent(null, component, "content",
"processStartupAction", "true");

The arguments for this function are the following:

— strFormId: The target form for the event. If null, the first form on the page
is assumed.

— strComponent: The target component URL for the jump or nest.

— strTarget: The target frame (optional). Default is the current frame. If target
frame does not exist, a new window will pop up.

— strEventArgName: Event argument name (optional)

— strEventArgValue: Event argument value (optional)
• postComponentNestEvent(): Nests to another component with the same arguments

as postComponentJumpEvent.

The following JavaScript function nests to the preferences component:
function onClickPreferences()
{
postComponentNestEvent(null, "preferences", "content", "component",
"general_preferences");

}

Note: You must issue the jump or nest call from the enclosing container JSP page, if there
is one. A reference to the JavaScript file componentnavigation.js, which contains the
postComponentXXXEvent functions, is automatically generated with every HTML page.

To open a component in a new window, you can use the following JavaScript syntax:
function onClickopen()
{
newwindow = window.open("/" + getVirtualDir() + "
/component/your_component", "your_component", "
location=no,status=no,menubar=no,toolbar=no,resizable=
yes,scrollbars=yes");
newwindow.focus();

}

Including a component in another component

There are two ways to include a component within another component. The first is to
use a component container, which is documented in Configuring containers, page 243.

240 Web Development Kit and Client Applications Development Guide

Conguring Components

Containers provide support for paging, change queries and notification, and NLS text
strings.

The second way to include components is using the componentinclude tag from
the Documentum tag library. The included component is rendered in place of the
componentinclude tag. The componentinclude tag has the following syntax. The
component name must match the name of the component in its XML configuration file:
<dmfx:componentinclude name="instance_component_name"
component="component_name"></dmfx:componentinclude>

For example, the startworkflow component JSP page startWorkflow.jsp includes the
taskheader component:
<dmfx:componentinclude component='taskheader' name='taskheader' page='startwf'/>

You can pass arguments to the included component using an argument tag. In the
following example, the details component includes an object details component that is
updated from the r_object_id datafield:
<dmfx:componentinclude name="details" component="object_details">
<dmf: argument name="objectId="418">

</dmfx:componentinclude>

Note: The included component JSP page cannot have the following tags: <html>,
<head>, and <body>. These tags are provided by the host component page. If you set
the componentinclude tag "visible” attribute value to false, the included component
will not be rendered.

The ContainerIncludeTag class provides methods for getting the contained component
ID, name, event arguments, and the current page of the component. The containerinclude
class creates the contained component.

Navigating using browser history

The Form processor and Form class provide support for access to and control of browser
history. Navigation history is modeled as a FormHistory object that contains a series
of FormHistorySnapshot objects. The form history object represents a client frame or
window. The snapshot represents the state of a page in the client frame or window.

The Form processor adds the current page to the FormHistory object as a
FormHistorySnapshot (equivalent to state for a given form URL). The request number
portion of the form request ID is used to retrieve a FormHistorySnapshot object. If the
snapshot refers to a closed form, the form is reopened.

If a URL addresses a page whose history has been released because the number of history
pages were exceeded, the URL is forwarded to /wdk/historyReleased.jsp.

Web Development Kit and Client Applications Development Guide 241

Conguring Components

The Form processor identifies and gets the FormHistory object using the FormRequestId
that is passed on every HTTP request. If no form request ID was passed in the request, a
new FormHistory object is created. If a URL addresses a page that has no request ID, the
session is assumed to have timed out and the URL is forwarded to /wdk/timeout.jsp.

The FormRequestId object is created by the Form processor as a formatted string with
two fields:
• client ID identifies the client browser frame or window. If a request is passed without

a FormRequestId, a new client ID is generated in the series _client1, _client2, clientN.
• request number identifies the request index within the frame or window specified

by the client ID. The index is consecutive and begins with 1. You can pass a
FormRequestId with no request number, which will be interpreted as the last request
for the given client ID.

Component operations on foreign objects
Operations on an object may be performed in the current repository, such as delete,
or in the source repository, such as checkout or checkin. If the user is attempting an
operation on an object that is in another repository such as an object in a multirepository
search result set, virtual document with foreign attachments, or workflow task with
foreign attachments, you can specify that the operation should be performed on the
source repository.

If the component performs a query that must be executed against the source repository,
you can configure your component to do this. To change to the object’s repository, add a
<setrepositoryfromobjectid> element to your component definition and set the value to
true:
<setrepositoryfromobjectid>true</setrepositoryfromobjectid>

If the component does not execute a query, then you do not need to add this element
to your definition.

Presubmission client events
Control events are handled either in the client, using JavaScript, or in the component
class, using an event handler method. Control event handling is described in Control
events, page 165. If your component needs to do client-side processing before a JSP
form is submitted, you can use the presubmission processing mechanism. For example,
if you need to update hidden fields on the form after the user clicks OK, you need to
perform presubmission processing.

Presubmission processing has two parts:

242 Web Development Kit and Client Applications Development Guide

Conguring Components

• Client

Register your client-side event handler by calling a JavaScript function, and provide
the JavaScript event handler.

• Server

Register the event in your component class. This signals the framework to fire the
client-side event before posting the server-side form submission.

To register the client-side presubmission handler and event:

1. Register the handler in your JSP page by calling
registerPreSubmitClientEventHandler(strSourceFormName,
strEventName, fnEventHandler). This JavaScript function is available in all JSP
pages. If the source form name is null, the event is handled regardless of the
source form. For example:
<script>
registerPreSubmitClientEventHandler(null, "invokeSubmit", onInvokeSubmit);

</script>

2. Place your JavaScript event handler in the component JSP page. For example:
function onInvokeSubmit(arg)
{
//client-side processing here

}

3. In your component or control class render method, call
setPreSubmitClientEvent(String strClientEventName, ArgumentList
clientEventArgs) in your component class or within a custom control class. For
example:
protected void renderEnd(JspWriter out) throws IOException
{
...
ArgumentList clientArgs = new ArgumentList();
getForm().setPreSubmitClientEvent("invokeSubmit", clientArgs);

}

Conguring containers
Many components share common UI and behavior or state. For example, dialogs have a
title, content area, and a button panel. Containers provide common layout and behavior
for multiple components. Components can be used within more than one container,
inheriting their UI and behavior from the container.

If you do not need container layout and behavior, you can simply include one component
within another using the <componentinclude> tag.

A container is a specialized component with the following characteristics:

Web Development Kit and Client Applications Development Guide 243

Conguring Components

• The container component definition includes a "component” parameter.
• The container class extends com.documentum.web.formext.component.
• The JSP page for the container has one <containerinclude> tag (multiple

containerinclude tags are not supported).
• Control values that are changed by the user are propagated to all instances of the

control in other embedded components. For example, a user selects two checked
out documents and then selects Checkin. The user enters a description for the first
file and selects Next. The description is propagated to the description field of the
next file.

• A container can display only one component at a time. The currently displayed
component is accessible through methods on the Component class.

• The components that are included in the container are defined in the <contains>
element. The first component in a list of contained components is the default
component.

• Containers have all of the Control, Form, and Component methods available to them,
because they extend the Component class. Additional Container class methods
support change query and notification, wizard navigation, and getting and setting
contained components.

• The container start page is defined in the container configuration file as the value
of the <pages>.<start> element.

The following topics describe containers:
• Container types, page 244
• Calling containers, page 247
• Configuring containers, page 249
• Components that must run within a container, page 250
• Creating modal containers, page 251

Container types

Use or extend a WDK container that is appropriate for your navigation purposes:

Table 5-1. Types of WDK containers

Condition Use

One component
Buttons OK, Cancel, Close, Help

dialogcontainer

One navigation component
breadcrumb control

navigationcontainer

244 Web Development Kit and Client Applications Development Guide

Conguring Components

Condition Use

One component with ordered pages
(Previous, Next)

wizardcontainer

Multiple selection combocontainer

Multiple contained components propertysheetcontainer

Multiple contained components with
wizard navigation

propertysheetwizardcontainer

Content transfer contentxfercontainer

Abstract container — The generic container is an abstract container that has no visible
layout. It does not support change notifications or wizard navigation. The generic
container surrounds a single contained component with HTML <head> and <body> tags.
When you invoke the container, you must supply the name of the contained component
as a parameter.

The generic container is extended by the dialogcontainer.

Dialog container — The dialog container extends the abstract container and adds
dialog support for a single contained component. The dialog layout contains a header
and footer. The header includes a title (MSG_TITLE) and object label (MSG_OBJECT).
The footer contains OK (MSG_OK), Cancel (MSG_CANCEL) or Close (MSG_CLOSE),
and Help buttons. Change notifications are called as appropriate for each button event.

The OK and Cancel buttons are disabled if canCommitChanges() or canCancelChanges()
return false, respectively. If both methods return false, the Close button is displayed.

Some examples of actions that use the dialogcontainer include removeuserorgroup,
add_translation (Web Publisher), newchangeset (Web Publisher).

Navigation container — The navigation container wraps navigation components and
provides a header with active breadcrumb and title controls. The breadcrumb allows the
user to navigate to an object that is displayed, and the drilldown component is updated
by the breadcrumb selection. Override this component definition to jump to another
navigation component using a breadcrumb.

The navigationcontainer definition includes a <navigation> element that specifies the
type of navigation.

Some examples of actions that use the navigationcontainer include versions, locations,
relationships, renditions.

Wizard container — The wizard container extends the dialog container and adds
wizard navigation support for a single contained component that has multiple pages.
The wizard layout adds Next (MSG_NEXT) and Previous (MSG_PREVIOUS) buttons.

Web Development Kit and Client Applications Development Guide 245

Conguring Components

Component.hasNextPage() and hasPrevPage() are called on the contained component
to determine when to enable and display the next and previous page navigation
buttons. The methods onNextPage() and onPrevPage() are called to switch the contained
component page when the user clicks the Next or Previous button. The component
within the container must support onNextPage() and onPrevPage(), which returns false
in the base Component class.

The taskcomponentcontainer in /webcomponent/config/library/workflow/taskmanager
extends the wizardcontainer. Use this component as an example of how to extend the
wizardcontainer. For information on programmatically navigating between next or
previous components, refer to Navigating within a container, page 441.

Combo container — The combo container extends the wizard container and adds
support for multiple instances of the same contained component. This allows the user to
perform multi-select operations for a component. An Apply to All prompt is displayed
when the user selects multiple operations. Change notifications and paging methods are
called as appropriate for each button event.

Control values that are changed by the user are propagated to all instances of the control
in other embedded components. For example, a user selects two checked out documents
and then selects Checkin. When the user enters a description for the first file and selects
Next, the description is propagated to the description field of the next file.

Some examples of actions that use the combocontainer include delete, rename, sendto,
removeattachment, abort, halt, or resume workflow.

Property sheet container — The property sheet container extends the wizard container
and adds support for multiple contained components within a property sheet. The
property sheet layout adds a tab (streamline view) or link (list view) for each contained
component. The labels for the tags are defined as the value of the MSG_TITLE key in the
properties resource file (*Prop.properties file) for each component.

The contained components are specified in the container XML configuration file,
within the <contains> tag. The default component, which is displayed first, is the first
component in the list. You can nest property sheets, so that the calling component is not
closed. You would call onComponentNested() in your event handler.

Some examples of containers that extend propertysheetcontainer include preferences,
locatorcontainer, properties, propertysheetwizardcontainer, advsearchcontainer.

Property sheet wizard container — The property sheet wizard container extends the
propertysheetcontainer container and adds support for wizard-type navigation through
the pages of a component (Previous and Next buttons) and through components in
the container (tabs).

Some examples of containers that extend the propertysheetwizardcontainer include
adminpropertysheetcontainer, newcabinet, newdoc, and newfolder containers.

246 Web Development Kit and Client Applications Development Guide

Conguring Components

Content transfer containers — Content transfer components must run within a content
transfer container to support the following common processes:
• Getting configuration information
• Handling checking of applets installation on the client
• Getting lists of object IDs for operations on multiple files
The ContentTransferContainer base class supplies support for the common processing
listed above, but it has no UI such as OK, Next, or Previous buttons. The container class
gets multiple selection arguments and initializes a list of object IDs. The container looks
up content transfer configuration settings from app.xml and servlet paths from web.xml.

The content transfer base container extends the combo container and implements
IContentXferServiceMgr. The base content transfer container class provides methods to
start the service, check applet installation, and get each of the configuration settings.

Calling containers

Containers can be invoked in the following ways:
• Calling a container by URL, page 247
• Calling a container by JavaScript, page 247
• Calling a container from an action, page 248

Calling a container by URL

You can call a component within a container from a JSP page or with a URL in the
browser. When you call a container, the component parameter is a required parameter.
The container must be invoked with a component name. Additional parameters,
optional or required, may be specified in the container component configuration file. The
contained component’s arguments are passed as URL arguments. For example:
http://wt/component/dialogcontainer?component=checkin&objectId=objectid

Note: You cannot call content transfer containers, or any container that extends
combocontainer, by URL. These containers are called by the LaunchComponent action
execution class, which encodes and passes in the required parameters.

Calling a container by JavaScript

You can call a contained component from a JavaScript function or event handler
in a JSP page. Two JavaScript functions post a server component page event to

Web Development Kit and Client Applications Development Guide 247

Conguring Components

a given URL: postComponentJumpEvent() to jump to another component, or
postComponentNestEvent() to nest another component. These JavaScript functions
are contained in the /wdk/include/componentnavigation.js file. The functions have
the following parameters:
• strFormId: The target form for the event. If null, the first form on the page is assumed.
• strComponent: The target component URL for the jump or nest.
• strTarget: The target frame (optional). Default is the current frame. If target frame

does not exist, a new window will pop up.
• strEventArgName: Event argument name (optional)
• strEventArgValue: Event argument value (optional)
For example:
postComponentJumpEvent(null, "search", "content", "queryType", "string",
"query", strValue);

Calling a container from an action

You can specify in an action configuration file that a container and component will
be launched for a given action. If the contained component is not named, the default
component will be displayed within the container.

The action execution class in an action definition must be LaunchComponent, which will
launch the container and pass in required parameters. If your action needs to check
permissions on an object, use the execution class LaunchComponentWithPermitCheck.
For example, content transfer and delete components need a permission check.

Specify the component to be launched and the container for the component as child
elements of the execution element in the action configuration file. In the following
example from dm_sysobject_actions.xml, the attributes action launches the history
component within the properties container:
<action id="attributes">
<params>
<param name="objectId"></param>

</params>
...
<execution class="com.documentum.web.formext.action.LaunchComponent>
<component>history</component>
<container>properties</container>

</execution>
</action>

You can also specify the type of navigation to the component: jump, returnjump, or
nested. By default, the launched component is nested within the current component.

248 Web Development Kit and Client Applications Development Guide

Conguring Components

Conguring containers

Containers are configured with XML definitions in the same way that components are
configured. The container definition has a <contains> element, with child <component>
elements that are supported by the container. You can configure containers to require a
visit to one or more components before changes are committed. You can also change
container labels using the string properties file for the container. You can set the default
component by listing it first within the <contains> element.

Require visit

The requiresVisit attribute on a component element requires a component to be visited
before a change is committed, such as an OK button. The requiresVisit attribute
can be set on any component in a container definition for containers that extend
propertysheetcontainer. Set requiresVisit to true to declare that a particular component
must be visited before the container can commit changes. In the following example, the
attributes component must be viewed before the user can commit changes:
<contains>
<component>newFolder</component>
<component requiresVisit='true'>attributes</component>
<component>permissions</component>

</contains>

Example 5-6. Requiring a component to be visited:
In the following example, the OK button will not be enabled until the attributes
component has been visited:
<contains>
<component>newFolder</component>
<component requiresVisit='true'>attributes</component>
<component>permissions</component>

</contains>

A component can also require a visit in its component definition, which will have the
same effect as the component attribute setting in the container definition. The component
must be contained within a container that extends propertysheetcontainer. The same
example above would be as follows in the attributes configuration file:
<requiresVisitBeforeCommit>true</requiresVisitBeforeCommit>

Container labels

Documentum containers provide container labels. For example, the dialogcontainer
contains a dialog header, OK, and Cancel buttons.

Web Development Kit and Client Applications Development Guide 249

Conguring Components

Contained components can override the NLS strings that are defined in a container’s
layout. The contained component must provide label values in an NLS properties file for
the following NLS IDs in order to override the values for the container:

• MSG_TITLE: Container’s title string, such as ‘Properties’
• MSG_OBJECT: Container’s object/subject string, such as ‘foo.xml’
• MSG_PREV: Label for the Container button that navigates to the previous page
• MSG_NEXT: Label for the Container button that navigates to the next page
• MSG_OK: Label for the Container OK button
• MSG_CANCEL: Label for the Container Cancel button
• MSG_CLOSE: Label for the Container Close button
The contained component can also override a string by overriding the
Container.getString() method.

Example 5-7. Overriding a string
The following example overrides Container.getString to set a string at run time:
public String getString(String stringId)
{
String strResult = "";
if (stringId.equals("MSG_OBJECT”)
{
strResult = …

}
else
{
strResult = super.getString(stringId);
}
return strResult;

}

Components that must run within a container

Some components cannot stand alone and must run within a container. The container
supports multiple selection, calling the contained component for each object that has
been selected.

The content transfer components (cancelcheckout, checkin, checkout, edit, export,
import, and view) need access to content transfer configuration that is read by the
container class. The newdocument, newfolder, and newcabinet components must also be
used within their respective containers.

250 Web Development Kit and Client Applications Development Guide

Conguring Components

Creating modal containers

Any component can be modal. (Refer to Using modal windows, page 425 for information
on modal windows.)

By default, all nested components, including components within containers, are modal,
and all other component navigation is not modal. Nested components are set to modal
by the WDK framework. If you do not want your nested component to be modal, call
setModal(false) in your component onInit() method.

You can use WDK template containers to develop your own modal container:
• Modal container with tabs

Use webcomponent/library/properties/properties.jsp.
• Modal container without tabs, for screens with a breadcrumb or no navigational

element

Use webcomponent/library/create/newContainer.jsp
• Modal container with a datagrid in the content area

Use webcomponent/library/async/jobstatus.jsp. (Wrap datagrids with a 1-pixel box.)

Conguring locators
A locator presents the user with a UI to locate an object in a docbase. The type of the
object can be defined via component configuration or passed as a parameter by the
caller component.

The following locators are available for specific object types:
• Sysobject (generic) locators

— objectlocator: Abstract base locator for a repository object

— sysobjectlocator: Locates dm_sysobjects

— myobjectlocator: Locates objects checked out and recently modified by user

— recentsysobjectlocator: Locates dm_sysobjects recently used or selected (in
locator) by user

— subscriptionlocator: Locates dm_sysobjects subscribed to by user

— locatorcontainer: Contains generic locators, allowing multiple located objects
• User and group locators (the locators treat the group as a logical subtype of the user)

— userorgrouplocator: Locates users or groups

Web Development Kit and Client Applications Development Guide 251

Conguring Components

— recentuserorgrouplocator: Locates users or groups recently used or selected (in
locators) by user

— grouplocator: Displays a hierarchal view of all dm_group objects

— recentgrouplocator: Locates groups that were recently selected or used in a
locator

— grouplocatorcontainer: Contains group locators

— useronlylocator: Displays a hierarchal view of all dm_users

— recentuseronlylocator: Locates users that were recently selected or used in
a locator

— useronlylocatorcontainer: Contains dm_user locators
• dm_document locators

— alldocumentlocator: Displays a hierarchal view of all dm_document objects

— mydocumentlocator: Locates documents checked out and recently modified
by user

— recentdocumentlocator: Locates documents that were recently selected or used
in a locator

— documentsubscriptionlocator: Locates dm_document objects subscribed to by
user

— documentlocatorcontainer: Contains dm_document locators
• dm_folder locators

— allfolderlocator: Displays a hierarchal view of all dm_folder objects

— recentfolderlocator: Locates folders that were recently selected or used in a
locator

— foldersubscriptionlocator: Locates dm_folders subscribed to by user

— folderlocatorcontainer: Contains dm_folder locators
• dm_policy locators

— alllifecyclelocator: Displays a flat view of all lifecycle objects

— lifecyclefolderlocator: Displays a hierarchal view of all lifecycle objects

— recentlifecyclelocator: Locates lifecycles that were recently selected or used in
a locator

— lifecyclesubscriptionlocator: Locates lifecycles subscribed to by user

— lifecyclelocatorcontainer: Contains lifecycle locators
• dm_process locators

— allwftemplatelocator: Displays a flat view of all workflow template objects

252 Web Development Kit and Client Applications Development Guide

Conguring Components

— wftemplatefolderlocator: Displays a hierarchal view of workflow template
objects

— wftemplatesubscriptionlocator: Locates subscribed workflow templates

— mywftemplatelocator: Locates templates checked-out and recently modified
by user

— recentwftemplatelocator: Locates workflow templates recently used by user

— wfemplatelocatorcontainer: : Contains workflow template locators
A locator can present different UIs depending whether multi-selection or single selection
is enabled. Each locator component can be either run in a locator container or standalone.
The locators within the same container work together to give a user a different view of
the available objects. The locator configuration contains a <views> element that defines
the following views:
• root

Displays a hierarchical list of root containers of the selectable objects, for example,
cabinets or folders

Figure 5-2. Root (cabinet) locator

• flatlist

Displays all the selectable objects that meet the criteria. By default, myobject and
recently used object locators display results in a flatlist.

Web Development Kit and Client Applications Development Guide 253

Conguring Components

Figure 5-3. Flatlist locator

• container

Displays a hierarchical list of objects within the selected root container. By default,
subscriptions locators display results in a container (hierarchical) list.

Figure 5-4. Container locator

For example, a dm_sysobject locator can define the cabinet list as the root view and
dm_folder objects as the containers. You can configure whether the container is

254 Web Development Kit and Client Applications Development Guide

Conguring Components

selectable. If it is not selectable, the user will be allowed to drill down into the container,
but the container itself can not be selected.

Filters provide queries to locate the objects. The query is built from the configuration
file elements content in the following way, with configuration elements within square
brackets ([element_name]):
select [objecttype] from [includetypes] where not type [exclusiontype] and
[attribute1] [predicate1] [value1][and | or] [attribute2] [predicate2] [value2] ...

<objecttype> Base type to be located

<containerselectable> Set to true to specify that the container
type is selectable when the container is a
subtype of the objecttype.

<privatecabinetvisible> (In sysobject locator definitions) Set to
true to display in root view the private
cabinets not owned by the session user

<allversionsvisible> (In sysobject locator definitions) Set to true
to display all versions of located objects

<privategroupvisible> (In user or group locators) Set to true to
display private groups

<flatlist> Set to true to display a flat list of all
selectable objects. Overrides the views
available in the parent type.

<views> Contains <view> elements

<view> View element configures root (cabinet
view), container, and flatlist views. The
applyto attributemust specify one ormore
of the views in a comma-separated list, for
example, applyto=’root,container,flatlist’.

<queryfiltersets> Contains <queryfilterset> elements that
present a drop-down list that will be
visible if there is more than one filter
(<queryfilterset>) defined.

<queryfilterset> Contains a set of queries contained in
<queryfilter> elements that filter the
selection list, for example, folders only.
Defines one dropdown item. Each view
can contain up to three filter sets.

Web Development Kit and Client Applications Development Guide 255

Conguring Components

<queryfilter> Each filter contains a DQL query: select
<includetypes> from <containertypes>
not <excludetypes> where <attribute>
<predicate> <value> <and> <attribute>
<predicate> <value> ...

<queryfilter>.<displayname> Specifies the name to be displayed for the
queryfilter. Can contain a <nlsid> element
or text string.

<queryfilter>.<containertypes> Comma-separated list of navigable object
types, such as dm_cabinet, dm_folder.

<includetypes> Optional element (cannot be more than
one instance of this element) that specifies
a comma-separated list of Documentum
types to be included in the view. If the
container is not listed along with the
subtypes within the container, it will not
be included in the query

<excludetypes> Optional element (cannot be more than
one instance of this element) that specifies
the types of objects to be excluded
from the view.If a container type is not
one of the subtypes listed in this tag,
the containers are not excluded. If a
container type is listed, the objects of
the container type will be hidden, for
example, dm_folder, dm_document hides
all folders or documents.

<attributefilters> Cannot be more than one instance of this
element. Contains <attributefilter> sets
that filter objects based on their attributes

<attributefilter> Contains <and>, <attribute>, <predicate>,
and <value> to compose an attribute filter

<attribute> (Required) String attribute name, for
example, a_content_type (single tag only)

<predicate> Contains a logical operation such as
equals. Valid values: sw (starts with),
ew (ends with), co (contains), nc (not
contains), eq (equal), ne (not equal), gt
(greater than), ge (greater than or equal),
lt (less than), le (less than or equal)

256 Web Development Kit and Client Applications Development Guide

Conguring Components

<value> Use the attribute dqlformatted=’false’
to quote and escape a value. Use the
attribute casesensitive=’true’ to require
a case-sensitive comparison (must be
true for integer attributes on Content
Server/DB2 environment)

<and> Boolean: true to combine attribute filters,
false to perform OR filter (single tag only)

Using JSP pages outside a component
You can call JSP pages directly in your WDK 5 application if the pages do not require
a session. If the JSP page requires a session, you must make it into a component. Your
component definition for a JSP page must have a <pages>.<start> element that points to
your JSP page. Do not specify a <class> element for your component.

The following example shows a configuration file for a simple component that uses a
JSP page and requires a session:
<config>
<scope type="dm_sysobject">
<component name="sample">
<pages>
<start>/custom/sample/sample.jsp
</start>

</pages>
</component>
</scope>
</config>

Web Development Kit and Client Applications Development Guide 257

Conguring Components

258 Web Development Kit and Client Applications Development Guide

Chapter 6
Conguring Application Connector
menus, components, and actions

These topics are included:
• Overview, page 259
• Modifying the Documentum menu, page 259
• Customizing application connector components and actions, page 265

Overview
EMC | Documentum Application Connectors enable Windows applications, such
as Microsoft Word, Excel, and Powerpoint, to check in and check out files from
Documentum repositories (as well as many other tasks, such as searching repositories)
through a combination of .NET client assemblies and runtime services, and components
running on EMC | Documentum WDK-based application server applications (for
example, Webtop).

Modifying the Documentum menu
These topics are included:
• Overview, page 260
• Removing menu items from all application connectors, page 261
• Modifying menu items for all applications, page 261
• Adding custom menu items to all applications, page 264
• Restricting menu items to specific applications, page 264

Web Development Kit and Client Applications Development Guide 259

Conguring Application Connector menus, components, and actions

Overview

EMC | Documentum Application Connectors create a standard Documentum menu
in Microsoft Word, Excel, and Powerpoint. The standard Documentum menu items
perform functions to access objects in repositories. You can remove and modify standard
Documentum menu items as well as add your own custom menu items. Standard menu
items and their functions include the following:
• Login As— Log in to a repository
• Log out— Log out of a repository
• Create New from Template— Create a new file from a template stored in a

repository
• Save— Save a file to a repository
• Save As— Save a file with a different name or to a different location
• Open— Open an object from a repository
• Save a copy of a file into a repository
• Search Repositories— Search a repository
• Properties— Display the attributes of an object
• Locations—Display the locations of an object in a repository
• Versions—Display all the versions of an object in a repository
• Renditions—Display all the renditions of an object in a repository
• Lifecycle > Promote—Moves a file to the next state in a lifecycle.
• Lifecycle > Demote—Moves a file back to the previous state in a lifecycle.
• Lifecycle > Attach—Adds a file to the initial state in a lifecycle.
• Lifecycle > Suspend— Pauses a file in a lifecycle by moving it to a Suspend state.
• Lifecycle > Detach— Removes a file from a lifecycle.
• Lifecycle > Resume— Restarts a file in a lifecycle by moving it from the Suspend

state to the state it was in before it was suspended.
• Cancel Checkout— Cancel checkout of an object (unlock)
• Send to > Quick Flow— Send file to a distribution list
• Send > Email Recipient as Web Link— Send file to single user (using a locator)
• Send to >Workflow— Start a workflow and attach the file
• Help— Display online help for your application connector.
The Documentum menu is constructed from a global menu that is configured
in two sources: your application connector’s app.config file and the application
connector menu definition file, appintgmenubar_menugroup.xml file, which
is located in /webcomponent/config/library/appintgmenubar. At runtime, the
appintgmenubar_menugroup.xml file is downloaded to the local machine. The

260 Web Development Kit and Client Applications Development Guide

Conguring Application Connector menus, components, and actions

application connector is initialized and is updated on demand—that is, the
appintgmenubar_menugroup.xml file is downloaded whenever its version changes.

Note: The global menu for Application Connectors for Microsoft Office applications are
located in %PROGRAMFILES%\Microsoft Office\OFFICE{10, 11}, where the variable
%PROGRAMFILES% is the path to the Program Files directory on the client machine.
This part of the application menu cannot be configured.

When a user chooses a menu item, a native modal dialog window that hosts a browser
control is launched, and the corresponding WDK component or action specified in the
appintgmenubar_menugroup.xml file is called. The browser control loads an action URL
for the selected menu item. This URL consists of action ID, clientenv qualifer, theme,
and repository.

Webtop uploads an action map each time a repository document is opened. The action
map is based on the user session and the selected object. This action map enables or
disables menu items based on the user context. For example, when the user logs into
a new repository, a new action map is downloaded to the client. This dynamic menu
structure is stored in client memory and is not persisted on the client.

Removing menu items from all application connectors

To remove a menu item from all application connectors:

1. On the WDK application server machine, copy the /webcomponent/config/
library/appintgmenubar/appintgmenubar_menugroup.xml file to your application
custom/config directory.

2. Extend the WDK version of this component by changing the <menugroup> element
as follows:
<menugroup id="appintgmenubar" extends="
appintgmenubar:webcomponent/config/library/appintgmenubar/apptintgmenubarmenugroup.xml">

3. In your custom version of appintgmenubar_menugroup.xml, delete the
<actionmenuitem> element.
You can identify the menu item by finding the string in <menuitem>.<value> that
matches the menu item name displayed on the menu.

4. Save the appintgmenubar_menugroup.xml file and restart the application server.

Modifying menu items for all applications

To modify menu items that call application connector components and actions
in Webtop, you modify elements and attributes in a <menugroup> element in

Web Development Kit and Client Applications Development Guide 261

Conguring Application Connector menus, components, and actions

/webcomponent/config/library/appintgmenubar/appintgmenubar_menugroup.xml.
Refer to Table 6–1, page 262 for a description of the appintgmenubar_menugroup.xml
file elements.

Note: Each action or component in the menu definition (that is, the value of the <action>
or <component> element) can have a corresponding dispatch <item> element in the
appintgcontroller component definition that provides a specific success or failure page.
If the menu item does not have an entry in the appintgcontroller component definition,
the default success and failure pages are used.

Table 6-1. Application Connectors menu conguration elements

Element Description

<menugroup> Content authoring application menu
item group. The id attribute specifies
the menu configuration ID. Contains one
<contentsourcemenuitem>, one or more
<actionmenuitem>, <nlsbundle>, and
optional <menu> and <menuseparator/>
elements.

<contentsourcemenuitem> Contains one or more <value> elements

<contentsourcemenuitem>.<value> Contains a string or <nlsid> element
describing each source

<menuseparator/> Displays a separator between menu items

<menu> Optional. Set of <actionmenuitem>
elements that form a submenu for the
<menu> item. To remove an entire
submenu, remove the <menu> element.

<actionmenuitem> Content authoring application menu
item that contains <aidynamic>,
<name>, <value>, and either <action>
or <component> plus optional elements
that are described below. To remove
an item from the menu, remove the
<actionmenuitem> element.

.<nlsid> Optional key to a localized label

262 Web Development Kit and Client Applications Development Guide

Conguring Application Connector menus, components, and actions

Element Description

.<aidynamic> Specifies the way in which the
state of the authoring appli-
cation affects the menu item:
no_dynamic: item always available
aiconnection: item enabled
if connected to repository
any_content: item enabled if repos-
itory or external document is open
repository_content: item en-
abled if repository content is open

.<name> Specifies the menu item name

.<value> Contains a string value or <nlsid> element
that resolves a string label for the menu
item

.<action> Maps a menu item to a WDK action.
Either <action> or <component> must be
present in the <actionmenuitem> element.
To create a custom application connector
action, see Customizing application
connector components and actions, page
265.

.<component> Maps a menu item to a WDK component.
Either <action> or <component> must be
present in the <actionmenuitem> element.
To create a custom application connector
component, see Customizing application
connector components and actions, page
265.

.<arguments><argument> The values of the name and value attribute
on the <argument> element are passed
to the WDK action. The name must be
a defined parameter for the action, and
the value must be a valid value for that
parameter.

Web Development Kit and Client Applications Development Guide 263

Conguring Application Connector menus, components, and actions

Adding custom menu items to all applications

To add a custom menu item:

1. On the WDK application server machine, copy the /webcomponent/config/
library/appintgmenubar/appintgmenubar_menugroup.xml file to your application
custom/config directory.

2. Extend the WDK version of this component by changing the <menugroup> element
as follows:
<menugroup id="appintgmenubar" extends="
appintgmenubar:webcomponent/config/library/appintgmenubar/apptintgmenubarmenugroup.xml">

3. Add an <actionmenuitem> element in the desired location in the
appintgmenubar_menugroup.xml file.
See Table 6–1, page 262 for a description of the child elements that comprise the
<actionmenuitem> element.

4. Save your custom appintgmenubar_menugroup.xml file and restart the application
server.

Restricting menu items to specic applications

You can restrict menu items to specific applications—that is, remove them from or add
them to specific applications.

For example, if your users use lifecycles for Word documents but not for Excel and
PowerPoint documents, then you can remove the Lifecycle menu items from Microsoft
Excel and PowerPoint, but keep it in Microsoft Word.

To restrict a menu item to specic applications:

1. On the WDK application server machine, copy the file /webcomponent/config/
library/appintgmenubar/appintgmenubar_menugroup.xml to the WDK application
custom/config directory.

2. Extend the WDK version of this component by changing the <menugroup> element
as follows:
<menugroup id="appintgmenubar" extends="
appintgmenubar:webcomponent/config/library/appintgmenubar/apptintgmenubarmenugroup.xml">

3. Open app.xml in /wdk and locate the element <environment>.<clientenv_structure>.
<branch>.<parent> with the value appintg. In the <children>.<child> elements, find
your application string that matches the Microsoft application, for example, msword
for Microsoft Word.

264 Web Development Kit and Client Applications Development Guide

Conguring Application Connector menus, components, and actions

4. To remove a menu item for specific applications only, edit your extended
appintgmenubar_menugroup.xml file. Enclose the <actionmenuitem> element in
a <filter> element using the not keyword, specifying application name strings,
separated by commas .(You can identify the menu item by finding the string in
<menuitem>.<value> andmatching it to the menu item name displayed on the menu.)
For example, to remove the Create New from Template menu item for Excel and
Word applications:
<filter clientenv="not msword, not msexcel">
<actionmenuitem>

<aidynamic>no_dynamic</aidynamic>
<name>new_from_template</name>
<value>

<nlsid>MSG_NEW_FROM_TEMPLATE</nlsid>
</value>
<action>appintgnewfromtemplate</action>
<arguments>

<argument name="contentType" value="contextvalue"/>
</arguments>

</actionmenuitem>
</filter>

5. To limit a menu item to specific applications, in the copy of appintgmenubar_
menugroup.xml, enclose the <actionmenuitem> element in a <filter> element that
specifies the desired application name strings, separated by commas.
For example, to add the Create New from Templatemenu item for Word and Excel:
<filter clientenv="msword, msexcel">
<actionmenuitem>

<aidynamic>no_dynamic</aidynamic>
<name>new_from_template</name>
<value>

<nlsid>MSG_NEW_FROM_TEMPLATE</nlsid>
</value>
<action>appintgnewfromtemplate</action>
<arguments>

<argument name="contentType" value="contextvalue"/>
</arguments>

</actionmenuitem>
</filter>

6. Save your custom appintgmenubar_menugroup.xml file and restart the application
server.

Customizing application connector
components and actions

These topics are included:
• Overview, page 266

Web Development Kit and Client Applications Development Guide 265

Conguring Application Connector menus, components, and actions

• List of application connector components and actions, page 266
• Adding application connector components and actions, page 266
• appintgcontroller component, page 267
• Managing events, page 270
• Managing authentication, page 271

Overview

All Documentum menu selections in the content authoring application are dispatched
through the Application Connectors controller component appintgcontroller. This
component launches an action or component via a URL and adds messages and return
listeners so that it can return messages, errors or results to the native modal dialog
window. If authentication is required, the appintgcontroller component jumps to the
appintgcontrollerlogin component.

All application connector components and actions are described inWeb Development
Kit Reference Guide.

List of application connector components and actions

All Application Connectors component and action names and configuration files are
prepended with the text, appintg.

Application Connectors components are:

appintgcontroller, appintgcontrollerlogin, appintghelp, appintgnewfromtemplate,
appintgopen, appintgopenfrom, appintgopenfromcabinetslocator,
appintgopenfromcategorieslocator, appintgopenfromlocatorcontainer,
appintgopenfrommyfileslocator, appintgopenfromrecentfileslocator,
appintgopenfromsubscriptionslocator, appintgsaveascabinets,
appintgsaveascategories, appintgsaveascontainer, appintgsaveasmyfiles,
appintgsaveasrecentfiles, appintgsaveassubscriptions,

Application Connectors actions are:

appintgnewfromtemplate, appintgopenfrom, appintgsaveas,

Adding application connector components and actions

In general, you add application connector components and actions in the same way as
other WDK components and actions. You can create a completely new component or

266 Web Development Kit and Client Applications Development Guide

Conguring Application Connector menus, components, and actions

action or extend an existing one. Extending an existing component or action means that
the new component or action inherits the existing component or action’s configuration
file <component> or <action> element’s child elements.

To create a new Application Connector component or action:

1. Create or extend a component or action definition.

2. Remove or add configuration structures or JSP user interface elements based on your
application connector using the <filter> element.

3. To display the new component’s own success and failure JSP pages, extend the
appintgcontroller component definition and add the new component’s success and
failure JSP pages in the appintgcontroller component configuration file.
For example, for the appintgnewmenu menu item, the shownewcomponentpage
success page is specified, but no failure page is specified, so the default failure page
in <pages><failure> is used.
<item>

<name>appintgnewmenu</name>
<type>action</type>
<successpage>shownewcomponentpage</successpage>

</item>

You could add your own failure page in your extended component definition:
<item>

<name>appintgnewmenu</name>
<type>action</type>
<successpage>shownewcomponentpage</successpage>
<failurepage>myfailurepage</failurepage>

</item>

4. Either add a new menu item or modify an existing one that causes the
appintgcontroller to execute and display your component.
Refer to Restricting menu items to specific applications, page 264 and Adding custom
menu items to all applications, page 264 for more information.

5. Optionally, handle or fire application connector browser or WDK action completion
events.
Refer to Managing events, page 270 for more information.

appintgcontroller component

The appintgcontroller component consists of the AppIntgController servlet and
JavaScript. This component performs these functions:
• Sets the locale, theme, Webtop view, and current repository if they are defined in the

component arguments or stored in a cookie. If they are not in the argument list or a

Web Development Kit and Client Applications Development Guide 267

Conguring Application Connector menus, components, and actions

cookie, the default values as defined in the appintgcontroller component definition
are used.

• Enables login: Checks for connection requirement and, if required, sets a menu
version event and forces login. Provides the loginas action that disconnects from all
repositories and allows the user to log in with different credentials.

• Dispatches a JSP page or action as specified in the <type> element:

Value of page in <type> element dispatches an event and, if the dispatch item has a
<page> element, loads a named JSP page from the component definition in a native
modal dialog window.

Value of action in <type> element dispatches the action, adds a return listener, and
displays the success or failure page after action completion. Adds context arguments
to a menu action map that is downloaded to the client.

If the menu item does not have a <dispatchitems> entry, the action or component is
dispatched and the default success or failure page is used.

The appintgcontroller dispatches menu items from the menu that is named in
the <menugroupid> element of the appintgcontroller component definition. Each
action or component that is defined as a menu item in the menugroup definition (in
appintgmenubar_menugroup.xml) can have a corresponding entry of type "action” in the
appintgcontroller component definition. This allows you to configure a specific success
or failure page for the action. For example, for the appintgnewfromtemplate menu item,
there is an item in the controller definition (in apptgcontroller_component.xml) that
specifies a success page:
<dispatchitems>
<item>
<name>appintgnewfromtemplate</name>
<type>action</type>
<successpage>opendocumentevent</successpage>

</item>
</dispatchitems>

Table 6–2, page 268 describes the configuration elements for dispatching actions or
components.

Table 6-2. Appintgcontroller <dispatchitems> elements

<item> Contains one of each: <name>, <type>,
and either <page> or <successpage>

.<name> Contains the name of a menu action, if the
type is action. Contains the name of an
event, if the type is page.

.<type> Specifies the type of menu item to
dispatch: action or page

268 Web Development Kit and Client Applications Development Guide

Conguring Application Connector menus, components, and actions

.<page> Specifies a named child element of
<pages>, to launch a page

.<successpage> Optional. Specifies a named child element
of <pages>, to launch a success page
after action completes. If this element is
not present, the default success page in
<pages><success> is used.

.<failurepage> Optional. Specifies a named child element
of <pages>, to launch a failure page
after action fails. If this element is not
present, the default success page in
<pages><success> is used.

When the user selects a menu item, the appintgcontroller builds a URL, and the
requested page loads in a modal dialog window that hosts a browser control within your
application. If the menu item maps to an action, the WDK action dispatcher performs
the action and returns the success or failure JSP page to the modal dialog window.
If the menu item maps to a component, the WDK component dispatcher returns the
component JSP start page to the modal dialog window.

Each JSP page that is named for a dispatch item must be defined in the apptgcontroller
component definition. For example, the appintgopendocumentevent item
specifies a value of opendocumentevent for the <successpage> element. The
element <pages>.<opendocumentevent> defines this page and has a value of
/webcomponent/library/appintgcontroller/appIntgOpenDocumentEvent.jsp, which
specifies the path to the page to be loaded.

The following default pages are defined within the <pages> element of the component
definition. If an item does not specify a success or failure page, then the default page is
used:

Table 6-3. Required pages in appintgcontroller component denition

<start> Specifies the path to an error handler page
that is loaded if the action or component
is not dispatched

<disconnect> Specifies the path to a page that is used
to disconnect existing sessions and return
to the controller for new login. This page
invalidates the HTTP session.

Web Development Kit and Client Applications Development Guide 269

Conguring Application Connector menus, components, and actions

<success> Specifies the path to the default success
page that is loaded after the action
completes successfully

<failure> Specifies the path to the default faliure
page that is loaded after the action fails
to complete

Managing events

The browser control registers an event listener to respond to WDK component client
events.

WDK components generate events for AppConnectors. The firing of events are
configured in the JSP page using control tags. Three types of events can be fired:
• Cross-integration events, which communicate state between applications
• Browser events, which communicate client-side JavaScript execution
• WDK action completion events, which communicate server-side state changes
The following controls fire AppConnectors browser events:
• <dmf:body showdialogevent=”true”...>

Fires the showdialogevent when a JSP page is rendered, to open a modal dialog
window in the client application and display the component or container start page.
This event is not needed in the component JSP page if the container JSP page fires the
event. For example, refer to /wdk/system/changepassword/changepassword.jsp.

• <dmf:fireclientevent>

Fires a client event on page rendering that is handled on the client. For events that are
handled by AppConnectors, an aiEvent is fired and passed to the AppConnectors.
The actual event name is passed in a <dmf:argument> element that is contained
within <dmf:fireclientevent>. The AppConnectors handle the event in the Windows
client application.

• <dmf:firepresubmitclientevent>

Fires an aiEvent before submitting the control onclick event to the server.
Application event handlers for showdialogevent and aiEvent are defined in a .js file. The
file is included in the JSP page as follows:
<script language="JavaScript" src="
<%=strContextPath%>/wdk/include/appintgevents.js">

</script>

The following action completion events can be fired by WDK components:
• Success: LoginSuccess, CheckinSuccess, CheckoutSuccess

270 Web Development Kit and Client Applications Development Guide

Conguring Application Connector menus, components, and actions

• ShowMessage
• OpenDocument: arguments filenamewithpath, object Id, objectType, contentType,

lockOwner, folderId, actionMap

Managing authentication

For a content authoring application that has a connector installed, the authentication
scope is read at startup from the .config file, for example, winword.exe.config. The
following manual authentication scopes are supported:
• system

Allows a single user to connect to any repository in more than one content authoring
application. Credentials are stored as a singleton.

• process

Allows a single user to connect to any repository within the same application
process. Credentials are stored separately for each content authoring application.

• none

Allows each user to connect to a repository within the process. Different processes
can create repository sessions for different users. Credentials are not stored, and
timeout of the HTTP session causes a dialog box to be shown. Other authentication
schemes such as single sign-on do not use the Credential Service and have a scope
of "none.”

For the first two authentication scopes, the user credentials are stored securely in the
Credential Service, a Windows service executable that runs under Service Control
Manager.

The manual authentication scope is configured in the .config file, in the
<manualAuthenticationScope> element, similar to the following:
<wdkAppLocalInfo name="webtop" ...>
<host>http://myserver:port/webtop</host>
<folder>webtop2</folder>
<manualAuthenticationScope>system</manualAuthenticationScope>

</wdkAppLocaInfo>

The AppConnectors login page, appintglogin.jsp, fires the client event aiEvent when the
page loads, which brings up a native modal dialog window that hosts a browser control
for login to the application.

The default height and width of the login window can be configured in the
<dmf:fireclientevent> tag on the login JSP page. Users can increase the size by dragging
it, and the new size will be used the next time the same component is launched. The
default size that is specified in the JSP page becomes the minimum size for the modal
dialog window.

Web Development Kit and Client Applications Development Guide 271

Conguring Application Connector menus, components, and actions

Changing the application server for the AppConnectors client
The 5.3 release supports a single content source, that is, a WDK-based application as
the gateway for content from a Documentum repository. You must manually edit the
app.config files of an Application Connector to change the active content source.

1. Locate the app.config files, for example, WINWORD.exe.config,
EXCEL.exe.config, POWERPNT.exe.config. These files are located in
two places. The default installation location for Microsoft Office files is
%ProgramFiles%\Microsoft Office\OFFICE{10,11} and %ProgramFiles%\Microsoft
Office\OFFICE{10,11}\Documentum. Both files in a pair must be modified together.

2. Locate the <wdkAppLocalInfo element>.

3. Change the <host> subelement value to the URL to the desired instance, for example,
http://localhost:8080/webtop

The user can choose a different instance of an application server content source and
save it as a user preference.

272 Web Development Kit and Client Applications Development Guide

Chapter 7
Conguring Preferences

Component preferences can be used to set preferences for all users. These preferences apply to a
single component and are exposed in the component definition in order to make them configurable.

Preferences can be exposed to individual users. The user environment preferences are configured in
the definitions located in the /webcomponent/config/environment/preferences subdirectories.

The following topics describe preference configuration:
• Preference definition, page 273
• Configuring default component and user preferences, page 276
• User column display preferences, page 277
• Sample preference definitions, page 281
Custom preferences for components or users must be implemented so that the component uses the
component or user preference in rendering. Refer to Chapter 21, Implementing Component and
User Preferences for details.

Preference denition
A component can define its preferences within a <preferences> element or as a custom
element. If the component preference will not be exposed as a user preference,
it is simpler to define the preference within a custom element. For example, the
myobjects_drilldown component defines a preference of displaying the user’s folders
through a custom element, <showfolders>. The value of this element is used to set the
preference for all users.

The following table shows elements that can be used within a <preferences> element to
define preferences for a component:

Web Development Kit and Client Applications Development Guide 273

Conguring Preferences

Table 7-1. <preference> elements

Element Description

<preference id=’name’ disabled=’true> Defines the preference and its required ID
attribute. Disabled attribute is optional
and defaults to false.

<label> Required. Sets the display name of the
preference.

<description> If supplied, the description is displayed
underneath the main row of subcontrols.

<nlsid> Inside <label> and <description . If
present, the value is resolved from the
<nlsbundle> referenced in the component
definition file.

<type> Required. Value type: int | string
|boolean | columnlist

<value> Default value for the preference

<position> Position of the value control: right
(default) | left

<display_hint> Forces the control to use a type of display:
password (for strings or integers) |
dropdownlist | listbox | hidden. A
<constraints> element containing one or
more <element> elements must be present
for dropdownlist or listbox.

<listbox_size> If you are using a listbox , use this element
to specify how many elements are visible
in the listbox at any one time (default = 5).

<constraints> Preference constraints. If the display_hint
tag is absent, the control will look for a
<lowerend> and <upperend> for an int
type. For other types this element will
be ignored. With the display_hint tag
present the control will look for <element>
instead of <constraints>.

<lowerend> Lower limit for int. For other types, and
when the display_hint element is present,
<lowerend> will be ignored.

274 Web Development Kit and Client Applications Development Guide

Conguring Preferences

Element Description

<upperend> Ipper limit for int. For other types, and
when the display_hint element is present,
<ipperend> will be ignored.

<element> Element in a list of int or string type.
Used with <display_hint> to build a
list of elements for a dropdown list or
listbox. The value of <element> both the
preference value and its description.

<element value=”some_value” Same as <element>, to be used to present a
different description from the preference
value. The value is in the element
attribute, and the description is in the
element content..

<editcomponent> Configures column lists only (<type>
columnlist</type>). Specifies the
component to launch for editing the
preference.

<editcontainer> Configures column lists only (<type>
columnlist</type>). Specifies the container
to launch for editing the preference.

<inherits> Configures column lists only (<type>
columnlist</type>). Specifies the
preference definition that sets the columns
to be displayed. A checkbox will be
displayed. If checked, the preference
specified in the <inherits> element will be
used.

String and integer preferences are displayed in a text box (default), listbox, or
dropdownlist. These can be displayed with a set of values to choose from (preference
assistance). Boolean preferences are displayed in a checkbox. Column lists or attributes
are displayed by the columnlist or attributelist control, respectively.

A hidden preference has the display_type set to hidden and renders a hidden field,
without label or description. The hidden preference can be programmatically accessed.

Web Development Kit and Client Applications Development Guide 275

Conguring Preferences

Conguring default component and user
preferences

All component preferences that are exposed within a <preferences> element in a
component can be configured with default values and selections. Copy the component
definition into the /custom/config directory and change the definition to extend the
original definition. Configure the values within a <preference> element based on the
rules presented in Preference definition, page 273.

For example, to change the number of days for which to display the user’s objects
in the Webtop streamline view, copy the file myfiles_streamline_component.xml in
/webtop/config to /custom/config and change the component element to the following:
component id="myfiles_streamline" extends="
myfiles_streamline:/webtop/config//myfiles_streamline_component.xml"

Because the Webtop component doesn’t change the preferences of the WDK component
definition, you will need to open the WDK definition in myobjects_drilldown_
component.xml, located in /webcomponent/config/library/myobjects, and copy the
<preferences> element into your new component definition. You can change the value of
<modifiedwithindays> similar to the following:
<preferences>
...
<preference id="modifiedwithindays">
<label><nlsid>PREF_LBL_MODIFIED</nlsid></label>
<description><nlsid>PREF_DESC_MODIFIED</nlsid></description>
<type>int</type>
<value>30</value>

</preference>
</preferences>

User preferences are exposed within the definitions in /webcomponent/config/env/
preferences. The following table describes the types of preferences that are set by each
preferences component:

Table 7-2. User preference components

Webtop Label Component ID Description

General general_preferences View, entry component,
theme, accessibility,
checkout location, drag
and drop

276 Web Development Kit and Client Applications Development Guide

Conguring Preferences

Webtop Label Component ID Description

Columns display_preferences Attribute columns to
be displayed for each
configured component.
Refer to User column
display preferences, page
277.

Virtual documents vdm_preferences Opening options, bindings,
copy, checkout

Login savecredential Save or remove login
credentials

Repositories visiblerepository_
preferences

Select repositories to be
visible

Search searchsources_preferences Sets default search location

Formats format_preferences Sets preferred rendition,
viewing format, and
editing format for object
type

Debug debug_preferences Sets debugging options
for development
environments. (Usually
should be removed for
deployment.)

User column display preferences
User display preference settings are configured in the display_preferences component
definition (/webcomponent/config/environment/preferences/display/display_
preferences_component.xml). This component has the same elements that are used for
defining component preferences (Preference definition, page 273). Each component can
have an entry that gives the user the ability to select columns or other preference settings.

The preferences elements specific to the display_preferences component are as follows:

Web Development Kit and Client Applications Development Guide 277

Conguring Preferences

Table 7-3. Column display preference elements

<preference> ID for the column display preference

<display_docbase_types> Sets the contents of the dropdown list
to specify column preferences for an
object type. Contains <docbase_type>
elements. You can add this element
to any <preference> element in the
display_preferences component to
override the default object type list.

.<docbase_type> Adds a repository type to display in the
drop-down list of types for setting column
display preferences. Contains a <value>
element whose value must correspond to
a type in the data dictionary and a <label>
element that will display a label for the
type.

<show_repeating_attributes> Set to false to not display repeating
attributes. Will not affect attributes in the
default list or attributes already in the
selected list.

<enableordering> Generates up and down arrows that allow
the user to reorder columns. Default =
true

The following diagram illustrates the structure of the column display_preferences
component in WDK:

278 Web Development Kit and Client Applications Development Guide

Conguring Preferences

Figure 7-1. WDK preferences components

Legend:
• A

Preferences container UI with header title and footer buttons
• B

Hidden preferencescope tag, which sets the scope to ’User’
• C

Generated by <preference> element in this (display_preferences)
component definition. The preference element specifies <value> as
component[id=doclist].columns, so this line configures the columns that are
displayed in the doclist component or a component that extends doclist. The
initial list of columns (Name, Size, Format, Modified) is read from the component
definition, in this case, the <columns> element of the doclist definition.

• D

The edit link launches the component named in the <editcomponent> element, in
the container named in the <editcontainer> element. In the example shown below,

Web Development Kit and Client Applications Development Guide 279

Conguring Preferences

the columnselector component is launched in its container to edit the selected
preference. (The attributes are generated by an attributeselector control.)

Figure 7-2. Column selector component

The column selector component UI is generated by <preference> element in this
(display_preferences) component definition. The preference element specifies
<value> as component[id=drilldown].columns, so this line configures the columns
that are displayed in the drilldown component or a component that extends
doclist. The initial list of columns (Name, Size, Format, Modified) is read from the
component definition, in this case, the <columns> element of the doclist definition.

Example 7-1. Adding a display preference for a custom type
In the following example, a custom type is added so that the user can configure display
of custom attributes:

1. Copy the file display_preferences_component.xml from /webcomponent/config
to /custom/config.

2. Modify the component definition to add the highlighted extends attribute as follows:
<component id="display_preferences" extends="
display_preferences:webcomponent/config/environment/
preferences/display/display_preferences_component.xml">

3. Add your custom type to the <display_docbase_types> element, similar to the
following:

280 Web Development Kit and Client Applications Development Guide

Conguring Preferences

<display_docbase_types>
<docbase_type>
<value>dm_document</value>
<label><nlsid>LBL_DOCUMENT</nlsid></label>

</docbase_type>
<docbase_type>
<value>dm_folder</value>
<label><nlsid>LBL_FOLDER</nlsid></label>

</docbase_type>
<docbase_type>
<value>technical_publications_web</value>
<label>Web Document</label>
</docbase_type>

</display_docbase_types>

4. Refresh the config files in memory by navigating to /wdk/refresh.jsp. The display for
column preferences should show the custom type, similar to the following:

Figure 7-3. Custom type column preferences

Sample preference denitions
The following preferences examples show the possible types of preferences and how to
define them. Line breaks are added to this example for readability.
<config version='1.0'>
<scope>
<component id="mycomponent">
<!-- Other component tags here -->

Web Development Kit and Client Applications Development Guide 281

Conguring Preferences

<!-- Component-specific preferences -->
<preferences>
<preference id="test1">

<label>Test 1</label>
<description>Test for simple integers</description>
<type>int</type>
<value>1</value>

</preference>
<preference id="test1a">

<label>No Description</label>
<type>int</type>
<value>9876</value>

</preference>
<preference id="test1b">

<label>No Default Value</label>
<type>int</type>
<description>An integer with no default value set</description>

</preference>
<preference id="test1c">

<label>Test 2b</label>
<description>Integer in a password control.</description>
<type>int</type>
<display_hint>password</display_hint>

</preference>
<preference id="test2">

<label>Test 2</label>
<description>Test for simple strings with user scope set by default
</description>
<type>string</type>
<value>Hello</value>
<scope>user</scope>

</preference>
<preference id="test2a">

<label>Test 2a</label>
<description>Test for simple strings with no default value
</description>
<type>string</type>

</preference>
<preference id="test2b">

<label>Test 2b</label>
<description>String in a password control.</description>
<type>string</type>
<display_hint>password</display_hint>

</preference>
<preference id="test3">

<label>Test 3</label>
<description>Test for simple boolean with group scope
</description>
<type>boolean</type>
<value>false</value>
<scope>group</scope>

</preference>
<preference id="prefsString">

<label>String Options</label>
<description>Displayed in a dropdown list with "Three"
selected by default

</description>

282 Web Development Kit and Client Applications Development Guide

Conguring Preferences

<type>string</type>
<value>Three</value>
<display_hint>dropdownlist</display_hint>
<constraints>

<element>Once</element>
<element>Twice</element>
<element>Three</element>
<element>Four</element>
<element>Many</element>

</constraints>
</preference>
<preference id="prefsInt">

<label>Integer Options</label>
<description>Integer preference with 1, 3, 4, 5, 9 displayed in
a listbox and 5 selected by default</description>

<type>int</type>
<value>5</value>
<display_hint>listbox</display_hint>
<constraints>

<element>1</element>
<element>3</element>
<element>4</element>
<element>5</element>
<element>9</element>

</constraints>
</preference>
<preference id="prefsStringDesc">

<label>More String Options</label>
<description>The elements have separate values and descriptions.
</description>
<type>string</type>
<value>Three</value>
<display_hint>dropdownlist</display_hint>
<constraints>

<element value="Once">Only once</element>
<element value="Twice">Maybe twice</element>
<element value="Three">Possibly three</element>
<element value="Four">A large four</element>
<element value="Many">Far too many</element>

</constraints>
</preference>
<preference id="prefsIntDesc">

<label>More Integer Options</label>
<description>Integer Dropdownlist type with text descriptions
</description>

<type>int</type>
<value>3</value>
<display_hint>dropdownlist</display_hint>
<constraints>

<element value="1">Very Small</element>
<element value="2">Small</element>
<element value="3">Medium</element>
<element value="4">Large</element>
<element value="5">Extra Large</element>

</constraints>
</preference>
<preference id="prefsConstr1">

Web Development Kit and Client Applications Development Guide 283

Conguring Preferences

<label>Constrained Integer</label>
<description>Constrained integer preference - not below 3
</description>
<type>int</type>
<value>5</value>
<constraints>

<lowerend>3</lowerend>
</constraints>

</preference>
<preference id="prefsConstr2">

<label>Constrained Integer</label>
<description>Constrained integer preference- notover 29
</description>
<type>int</type>
<value>5</value>
<constraints>

<upperend>29</upperend>
</constraints>

</preference>
<preference id="prefsConstr3">

<label>Constrained Integer</label>
<description>Constrained integer preference- not below 3 or above 29
</description>
<type>int</type>
<value>5</value>
<constraints>

<lowerend>3</lowerend>
<upperend>29</upperend>

</constraints>
</preference>
<preference id="listboxsizetest">

<label>String Listbox with listbox_size of 10</label>
<type>string</type>
<value>A01</value>
<display_hint>listbox</display_hint>
<listbox_size>10</listbox_size>
<constraints>

<element>A01</element>
<element>B02</element>
<element>C03</element>
<element>D04</element>
<element>E05</element>
<element>F06</element>
<element>G07</element>
<element>H08</element>
<element>I09</element>
<element>J10</element>
<element>K11</element>
<element>L12</element>
<element>M13</element>
<element>N14</element>
<element>O15</element>

</constraints>
</preference>
<preference id="disabled1" disabled="true">

<label>Disabled Simple Integer</label>
<type>int</type>

284 Web Development Kit and Client Applications Development Guide

Conguring Preferences

<value>9876</value>
</preference>
<preference id="disabled2" disabled="true">

<label>Disabled Simple String</label>
<type>string</type>
<value>Disabled</value>

</preference>
<preference id="disabled3" disabled="true">

<label>Disabled Simple Boolean</label>
<type>boolean</type>
<value>true</value>

</preference>
<preference id="Disabled4" disabled="true">

<label>Disabled string Listbox</label>
<type>string</type>
<value>Three</value>
<display_hint>listbox</display_hint>
<constraints>

<element value="Once">Only once</element>
<element value="Twice">Maybe twice</element>
<element value="Three">Possibly three</element>
<element value="Four">A large four</element>
<element value="Many">Far too many</element>

</constraints>
</preference>
<preference id="Disabled5" disabled="true">

<label>Disabled Integer Dropdownlist</label>
<type>int</type>
<value>3</value>
<display_hint>dropdownlist</display_hint>
<constraints>

<element value="1">Very Small</element>
<element value="2">Small</element>
<element value="3">Medium</element>
<element value="4">Large</element>
<element value="5">Extra Large</element>

</constraints>
</preference>

</preferences>
<!-- Other component tags here -->

</component>
</scope>

</config>

Web Development Kit and Client Applications Development Guide 285

Conguring Preferences

286 Web Development Kit and Client Applications Development Guide

Chapter 8
Conguring Roles and Client Capability

Roles are defined in Content Server 5.1 and above as a special type of group. The group_class
attribute on the group is set to ’role’, and the group_name attribute is set to the role name. (Refer to
the Server administration guide for more information on role groups.)

Webtop and WDK components can be configured to use any role that is defined in the repository. If
no roles for the user are configured in the repository, or if the repository is pre-5.1, Webtop defaults to
using the client capability model with the following client_capability attributes on the dm_user object:
consumer, contributor, coordinator, and administrator (refer to Client capability plugin, page 289). If
the user has no client capability level set, the role service assigns the user the consumer role.

Role configuration is described in the following topics:
• Role configuration overview, page 287
• Client capability plugin, page 289
• Docbase role plugin, page 291
• Role-based actions, page 292
• Role-based filters, page 293
• Role-based UI, page 294
The role model APIs and role model customization are described in Chapter 16, Customizing Roles.

Role conguration overview
The client application, such as Webtop, Web Publisher, or your custom application,
enforces role capabilities through configuration. You can configure roles in WDK to
perform the following role-based presentation:
• Role-based actions

You can restrict actions to users who belong to a specified role. For example, you
can restrict the checkout action in the action definition to contributors or higher
only, for example:
<precondition class="com.documentum.web.formext.action.RolePrecondition">

Web Development Kit and Client Applications Development Guide 287

Conguring Roles and Client Capability

<role>contributor</role>
</precondition>

Refer to Role-based actions, page 292 for more information.
• Role-based filters

You can restrict a container so that it displays some components to specified roles.
For example, you can filter the components in the folder properties container to
display the permissions component only to administrators or higher, while all roles
have access to the remaining components in the container:
<scope type="dm_folder">
<component id="properties" extends="type='*' application='webcomponent'">
<contains>
<filter role="administrator">
<component>permissions</component>
</filter>
<component>discussions</component>
<component>locations</component>
...

For more information, refer to Role-based filters, page 293. For a general description
of the use of filters in configuration, refer to Web Development Kit and Client
Applications Development Guide.

• Role-based component UI

You can present a different UI to different roles. For example, a different properties
page can be displayed to administrators and general users:
<scope type="dm_folder", role="administrator">
<component id="properties" extends="type='*' application='webcomponent'">
<contains>
<component>permissions</component>
<component>discussions</component>
<component>locations</component>
...

Refer to Role-based UI, page 294 for more information.
The role service gets the user’s role using either the repository role model plugin (refer
to Docbase role plugin, page 291), the client capability plugin (refer to Client capability
plugin, page 289), or both (refer to Docbase role plugin, page 291). A role is then used in
one the following ways, depending on how it was called:

288 Web Development Kit and Client Applications Development Guide

Conguring Roles and Client Capability

Role is defined as a scope on an action The action service limits the action to
users having the specified role or a parent
of the role.

Role is defined as a filter in a container The configuration service displays the
filtered component to users who have the
specified role or a parent of the role

Role is defined as a scope on a component The configuration service displays the
component that is defined for the role or
a parent of the role

Client capability plugin
The client capability role model has four fixed roles: consumer, contributor, coordinator,
and administrator. The user’s role is determined by the value of the client_capability
attribute on the user’s dm_user object. The following values of this attribute map to
the client capability roles:

consumer 1

contributor 2

coordinator 4

administrator 8

If roles are not specified as special groups in the repository, or if the repository is pre-5.1,
or if the user is not assigned to any role group, the client capability model is used
to define the user’s fallback role. If the user does not have a value assigned to the
client_capability attribute, the model will default the user to a consumer role.

The operations that can be performed by each client capability role in a default Webtop
configuration are described in the table below. Capabilities are cumulative: if an
operation is available to a user role, it is available to higher roles as well:

Table 8-1. Client capability roles

Operation Consumer Contributor Coordinator Administrator

Create
folder

X X X

Create
cabinet

X X

Web Development Kit and Client Applications Development Guide 289

Conguring Roles and Client Capability

Operation Consumer Contributor Coordinator Administrator

Create
object

X X X

Import X X X

View
object

* * * *

Check in X X X

Check out X X X

Edit X X X

Change
virtual doc

X X X

Delete X X X

Change
properties

* * * *

Rename
object

X X X

Search
repository

* * * *

Send to
distribution list

* * * *

Lifecycle
operations

* * * *

Router/
workflow
participant

* * * *

Add to
clipboard

X X X

Webtop
Admin node

X

* Operations that are not scoped by client capability role. Some of these actions check
permissions in the launch or precondition class, or the component checks repository
permissions, but the action or component does not specifically check the client capability
level.

290 Web Development Kit and Client Applications Development Guide

Conguring Roles and Client Capability

Docbase role plugin
Content Server version 5.2.5 and above stores a list of roles that are valid for each user.
A role is a dm_group object whose group_class attribute is set to role and whose
group_name attribute defines the name of the role. Role groups can be members of other
role groups, and a user can be member of more than one group. (For information on how
to set up roles, refer to Content Server Administration Guide.)

Role groups can be grouped together into a domain group, which is a dm_group object
whose group_class attribute is set to domain. A domain provides a way to limit the
groups of roles that are seen by the application. Along with client capability mapping
in app.xml, you can create a simple hierarchy of roles that ignore the user’s roles in
another application. For example, a user can have an administrator role in one domain
and a contributor role in another domain.

You can specify the domains that are supported by your application in the
<rolemodel>.<domain> setting in app.xml. If no domains are specified in app.xml, the
default gets roles in any domain in the repository.

The Docbase role model is the default role plugin for WDK client applications. When
a role is used in an action or component definition, the role qualifier is handled by the
role service, which calls the Docbase role plugin. This plugin queries the repository for
a list of the current user’s roles and for the super roles of the user’s roles. The query is
reissued every ten minutes. This allows the application to dynamically update a cache of
repository roles and their hierarchy and the user’s assigned roles.

By default, if roles are not defined in the repository or the user has not been assigned
a role, the Docbase role model plugin falls back to the client capability plugin. This
behavior can be disabled by setting <rolemodel>.<client_capability_fallback_enabled>
to false in app.xml.

Custom roles are mapped to client capability in your custom app.xml, forming a
role hierarchy for the application. (Refer to <rolemodel> element, page 64 for more
information on the configuration elements.) You can use both custom roles and client
capability roles in your application. For example, your repository has the following role
hierarchy created by adding the sitemanager role to the pagedeveloper role using a
tool such as Documentum Administrator:

sitemanager
pagedeveloper

In /custom/app.xml, you map these roles to client capability as follows:
<rolemodel>
...
<client_capability_aliases>
<administrator_roles>
<role>sitemanager</role>

</administrator_roles>

Web Development Kit and Client Applications Development Guide 291

Conguring Roles and Client Capability

<coordinator_roles>
<role></role>

</coordinate_roles>

<contributor_roles>
<role>pagedeveloper</role>

</contributor_roles>

<consumer_roles>
<role></role>

</consumer_roles>
</client_capability_aliases>
...

</rolemodel>

A user whose role is pagedeveloper will have the following roles:
pagedeveloper
contributor
consumer

A user whose role is sitemanager will have the following roles:
sitemanager
administrator
coordinator
pagedeveloper
contributor
consumer

If you disable client capability fallback in app.xml, the user will have only the roles that
are set up in the repository. You must then make sure that no client capability roles are
used in your action and component definitions. If you disable client capability fallback
but map user roles to client capability roles in app.xml, client capability will still be used.

Role-based actions
There are two ways you can base actions on roles:
• Actions can be performed only by certain roles

For example, you may wish to restrict checkout of documents even though the
user has VERSION permission. This is applied through a role precondition. In the
following example, only contributors can check out documents:
<action id="checkout">
<params>
<param name="objectId" required="true"></param>
<param name="lockOwner" required="false"></param>
<param name="ownerName" required="false"></param>

</params>
<preconditions>

292 Web Development Kit and Client Applications Development Guide

Conguring Roles and Client Capability

<precondition class="com.documentum.web.formext.action.
RolePrecondition">
<role>contributor</role>

</precondition>
<precondition class="com.documentum...CheckoutAction"/>
</precondition>

</preconditions>
</action>

The RolePrecondition class checks to make sure that the user belongs to the named
role before the action can be executed.

Note: Disabled actions can be invisible or shown as disabled.
• Actions cannot be performed by certain roles

You can make actions invisible to users by adding a role scope to the action
definition. The UI feature that launches the action, such as a button or menu item,
will be invisible if the user does not have a role within the scope of the action. In the
following example, the consumer role cannot perform the edit action:
<scope role="consumer">
<action id="editfile" notdefined="true"></action>
<!-- list here the actions that a consumer can perform -->
</scope>

The action service queries the role service to determine whether an action can be
executed based on the user’s role. The action precondition is evaluated together with
ACL permissions on an object. The action service will allow actions to execute, even if
the user does not have a required role, in the following cases:

• Operations on an object that is owned by the user
• Operations by a repository superuser, who may need to force access to objects as a

part of repository administration

Role-based lters
A filter element restricts the contained element to the specified value of the filter attribute.
When the filter attribute is role, the filter is applied to users having the specified role.
For example, a container component can restrict users to certain components within the
container with a <filter> key. In the following example from a properties container
definition, only administrators or higher will have access to the permissions component
and can change permissions on folders, while the other contained components are
available to all users:
<scope type='dm_folder'>
<component id="properties" extends="
propertysheetcontainer:wdk/config/propertysheetcontainer_component.xml">
...
<contains>
<filter role="administrator">

Web Development Kit and Client Applications Development Guide 293

Conguring Roles and Client Capability

<component>permissions</component>
</filter>

<component>attributes</component>
<component>history</component>
</contains>
...

</scope>

Role-based UI
You can make entire components available based on roles. In this case, you would use
the role attribute of the component scope element. The following example makes the
properties of a folder accessible only to site managers. Users with other roles will see the
default properties component for dm_sysobject:
<scope type='dm_folder' role=’sitemanager’>
<component id="properties" extends="type='*' application='webcomponent'">
<contains>
<component>permissions</component>
<component>discussions</component>
<component>locations</component>
<component>annotations</component> </contains>

</component>
</scope>

294 Web Development Kit and Client Applications Development Guide

Chapter 9
Conguration Examples

The following examples describe some of the most commonly configured components and features in
a WDK-based Web application:
• Configuring buttons and images, page 295
• Configuring dynamic menu items, page 300
• Configuring content display, page 302
• Configuring navigation base cabinet or folder, page 305
• Configuring branding, page 307
• Configuring validators, page 308
• Configuring application startup, page 309
• Configuring the properties container, page 311
• Configuring attributes, page 312
• Creating a custom object filter, page 317

Conguring buttons and images
This topic describes how to add and configure buttons and images:
• Adding a button or image, page 296
• Changing a button label, page 296
• Changing a button or image style, page 297
• Changing button or image function, page 298
The following examples will show some of the types of configuration listed above. For
other examples, refer to the /wdk/samples/control_pen/buttonPen.jsp page.

Web Development Kit and Client Applications Development Guide 295

Conguration Examples

Adding a button or image

To add a button or image, use the JSP button or image tag from the dmf tag library in
the appropriate location in the HTML block of your JSP. The following example adds a
Close button within an HTML table cell:
<td>
<dmf:button cssclass='buttonLink' nlsid='MSG_CLOSE'
onclick='onClose' default='true' height='16'
imagefolder='images/dialogbutton'/>
</td>

Example 9-1. Adding an icon for a custom type
You can provide icons for your custom object, cabinet, or folder types. Create a 16x16
pixel icon for each custom type. Create a type folder for each theme that is supported by
your application, and place a theme-appropriate icon in the folder. The folder must have
the following path: /custom/theme_name/icons/type where theme_name is the theme
for which you wish the icon to be used.

The icon file must be named with the custom object type name and with a t_ prefix and
a _16 postfix. For example, if your custom type is named my_sop, the icon would be
named t_my_sop_16.gif. An example of a custom folder icon is shown below. Folders of
type dm_folder have the default folder icon, and the folder of type km_task has a custom
icon. The custom icon file name is t_km_task_16.gif:

Figure 9-1. Custom type icon

Note: The DocbaseIconTag class checks for a format icon first. If it does not find one for
the object’s format, it then checks for a type-specific icon.

Changing a button label

You can change button content with the following attributes:
label
nlsid

296 Web Development Kit and Client Applications Development Guide

Conguration Examples

datafield
imagefolder
tooltip

Button labels are specified in the nlsid attribute, which overrides a label attribute value.
To change a label for a specific control in a JSP page, you can add a label attribute and
value and remove the nlsid attribute. If your button text will be localized, you must use
the nlsid attribute and add a localized properties file for the button.

The example in Adding a button or image, page 296 displays a text label on the button.
The following example overrides the nlsid label string by removing the nlsid attribute
and adding a label attribute:
<dmf:button cssclass='buttonLink' label='Finished'.../>

To use a different image for the button, specify the path to the image in the imagefolder
attribute values. The imagefolder points to the directory that contains the specific
button images, which must be named left.gif, right.gif, and bg.gif. The branding system
appends the theme name to the base directory path. The following example points to
new images in our custom theme directory:
<dmf:button ...imagefolder='images/finishbutton'/>

Changing a button or image style

You can change button style with the following attributes:

• style and CSS class
• disabled style and CSS class
• width and height
• align

Globally changing the style of a button or image — To change the style of a button or
image everywhere it appears in your application, apply your changes in a style sheet. For
example, the webcomponents.css file in the coolblue theme defines a drilldownHeader
class that references a background image:
.drilldownHeader { BACKGROUND-COLOR: transparent;
BACKGROUND-IMAGE: url('../images/streamline/tabbarbg.gif') }

To change the image that is used every time the CSS class is applied to a control, extend
the coolblue theme, copy the webcomponent.css file to your /theme/css directory, and
change the URL to the background image.

Web Development Kit and Client Applications Development Guide 297

Conguration Examples

Changing the style of a button or image in a JSP page — The example below overrides
the button disabled style in a specific location in the application. The button’s disabled
style is initially specified as buttonDisabledLink:
<dmfx:button name='checkout' action='checkout' label='Files'
cssclass="buttonLink" disabledclass="buttonDisabledLink" ...>

The style is defined in webforms.css:
.buttonDisabledLink
{
color: #999999;
font-family: Arial,Helvetica,sans-serif;
font-size: 11px;
font-weight: bold;

}

You can specify a CSS class that is defined in your custom CSS file:
<dmfx:button name='checkout' action='checkout' label='Files'
cssclass="buttonLink" disabledclass="buttonGoneLink" ...>

You have defined the custom class in myCSSstyles.css:
.buttonGoneLink
{
color: #666666;
font-family: Comic,Helvetica,sans-serif;
font-size: 11px;
font-weight: normal;

}

You can override specific properties of the CSS class in the style attribute. In the
following example, the disabled class is retained and only the font-weight is overridden:
<dmfx:button name='checkout' action='checkout' label='Files'
cssclass="buttonLink" disabledclass="buttonDisabledLink"
style="font-weight:normal" ...>

Changing button or image function

You can change button behavior with the following attributes:
onclick
visible
enabled
runatclient and client event handler
default

The onclick attribute specifies the event handler that will handle the button or image
onclick event. You can handle the onclick event in the browser by setting the runatclient
attribute to true, setting the onclick event handler, and then adding an event handler

298 Web Development Kit and Client Applications Development Guide

Conguration Examples

of that name in the JSP. In the following example, the titlebar page has a company logo
image that the user clicks to view an about page:
<dmf:image onclick='onClickLogoEvent' runatclient='true'
src="images/titlebar/logo_16.gif"/>

The event handler calls a nested component URL, which displays an information page:
<script>
function onClickLogoEvent(keys)
{
postComponentNestEvent(null, "about", "content");

}
</script>

You can change the event handler to navigate to the company Web site:
<script>
function onClickLogoEvent(keys)
{
window.top.location.replace("http://www.mycompany.com");

}
</script>

Conguring dynamic buttons and images

This topic describes the configuration of dynamic buttons. You can configure the same
attributes as static buttons and images, with some additional configuration of dynamic
attributes. These attributes are described inWeb Development Kit Reference Guide:

• showifdisabled
• showifinvalid
• dynamic
• action
You can change a dynamic button or image to work only if a single item on the page is
selected by setting the dynamic attribute to a value of singleselect. You can specify
that the button or image will work only if no items are selected by setting the value of
dynamic to genericnoselect. You can set the button or image action to work regardless of
the number of items selected on the page using the dynamic value ’generic’.

In the following example, the menu bar contains a number of menu items that can only
be selected when no object in the page is selected:
<dmfx:actionmenuitem dynamic='genericnoselect' name='file_newdocument'
nlsid='MSG_NEW_DOCUMENT' action='newdocument' showifinvalid='true'/>

You can change the menu behavior to show the menu item regardless of the items
checked by specifying a value of generic for the dynamic attribute:
<dmfx:actionmenuitem dynamic='generic' name='file_newdocument'
nlsid='MSG_NEW_DOCUMENT' action='newdocument' showifinvalid='true'/>

Web Development Kit and Client Applications Development Guide 299

Conguration Examples

Conguring dynamic menu items
This section describes how to remove a dynamic menu item.

Menu items are dynamically generated, based on object type. The menu itself is
configured in a JSP and generated by the menu tag class.

Example 9-2. Removing a menu option
The following example removes a menu option for documents. The quickest way to track
down the source of a menu is to right-click in the area of the screen that the menu appears
and select View source. In this example, the View menu is contained within menubar.jsp:

Figure 9-2. Webtop view menu

In the Webtop JSP page that contains the menu (menubar.jsp), the View menu
is specified by a tag library tag <dmf:menu name=’view_menu’...>. In order to
customize this menubar component, create a copy of the menu JSP page in the
/custom directory, for example, /custom/components/menubar.jsp. Create a copy of
the component configuration file in the custom configuration directory, for example,
/custom/config/menubar_component.xml. The remainder of this example customizes
these two files.

In the custom menubar component configuration file (/custom/config/menubar_
component.xml), change the component tag to:
<component id="menubar" extends="menubar:/webtop/config/menubar_component.xml">

Change the <start> page definition to:
<start>/custom/components/menubar.jsp</start>

In the custom JSP (/custom/components/menubar.jsp), remove the <actionmenuitem> tag
named ’view_history’. Save and close the JSP page and the XML configuration file, then

300 Web Development Kit and Client Applications Development Guide

Conguration Examples

restart the server. (All changes to XML files require a restart of the server, because the
configuration files are read into memory the first time the configuration is required.)

Because menus are generated as JavaScript, you must clear the previous menu from the
browser history (clear the cache). Result:

Figure 9-3. Revised view menu

Example 9-3. Changing the More... menus
In the next example, we change the menu items that are available next to each object in
the folder contents view. The same action menu for dm_sysobjects is used in several
drilldown pages: home cabinet, cabinets, subscriptions, my objects, and several others.
Before the configuration change, objects are displayed with a menu list next to each item.
The more link displays an additional set of menus as shown below:

Figure 9-4. Drilldown More... menu

In this example we will move the Quickflow menu item to the Document menu. To
customize the menu items in these menus, you must extend the actionlist that is defined
for dm_sysobjects.

Copy the file dm_sysobject_action.xml from /webcomponent/config/actions to
/custom/config and open the file in an editor. Locate the following tag:
<action id="sendtodistributionlist" nlsid="MSG_SEND_TO_DISTRIBUTION"/>

Web Development Kit and Client Applications Development Guide 301

Conguration Examples

Cut and paste this tag into the beginning of the document menu, after the following tag:
<menu id="document" nlsid="MSG_DOCUMENT_MENU">

Save and close the file and then refresh the configuration files in memory by navigating
to /wdk/refresh.jsp.

The resulting menu now shows the rearranged menu items:

Figure 9-5. Recongured More... menu

Conguring content display
This section describes how to show and hide metadata for lists of objects in the UI using
fixed columns that are specified at design time or using dynamic columns based on
context-sensitive settings that are evaluated at run time.

For information on setting up data sources for a datagrid control, refer to Configuring
databound controls, page 184.

Example 9-4. Data display: design-time conguration
The following example uses the myfiles_streamline component in Webtop to hide and
display attributes. This component has the following UI:

302 Web Development Kit and Client Applications Development Guide

Conguration Examples

Figure 9-6. Webtop My Files default display

Copy myobjects_drilldown_component.xml from the /webcomponent/config/library/
myobjects to your custom config directory. Adjust the column visibility settings to
display only the object name and type, version label, lock owner, and last modification
date. For example:
<columns>
<column>
<attribute>object_name</attribute>
<label><nlsid>MSG_NAME</nlsid></label>

<column>
<column>
<attribute>r_object_type</attribute>
<label><nlsid>MSG_OBJECT_TYPE</nlsid></label>
<visible>true</visible>

</column>
<column>
<attribute>r_version_label</attribute>
<label><nlsid>MSG_VERSION_LABEL</nlsid></label>
<visible>true</visible>

</column>
<column>
<attribute>r_modify_date</attribute>
<label><nlsid>MSG_MODIFIED_DATE</nlsid></label>
<visible>true</visible>

</column>
<column>
<attribute>r_lock_owner</attribute>
<label><nlsid>MSG_LOCK_OWNER</nlsid></label>

Web Development Kit and Client Applications Development Guide 303

Conguration Examples

<visible>true</visible>
</column>
</columns>
...

The result, after refreshing the configuration files by navigating to /wdk/refresh.jsp, is
shown below. (The lock owner is not displayed when the object is not locked.)

Figure 9-7. Congured My Files display

Example 9-5. Data display: Custom objects and attributes
The following example uses the myobjects_drilldown component to display custom
attributes in a list of objects of mixed object type.

Copy myobjects_drilldown_component.xml from the /webcomponent/config/library/
myobjects to the /custom/config directory.

Add your custom attribute columns to the list of columns that will be queried. You need
a column for every attribute that will be displayed. If an object in the list is not of the
custom type, no value will be displayed in the column for the custom attribute.

The following example adds two custom attributes for the custom object type
technical_publications_web:
<columns>
<column>
<attribute>object_name</attribute>
...

</column>
<column>
<attribute>tp_product_name</attribute>

304 Web Development Kit and Client Applications Development Guide

Conguration Examples

<label>Product Name</label>
<visible>true</visible>

</column>
<column>
<attribute>tp_product_version</attribute>
<label>Product Version</label>
<visible>true</visible>

</column>
</columns>

Refresh the configuration files by navigating to /wdk/refresh.jsp, and then view My
Files in the UI.

The result is the following:

Figure 9-8. Custom attributes display based on context

For more information on dynamic data display through cell templates, refer to
Configuring dynamic data columns, page 232.

Conguring navigation base cabinet or folder
You can configure some of the navigation components to start in a specific base cabinet
or folder. This limits browsing to the specific cabinet or folder and its subfolders. The
doclist and drilldown components can be called with an optional folderId or folderPath
argument.

Web Development Kit and Client Applications Development Guide 305

Conguration Examples

The foldertree component can be called with an optional folderPath argument, but this
does not limit browsing. The specified folder path is highlighted and the foldertree is
expanded to display the subfolders of the specified folder. The default doclist view has
the repository root as the navigation base, as illustrated in the following screen capture:

Figure 9-9. Default navigation from repository root

Example 9-6. Conguring the base cabinet in the doclist
You can configure the doclist to display any cabinet or folder as the base for navigation.
The following example calls the doclist component and supplies the optional folderPath
argument. The argument is given at the end of this URL:
http://localhost:8080/wdk51/component/doclist?folderPath=LB%20Library

The resulting doclist display is shown below:

Figure 9-10. Navigation from a specic folder path

You can also supply the base location as a folder ID. For example:
http://localhost:8080/wdk51/component/doclist?folderId=0c00000180005680

306 Web Development Kit and Client Applications Development Guide

Conguration Examples

When you supply the folder ID, the navigation path is displayed in the breadcrumb
component, allowing the user to navigate above the base location. In the display shown
below, the user can click on the Cabinets part of the breadcrumb to view all cabinets in
the repository:

Figure 9-11. Navigation from a specic folder ID

Conguring branding
This section describes how to configure branding of your application.

Create a new branding directory in custom application directory. Copy only the themes
you wish to use in your application, and create directories for your custom themes.
For example, /custom/theme/accessible.

Figure 9-12. Custom theme directory

Copy the webcomponents.css file from the /webcomponent/theme/documentum/css
directory to the new custom theme directory /custom/theme/accessible/css. In the
style sheet, change the font sizes to larger fonts. We do not need to copy the icons and
images directories, because they inherit graphics from the parent theme. Register the
new theme in the app.xml file:
<themes>
<theme>
<name>accessible</name>

Web Development Kit and Client Applications Development Guide 307

Conguration Examples

<base-theme>documentum</base-theme>
<label><nlsid>MSG_BRAND_ACCESSIBLE</nlsid></label>

</theme>
</themes>

Create an NLS file in the /custom/strings directory that includes the
BrandingServiceNlsProp.properties file from the directory /wdk/strings/com/
documentum/web/common/. Add the string for your new theme to this file. (Refer to
Adding strings to properties files, page 138 for more information on adding strings to
NLS files.) For example:
MSG_BRAND_ACCESSIBLE=accessible

Your new theme will appear as a preference selection after the J2EE server has been
restarted:

Figure 9-13. New default theme

Conguring validators
This topic describes how to add or change validation for a text control or data field.

Required field — You can require the user to enter data by adding a required field
validator. The following example from newCabinet.jsp validates that the user has
entered a name for the new cabinet:
<dmf:text name="attribute_object_name" size="30"></dmf:text>
<dmf:requiredfieldvalidator name="validator"
controltovalidate="attribute_object_name"
nlsid="MSG_MUST_HAVE_NAME">

</dmf:requiredfieldvalidator>

In this example, the text control is named "attribute_object_name”. This name is used as
the value for the validation control controltovalidate attribute value. The error message
is specified as the value of the nlsid attribute, which can be an externalized string, as
in the example, or a hard-coded string.

Comparison validator — The comparison validator checks the value of one control to
the value of another. The following example compares the passwords entered in two
fields:
<dmf:password id='ChangePassword' name='ChangePassword' size='40'

308 Web Development Kit and Client Applications Development Guide

Conguration Examples

defaultonenter='true'/>
<dmf:password id='ConfirmPassword' name='ConfirmPassword' size='40'
defaultonenter='true'/>

<dmf:comparevalidator name="validator" controltovalidate="ConfirmPassword"
type="string" operator="equal" comparecontrol="ChangePassword"
nlsid="MSG_CONFIRMPASSWORD_NOTEQUAL"/>

Input mask — You can apply the input mask validator to verify that the user’s input
matches an expected pattern. In the following example, the input mask rejects ZIP codes
that do not match the mask pattern:
<dmf:text name='zip' size='10' defaultonenter='true'/>
<dmf:inputmaskvalidator name="zipval" controltovalidate="zip"
inputmask="#####" enabled='true' errormessage="Must have 5 digits"/>

Validating repository attributes — The docbaseattributevalidator tag is generated
by the docbaseattribute tag, so you do not have to add it explicitly to validate
repository attribute values. Any value that is entered into a docbaseattribute tag field
is automatically validated by inputmaskvalidator, multivaluesinputmaskvalidator,
requirredfieldvalidator, and varequiredfieldvalidator.

The docbaseattribute tag generates a table that displays an attribute. The attribute can
be displayed as readonly or editable, based on the value of the readonly attribute. The
following example from checkin.jsp adds the docbaseobject tag, which gets information
about the object from the repository. The docbaseattributevalue tag displays the value of
the object_name attribute. The docbaseattribute tag displays the format:
<dmfx:docbaseobject name="object"/>
<table border="0" cellpadding="2" cellspacing="0">
<tr>
<td>
<dmfx:docbaseattributevalue object="object" attribute="object_name"
readonly="true"/>

</td>
</tr>
<tr>
<td>
<dmfx:docbaseattribute object="object" attribute="a_content_type"
readonly="true"/>

</td>
</tr>
</table>

Conguring application startup
This topic describes typical configuration of the startup settings for an application. You
can configure startup settings for the root Web application and for the application layers
within WDK.

Web Development Kit and Client Applications Development Guide 309

Conguration Examples

Your Web application contains at least two application layers: WDK and webcomponent.
It can also contain the Webtop application layer, and it contains one or more custom
application layers that you have created. You can configure application startup settings
in the following files:

• /WEB-INF/web.xml: Configures the root application as well as application startup
context parameters used by WDK and, optionally, startup parameters used by your
application classes.

• /application_root/app.xml: Configures the following settings in an application layer
(WDK, webcomponent, Webtop, and your custom application):

— Supported locales: For information on configuring locale support, refer to
Configuring and localizing strings, page 137

— Default repository and domain

— Branding resource directories: For information on configuring branding, refer
to Branding an application, page 122.

— Accessibility features: For information on accessibility features in WDK, refer to
Accessibility service, page 584.

— Content transfer default directories, buffer size, and debugging: For information
on configuring content transfer settings, refer to Application configuration file
(app.xml), page 58.

— Webtop display: You can configure the default number of items that will be
displayed in the Webtop classic view and in the streamline cabinets, folders,
and files views.

Conguring accessibility

The accessibility settings are contained within the <accessibility> element. You can
configure the following behavior:

alttextenabled — Generates an HTML alt attribute for every image. The text for alt
attributes is specified in a properties file in /WEB-INF/classes/com/documentum/web/
accessibility/icons or /images directory. The lookup key is the file name. For example,
FormatAltNlsProp.properties contains a lookup key for repository format icons. The
icon f_aiff_16.gif has an alt text of AIFF sound.

Note: The alt text feature overrides tooltips on images. If alt text does not exist for an
image, no tooltip will be generated. You should specify an empty alt string for images
that should not be picked up by reader software, for example:
<img src='<%=Form.makeUrl(request, "/wdk/images/space.gif")%>'
width="1" height="1" alt="">

310 Web Development Kit and Client Applications Development Guide

Conguration Examples

keyboardnavigationenabled — Enables navigation using the keyboard. By default
keyboard access to menus, buttons and tabs are disabled unless the accessibility option
is on.

shortcutnavigationenabled — Generates shortcuts to the top and bottom of a tree.

For more information on accessibility features in WDK, refer to Accessibility service,
page 584.

Conguring the properties container
This topic describes customization of a properties page. The properties component
is a container for several types of properties files: attributes, permissions, and object
history (audit trail). The following example adds the locations component to the list of
properties for an object.

Copy the properties component configuration file from /webcomponent/config/library/
properties to your custom config directory. Add the locations component to the list of
contained components:
<contains>
<component>attributes</component>
<component>permissions</component>
<component>history</component>
<component>locations</component>

</contains>

The result:

Web Development Kit and Client Applications Development Guide 311

Conguration Examples

Figure 9-14. Adding a component to the properties container

Conguring attributes
You can configure the following features of the attributes component definition:

• Layout pages: You can change the <start> and <all> JSP pages to use customized JSP
pages in your custom application directory.

• Filter: Change the display for different repository roles
• Read only: Make the attributes read-only or editable
• Change the ID of the help page that will be displayed
• Attribute list: Change the attributelist that is used to configure the display of

attributes from the data dictionary

You can display attributes for custom object types or other contexts using
docbaseattributelist configuration files. For more information, refer to Displaying
and validating attributes, page 192.

312 Web Development Kit and Client Applications Development Guide

Conguration Examples

• Docbaseobjectconfiguration: Change the configuration for this control to use your
custom tag or formatting classes to render specific attributes or attribute types.

For more information on this customization feature, refer to Modifying the display
and handling of attributes, page 395.

The following topics provide examples of configuring attributes:
• Configuring attribute layout, page 313
• Configuring an attribute list, page 314

Conguring attribute layout

You can add attribute controls to a JSP page to have layout control. You can add a
docbaseattributelist control to the page to have your attributes displayed generated
from the data dictionary. For more information, refer to Displaying and validating
attributes, page 192.

You can format individual attribute controls by placing a formatter control around the
attribute control, for example, a stringlengthformatter or a booleanformatter. Refer to the
WDK andWebtop JSP pages for examples of formatter controls around attribute controls.

To use customized JSP pages, place the customized pages in the /custom directory where
they will not be overwritten by WDK upgrades. Specify the <start> page for your custom
attribute component. The following example extends the webcomponent sysobject
attributes component and substitutes customized JSP pages:
<?xml version="1.0" encoding="ISO-8859-1" standalone="no"?>
<config version='1.0'>
<scope type='dm_sysobject'>
<component id="attributes" extends="attributes:webcomponent/

config/library/attributes/attributes_dm_sysobject_component.xml">
<params>
<param name="objectId" required="true"></param>
<param name="readOnly" required="false"></param>
<param name="enableShowAll" required="false"></param>

</params>
<pages>
<start>/custom/research/isotopes/attributes.jsp</start>
<all>/custom/research/isotopes/attributes_all.jsp</all>

</pages>
</component>
</scope>
</config>

Web Development Kit and Client Applications Development Guide 313

Conguration Examples

Conguring an attribute list

To display a set of custom attributes in a single component such as checkin, you must
create an XML attributelist configuration file containing an <attributelist> element that is
scoped to your custom object type. Each component can configure the list of attributes
that are displayed, and within the component you can configure a different list of
attributes based on object type.

You can set up the attribute list using Documentum Application Builder (DAB).
Create a list of attributes to be displayed for each scope that will have a different
display. For example, if you wish to display a list of custom attributes for the object
type technical_publications_web, set up the technical_publications_web scope type in
DAB. You can also set these attributes in categories, which will be displayed as tabs
of properties in the UI.

Example 9-7. Removing attributes from display (data-dictionary list of attributes)
The WDK checkin component uses the resource file checkin_docbaseattributelist.xml,
located in /webcomponent/config/library, to specify the attributes that will be displayed
in the checkin UI. The <attributelist> element ID is "checkin”, which matches the value of
the attrconfigid attribute in the <dmfx:docbaseattributelist> tag of the checkin JSP page .
(Refer to Displaying and validating attributes, page 192 for more details.)

To change the attributes that are displayed on checkin, you must create an attributelist
definition for your custom type.

Before you customize checkin, the following attributes are displayed on checkin of a
custom type as shown in the screen capture below:

314 Web Development Kit and Client Applications Development Guide

Conguration Examples

Figure 9-15. Default checkin attributes for a custom type

The checkin attributelist configuration file, checkin_docbaseattributelist.xml,
is located in /webcomponent/config/library. Copy this configuration file to
/custom/config and name it with information about the custom type, for example,
checkin_tpw_docbaseattributelist.xml.

Open the file and locate the following line:
<scope type="dm_document">

Remove the entire contents of this element, from <scope type=”dm_document”> to
</scope>. There are two scope elements in this file, and we don’t need the dm_document

Web Development Kit and Client Applications Development Guide 315

Conguration Examples

scope. The definition for dm_documents will be inherited, and we must define only
the scope for the custom type.

In the next <scope> element, add the custom type:
<scope type="technical_publications_web">

Make sure that the value of the element <data_dictionary_population>.<enable> is true
so that the attribute list will be read from the repository data dictionary. The scope
type will be matched to a scope list in the repository, as you configured it using DAB.
If your repository is pre-5.2, refer to Displaying and validating attributes, page 192 for
information on setting up attribute lists in the configuration file.

For checkin, we want to remove certain attributes that should not be changed after
the document has been created or imported: document type, parent edition, original
language of the document, publication date, and doc part number. We will add those
attributes to the <ignore_attributes> in the definition:
<attribute name="tp_literature_type"/>
<attribute name="tp_edition"/>
<attribute name="tp_language"/>
<attribute name="tp_modify_date"/>
<attribute name="tp_part_number"/>

Save and close the XML file, and then refresh the configuration files in memory by
navigating to /virtual_root/wdk/refresh.jsp. The final result:

316 Web Development Kit and Client Applications Development Guide

Conguration Examples

Figure 9-16. Custom checkin attributes for a custom type

Creating a custom object lter
Several components present the user with filters to display certain types of objects:
files, folders, dm_document objects, or all objects. This example adds a filter that
will display objects of a custom type. The custom type in this example is named
technical_publications_web, but any custom type can be substituted to create a filter.

Note: If the custom type does not exist in the repository, the dropdown list of filters
will not be rendered at all. To use the custom filter in all your repositories, make sure
the type is installed in each repository even if no objects of that type will be stored in
that repository.

Object filters are available in several components. Add your custom filter to every
component that can display your custom object type. This example adds the custom
filter to the Webtop objectlist component. (In WDK without Webtop, you could add

Web Development Kit and Client Applications Development Guide 317

Conguration Examples

the filter to the doclist component.) Copy the objectlist component configuration file
objectlist_component.xml from /webtop/config/ to /custom/config. Open the file and
make the following changes:

1. Change the component definition to extend the Webtop component:
<component id="objectlist" extends="objectlist:
webtop/config/objectlist_component.xml">

2. Copy the objectfilters element from /webcomponent/config/navigation/doclist/
doclist_component.xml into your definition. You must do this because you are going
to add an <objectfilter> element, and the filters are inherited in the Webtop objectlist
component from the parent doclist component:
<objectfilters>
<objectfilter>
<label><nlsid>MSG_FILTER_FILES_FOLDERS</nlsid></label>
<showfolders>true</showfolders>
<type>dm_document</type>

</objectfilter>

<objectfilter>
<label><nlsid>MSG_FILTER_FILES</nlsid></label>
<showfolders>false</showfolders>
<type>dm_document</type>
</objectfilter>

<objectfilter>
<label><nlsid>MSG_FILTER_FOLDERS</nlsid></label>
<showfolders>true</showfolders>
<type></type>

</objectfilter>

<objectfilter>
<label><nlsid>MSG_FILTER_ALL</nlsid></label>
<showfolders>true</showfolders>
<type>dm_sysobject</type>
<showallversions>true</showallversions>

</objectfilter>
</objectfilters>

3. Before the last <objectfilter> element, add your custom filter. Substitute the custom
object type for the value of the <type> element:
<objectfilter>
<label>Show Web Documents</label>
<showfolders>false</showfolders>
<type>technical_publications_web</type>

</objectfilter>

4. Refresh the cached configurations by navigating to /wdk/refresh.jsp, and then view
a cabinet or folder that contains your custom type. (Remember that you have not
added your filter to the homecabinet components, so the filter will not be available in
those views.)

318 Web Development Kit and Client Applications Development Guide

Conguration Examples

The results of the custom filter will be similar to the following:

Figure 9-17. Object list with custom lter

When you apply the files filter, which resolves to dm_document, a different set of
objects is displayed:

Figure 9-18. Object list with standard les lter

Web Development Kit and Client Applications Development Guide 319

Conguration Examples

320 Web Development Kit and Client Applications Development Guide

Part 2

Customizing WDK Applications

This section of the development guide describes the customization methodology for
WDK-based Web applications. The following chapters describe the WDK framework
and customization:
• Chapter 10, Development Environment and Tools
• Chapter 11, Component, Action, and Control Design Guidelines
• Chapter 12, Customizing Controls
• Chapter 13, Customizing Components
• Chapter 14, Using the Configuration Service
• Chapter 15, Customizing actions
• Chapter 16, Customizing Roles
• Chapter 17, Customizing Content Transfer
• Chapter 18, Customizing Authentication
• Chapter 19, Managing Sessions
• Chapter 20, Customizing Search
• Chapter 21, Implementing Component and User Preferences
• Chapter 22, Other Customizations
• Chapter 23, Using Business Objects in WDK
• Chapter 24, Customization Examples

Web Development Kit and Client Applications Development Guide 321

Customizing WDK Applications

322 Web Development Kit and Client Applications Development Guide

Chapter 10
Development Environment and Tools

The following topics describe setup of the development environment and tools you can use in
developing WDK–based applications:
• Using an IDE, page 323
• Troubleshooting WDK-based applications, page 324
• Runtime errors, page 324
• Tracing, page 333
• Logging, page 343
• Performance, page 344
• Finding component information, page 353
• Comment stripper, page 353
• Testing components, page 354
• Debugging tips, page 354
Refer to Performance, page 344 and Chapter 11, Component, Action, and Control Design Guidelines.

Using an IDE
If you develop a Web application using an integrated development environment (IDE),
you must configure WDK to run within that IDE. The documentation for your integrated
development environment (IDE) describes how to set the classpath for your Web
application. You must set the classpath to include WDK libraries in order to run or
compile WDK-based applications from within your IDE.

The Documentum Java libraries must be referenced in the J2EE server classpath because
they are outside of the Web application. The home directory must be referenced in the
J2EE server path because it contains native libraries. The installers for WDK and its
client applications set the J2EE server classpath and the path to the Documentum home
directory when you run the installer on the J2EE server host. Refer toWeb Development
Kit and Applications Installation Guide for more information.

Web Development Kit and Client Applications Development Guide 323

Development Environment and Tools

If your Java IDE does not include j2ee.jar (or some subset of it) in its library directory,
you must install it on your local system and reference it in your IDE classpath. You
must also reference all of the jar files that are installed by the WDK installer to your
DOCUMENTUM_HOME directory (default=C:\Program Files\Documentum\shared).

Consult the documentation for your IDE for instructions on how to set up a deployed
Web application for development, debugging, and compilation. The tutorial Web
Development Kit and Applications Tutorial describes how to set up NetBeans, a free J2EE
IDE, to work with WDK.

Troubleshooting WDK-based applications
The DocumentumWeb Development Kit provides the following troubleshooting tools:

• Tracing flags: Trace the following types of operations or content manipulation:
sessions, JSP requests, locales, actions, configuration, roles, preferences, resources,
clipboard, controls, control tags, form navigation and history, validation, repository
attributes, content transfer, components, containers, and WDK 4 components. For
the full list of tracing flags and their usage, refer to Tracing, page 333.

• Logging: Use the open source Apache log4j tool. For more information on logging,
refer to Logging, page 343.

• Testing components: Test controls and components using the test pages and
components in the /wdk/samples directory. The file wdk/config/fxtest_component.
xml defines simple components that test the controls. The component definitions
specify the start JSP page that is located in /wdk/samples.

Refer to Documentum Web Development Kit Release Notes for a list of bugs and
workarounds. You may have encountered a known issue that has a workaround.

Runtime errors
The following topics describe errors that are encountered during connection to a
deployed WDK-based application. Some general tips to try when you encounter runtime
errors are the following:

• Clear the browser cache. The browser caches JavaScript even when your have set
your browser to refresh a URL on every visit.

• Delete generated class files for JSP pages. When you make changes to JSP pages
that are included in another JSP page, the application server does not detect those
changes. When you make changes to Java classes or Java properties files that are
called by JSP pages, the application server does not detect such changes.

324 Web Development Kit and Client Applications Development Guide

Development Environment and Tools

• Refresh the application XML configuration files and data dictionary when you
make changes to them. Visit /wdk/refresh.jsp to refresh the configurations and data
dictionary in memory.

Error loading main component

The following error is displayed when the WDK-based application is first loaded:
This <main> component is invoked when the root application is loaded and when timeout and release operations execute. Customize this component to load the application start page.

Cause: Your custom\app.xml extends webcomponent\app.xml. If you change it to
extend webtop\app.xml, or the top application layer in a Webtop-based application,
the error may be resolved.

Show All Properties does not work

The following issues can result in failure of the Show All Properties feature:

• When the application server locale does not match the locales in the repository, the
Show All Properties feature does not work. For example, if you have an application
server on an English machine locale (en) and the repository has only one installed
locale, Japanese. The query attempts to retrieve information for the repository locale

Solution: The repository must publish the data dictionary for the locale of the
application server.

• When a value assistance query for a custom type contains an error, the error message
DM_API_E_BADID is displayed.

Solution: Check the query syntax using the dql component.

Properties do not display after data dictionary change

After changes to the data dictionary, the properties no longer display in the WDK
application. This is due to object type information being cached in the DMCL layer
on the application server host.

Workaround: Delete the DMCL cache. In Tomcat, the object type information is
cached in TOMCAT_HOME\bin\dmcl\object_caches. In Weblogic the directory is
WEBLOGIC_HOME\user_projects\domain_name \dmcl\object_caches. Delete this
folder and restart the application server.

Web Development Kit and Client Applications Development Guide 325

Development Environment and Tools

WebLogic compiler fails

The WebLogic compiler has a limitation on the number of JSP tags that can be processed
in a JSP page. There is no single number that reveals this limitation; it is a combination of
the number of tags and the number of attributes that are set on those tags.

If the compiler fails on a custom JSP page that has a large number of JSP tags, use the
following workaround: Move some of the tags into a separate JSP page that you include
with a JSP:include directive. For example, the Documentum Administrator menubar JSP
page moves individual menus into separate pages, as follows:
<tr>
<td> </td>
<!-- Menus -->
<jsp:include page="file_menu.jsp"/>
<jsp:include page="edit_menu.jsp"/>
<jsp:include page="view_menu.jsp"/>
<jsp:include page="tools_menu.jsp"/>

</tr>

A sample of one of the included pages follows:
<%@ page contentType="text/html; charset=UTF-8" %>
<%@ page errorPage="/wdk/errorhandler.jsp" %>
<%@ taglib uri="/WEB-INF/tlds/dmform_1_0.tld" prefix="dmf" %>
<%@ taglib uri="/WEB-INF/tlds/dmformext_1_0.tld" prefix="dmfx" %>
<%@ page import="com.documentum.web.form.Form" %>
<%@ page import="java.util.Enumeration" %>
<%@ page import="com.documentum.web.form.Control" %>
<%@ page import="com.documentum.web.common.ArgumentList" %>

<td>
<dmf:menu name="tools_menu" nlsid="MSG_TOOLS" width="50">
<dmf:menu name="doc_lifecycle" nlsid="MSG_LIFECYCLE">
<dmfx:actionmenuitem dynamic="multiselect"
name="doc_promotelifecycle" nlsid="MSG_PROMOTE_LIFECYCLE"
action="promote" showifinvalid="true"/>

...
</dmf:menu>

</dmf:menu>
</td>

WebLogic slows, throws exceptions, or crashes

WDK applications do not currently support running in Archive mode. BEA WebLogic
can slow, throw exceptions, or crash with an application that has a large number of JSP
pages. BEA engineers have recommended setting the MaxPermSize to 128.

326 Web Development Kit and Client Applications Development Guide

Development Environment and Tools

(WebLogic) java.io.IOException: Not enough space

This error message is displayed because of one of three conditions: not enough RAM,
not enough file descriptors, or not using native threading. BEA suggests the following
workarounds:

• Add more RAM if you have only 256 MB.
• Raise the file descriptor limit, for example: set rlim_fd_max = 4096 set rlim_fd_cur =

1024
• Use the -native flag to use native threads when starting the JVM.

Future dates do not display correctly

Dates do not display correctly if the year is more than 20 years beyond the current date.
The date will be displayed as being in the 20th century. For example, if the user enters a
date value of 07/30/2033 and views the date again, the date is displayed as 7/301933.

Solution: The repository server.ini file must be modified to send a four-digit year date.
In the [SERVER_STARTUP] section of the server.ini file, set the enforce_four_digit_year
flag to true and then restart Content Server. You must also restart the J2EE application
server for the Web application.

JavaScript error on application connection

When you log into an installation of a WDK application, you may see the following
JavaScript error message in the browser:
...Error: Object doesn't support this property or method

This error can be caused by IE 5.5 SP1, which is not a supported browser. The error
is also caused by using IE without a Java virtual machine. You must upgrade to a
supported version of the browser and install a supported VM.

Error "Conguration base has not been established”

This error is almost always due to errors with _dmfRequestId values. The value may
be old (used in a prior URL), null or from the wrong client number (frame). Do not
hard code dmfRequestId values in URLs.

Web Development Kit and Client Applications Development Guide 327

Development Environment and Tools

Hard-coded URLs in test scripts can also generate a null pointer exception after
FormProcessor.invokeMethod() is called.

Application no longer starts after code change

After making code changes to your application, you may see the following error message
in the error stack trace:
Component Definition main 'component[id=main]' does not exist

within context REQUEST()SESSION()APP() :

You must delete compiled JSP class files and restart the application server. (All JSP pages
are compiled in class files by the application server at the time the page is requested.
Refer to your application server documentation to find the location of the JSP class files.)

(Tomcat) Application slows down

Tomcat can slow down even when the system has a lot of memory available. The default
maximum memory size for the JVM is 64 MB. The application slows down when it
reaches the memory ceiling and begins swapping objects in and out of the base memory.

Solution: Increase the Java memory heap by adding the following command line to the
Tomcat server startup command file (catalina.bat):
set JAVA_OPTS =-Xms60m -Xmx300x
This setting will increase the minimum JVM memory from 2 MB to 60 MB and the
maximum memory from 64 MB to 3000 MB.

Page not found errors in if HTTP 1.1 not enabled in
client browser

The browser reports Page not Found when the user clicks on a cabinet or folder. You
must enable HTTP 1.1 in the IE browser: Go to the Tools menu and select Internet
options. On the Advanced tab, in the HTTP 1.1 settings section, check Use HTTP 1.1.

328 Web Development Kit and Client Applications Development Guide

Development Environment and Tools

DFC business object no longer works

The WDK and WDK client installers replace the business object registration file
dbor.properties. The installers make a backup of the file in DOCUMENTUM_HOME/
User_dir/config, for example, dbor.properties.webtop.backup.

Solution: Add your custom entries from the backed up dbor.properties to the current
dbor.properties and then restart your DFC-based applications.

Application runs out of sessions

There are several reasons that can cause an application to run out of sessions:

• The application server may have a limited number of sessions available. Some demo
or developer versions limit sessions to 2 or 3.

• The application server machine’s dmcl.ini file does not provide enough settings. The
setting max_session_count in the section [DMAPI_CONFIGURATION] should have
a value of at least 1000. You can set the count higher if necessary:
max_session_count=1000

• DMCL session pooling is turned off. If session pooling is turned on at the DMCL
level, the session manager releases sessions 5 seconds after a client releases the
DfSession object. When session pooling is turned off, the session is not released
for several minutes.

Refer to the Content Server documentation for instructions on turning on session pooling.

Browser navigation renders actions or links invalid

Any HTML element or JSP tag that triggers a user event, such as a button, link, action
button or action link, must be named in order for it to be properly retrieved in the
browser history. If the element is not named, it will not be placed in the history snapshot
and will not work properly when the user returns to the form. In the following example,
the actionlink has a name, which ensures that it will be called when the user returns to
the page:
<dmfx:actionlink name="viewlnk" showifdisabled="true" showifinvalid="true"
visible="true" datafield="object_name" action="view">
<dmf:argument name="objectId" datafield="r_object_id"/>

</dmfx:actionlink>

Web Development Kit and Client Applications Development Guide 329

Development Environment and Tools

Content transfer fails

Content transfer operation fails with an error message to the console and log. There
are several known causes for this failure:

1. The error message is generated (substitute the current content transfer operation
for operation_name):
operation_name fails

The application server host must have a temporary content transfer directory
that matches the directory specified in the /wdk/app.xml file element
<server>.<contentlocationunix> or <server>.<contentlocationwindows>. The user
who owns the application server instance must have write permissions on this temp
directory. This directory is used for temporary transfers between the client and
the application server and between the application server and the repository. The
temporary files are cleaned up after the content transfer operation has completed.

On UNIX servers in which the app server instance owner does not have write
permissions, the error message is the following:
ERROR: Failed to download document for viewing...
NotSerializableException: com.documentum.web.form.FormHistory

2. The registry entry HKEY_Local_Machine/Software/Documentum/Common/
CheckoutDirectory does not exist on a machine before performing a Content Transfer
Operation. The following error is generated:
com.documentum.web.contentxfer.applet.registry.

RegKeyException: Registry Error...

The administrator can run a script to create this key on all user machines.

3. The Microsoft browser JVM has become damaged, perhaps by a Sun SDK
installation, and must be reinstalled.

Contact Microsoft for a browser JVM installer.

4. The Sun plugin is not recognized by the browser.

Certain versions of the Sun plugin are not recognized by the browser due to an error
in the plugin. Uninstall the plugin and install an older or newer version.

(Windows) Applet installation fails on client

Symptom: (Client) The IE browser can’t install the WDK content transfer applets, with
the message "Can’t find the InstallApplet class".

Cause: Some versions of IE do not have a Java Virtual Machine (JVM) installed.

330 Web Development Kit and Client Applications Development Guide

Development Environment and Tools

Solution: You must install either the Sun JVM plugin or the Microsoft JVM. (The Sun
plugin is required for UCF content transfer and user preferences. The MS VM can be
used for HTTP content transfer.)

To enable the Java plugin in IE

1. On the client, ensure that you have installed the Sun Java plugin.

2. Open Internet Explorer

3. On the Tools menu, select Internet Options.

4. Select the Advanced tab.

5. Find the Java (Sun) section and check Use Java 2 vxxx for <applet> where xxx is
a version number.

6. In the Microsoft VM section, make sure all check boxes are unchecked

7. Close all open IE windows and restart IE.

Cannot import an XML le

There are several known causes for this problem.

1. If the application is using HTTP content transfer, XML files can be imported only
with the default XML application. Entities (descendants) are not imported.

2. If an XML file has been encoded in an encoding other than UTF-8, and the file
includes non-ASCII characters, the import will fail with the Microsoft browser JVM.

Encode XML files in UTF-8, or use the Sun Java plugin for all users. Refer to
(Windows) Applet installation fails on client, page 330 for information on changing
the browser JVM on the client and in the server setting.

3. If the XML application DTD does not have a .dtd extension, a null pointer exception
is displayed. Rename the DTD file with a .dtd extension.

4. In Netscape/Windows, when the user invokes content transfer on an XML document,
the full applets (containing an XML parser) are installed and the user is prompted
to restart the browser. When the user restarts the browser and attempts a content
transfer operation, there is a security error (cannot load DLL) or null pointer
exception.

Even though the browser is closed, Netscape may be running a process in the
background. Close all Netscape processes in the Windows task manager and restart
the browser. Refer to your system administrator for information on how to close
hidden processes.

Web Development Kit and Client Applications Development Guide 331

Development Environment and Tools

Cannot check in XML le

When the user attempts to check in an XML file, the error returned is the following:
Exception: java.io.UnsupportedEncodingException: UTF-8 [Could not load class:
sun.io.CharToByteUTF-8]
java.lang.UnsatisfiedLinkError: java/security/AccessController.doPrivileged

Cause: This error is seen when the user has the Microsoft VM in the browser and has
JAVA_HOME/jre/lib/rt.jar from the Sun Java SDK on the system classpath. The browser
VM picks up java.security.AccessController from Sun instead of its own.

Solution: Remove rt.jar from the system classpath or switch the browser to use the Sun
Java plugin.

java.lang.verify error in WDK application after installing
another Documentum product

If you install a Documentum product with a version of 4.x, that product may install
its own DFC 4. When that product is launched, DFC 4 is loaded into memory, and
WDK-based applications will not work properly.

Unable to locate checked out objects after installing
WDK-based application

If your client hosts have checked out objects using DFC 4.2 or lower, they will not be
located by DFC 5. Documentum began using the HKEY_CURRENT_USER registry hive
recommended by Microsoft with version 4.3 of Documentum products.

If your clients have objects still checked out when they connect to a WDK 5 client
application, they can manually check in those objects by selecting Checkin from File in
the checkin component. It is recommended, however, that clients check in all objects
before connecting to a WDK 5 client application.

(WebLogic) Invalid ticket (content transfer fails)

Symptom: Error message during content transfer:
Invalid ticket. Content file could not be found.

332 Web Development Kit and Client Applications Development Guide

Development Environment and Tools

Solution: Check the HTTP keep alives setting on the WebLogic server. The setting must
be on.

Controls don’t display any repository data

All controls in the dmfx tag library require a Documentum session, which is obtained in
the component class. Any tag in the dmf tag library that sets a value based on a datafield
or specifies a query to populate the control also requires a Documentum session. Make
sure that the component whose JSP page contains the control is getting a session.

Tracing
You can use the WDK tracing flags in your JSP pages and Java classes, and you can
add your own tracing flags to trace operations that are used in more than one class.
After you enable tracing, tracing statements will be written to the wdk.log file in your
DOCUMENTUM_HOME/config directory. (You selected a DOCUMENTUM_HOME
directory when you first installed a Documentum product.)

Tracing has a more general usage than logging. Logging is generally used for debugging
within a class or for creating an audit log.

Tracing is described in the following topics:
• Turning on WDK tracing, page 333
• Using DFC tracing, page 334
• Using DMCL tracing, page 334
• WDK tracing flags, page 335
• Adding custom tracing flags, page 342
• Client-side tracing, page 342

Turning on WDK tracing

You must enable tracing for the current session by navigating to /wdk/tracing.jsp and
checking the box that enables tracing. You can enable tracing for all sessions bysetting
SESSIONENABLEDBYDEFAULT to true in /WEB-INF/classes/com/documentum/debug/
TraceProp.properties.

There are several ways to turn on a particular tracing flag in your WDK application:

Web Development Kit and Client Applications Development Guide 333

Development Environment and Tools

• Set the appropriate tracing flag to true in TraceProp.properties. The trace flags are
read by the Trace when a Java class sets trace strings.

• Navigate to the tracing JSP page in the application. For WDK applications and
Webtop, tracing.jsp is located in /wdk. When you set a trace flag through the tracing
JSP page, the trace value overrides the value in TraceProp.properties. For Web
Publisher, the tracing page tracing.jsp is located in /wp/app.

• Navigate to the tracing page in Web Publisher.

For more information on Web Publisher tracing flags, refer to Web Publisher
Development Guide.

Using DFC tracing

To turn on DFC tracing, set the following preference in your dfc.properties file:
dfc.resources.diagnostics.enabled=true

Caution: Do not store IDfSession objects as member variables. The session may time
out and cause a runtime error. Instead, every time a session is needed in that class,
call the Component class getDfSession() method. IDfTypedObjects obtained through
IDfCollection do not cause a problem. (They are a memory-cached row from a
collection).)

Using DMCL tracing

You can trace native library calls on the J2EE server host through DMCL tracing. To
turn on or off DMCL tracing in WDK or Webtop, navigate to the tracing JSP page,
substituting the actual server name, port number, application name, and path to your
log file in the URL:
http://my_server:portnumber/app_name/wdk/dmclTrace.jsp?level=
10&logfile=c:\dmcl.log

In this example, the log file will be found at C:\Program Files\Apache Software
Foundation\Tomcat 5.0\bin.

After you turn on DMCL tracing, you will see a message indicating that DMCL trace
was called. Click the browser button to get back into your application, and then click
the Refresh button.

You can turn on DMCL tracing by adding the following lines to the dmcl.ini file on the
application server, in the [DMAPI_CONFIGURATION] section:
trace_file=path_to_log_file

334 Web Development Kit and Client Applications Development Guide

Development Environment and Tools

trace_level=trace_level

For example:
trace_file=c:\dmcl.log
trace_level=10

The dmcl trace log will be located in the location specified in the trace command. If no
location is specified, it will be in the current directory of the traced program, in a file
called api.log, for example, webtop/WEB-INF/dmcl.log.

Trace levels are cumulative. Level 0 is turned off, levels 1–4 are server trace levels, 9 is
API calls, 10 is timing trace. The timing trace is useful for finding queries that need
optimization.

The log levels for DMCL tracing are described for the Tracing API in Content Server
API Reference Manual.

WDK tracing ags

WDK tracing flags are enumerated in the WDK resource file TraceProp.properties
located in /WEB-INF/classes/com/documentum/debug. This file contains all tracing flags
that are defined in your application. If there is an unknown flag in this file, the Trace
class initialization will generate a warning message but will continue.

Note: Youmust enable tracing for the current session using one of the followingmethods:
• Set the SESSION flag (mandatory) and another other flags you require in

TraceProp.properties and then restart the application server.
• Use a browser to navigate to /wdk/tracing.jsp and check the box that enables tracing.
You can enable tracing for all sessions for setting SESSIONENABLEDBYDEFAULT to
true in /WEB-INF/classes/com/documentum/debug/TraceProp.properties.

Some WDK client applications such as Web Publisher add their own tracing flags.
The Web Publisher tracing flags are located in the file WpTraceProp.properties in
/WEB-INF/classes/com/documentum/wp/resources.

Tracing flags are described in the following topics:
• Tracing sessions, page 336
• Tracing WDK framework operations, page 337
• Tracing controls and validation, page 337
• Tracing JSP processing, page 338
• Tracing components and applications, page 339
• Tracing virtual links, page 339
• Tracing servlets, page 340

Web Development Kit and Client Applications Development Guide 335

Development Environment and Tools

• Tracing asynchronous operations, page 340
• Tracing content transfer, page 341

Tracing sessions

The following tracing flags in com.documentum.web.common.Trace and
web.formext.Trace can be used to trace HTTP and Docbase sessions:

Flag type Description

SESSIONSTATE Traces changes to HTTP session object and attributes

SESSIONSYNC Traces session locking and unlocking

SESSIONENABLEDBY-
DEFAULT

Traces all sessions when set to true;

SESSIONTIMEOUT-
CONTROL

Traces changes to the HTTP session timeout defaults
through the SessionTimeoutControl servlet

SESSIONHANDLE,
SESSIONREFCOUNT

Not used

SESSION Traces Documentum session binding and unbinding to
HTTP session. SESSION tracing must be enabled for all
other tracing flags

REQUEST Traces Session ID, URL protocol, authorization type, HTTP
method, URL scheme, server port, server name, host name,
locale, URI, query string, referer

FAILOVER Traces serialization calls to ReplicatedSession and
Container.isFailoverEnabled(). Use this flag to find session
attributes that are not serializable. A runtime exception will
have a message that a non-serializable attribute has been
placed in the session.

FAILOVER_
DIAGNOSTICS

Prints the total size of the session in bytes that are serialized
at the end of each request. This is a very expensive call and
should be used only for debugging purposes.

CLIENTSESSION-
STATE

Traces binding and restoring client ID to HTTP session

CLIENTDOCBASE Traces the repository that the user has navigated to, in login
and authentication, multi-repository search results, browser
tree navigation, find target in foreign container, Webtop
tabbar

336 Web Development Kit and Client Applications Development Guide

Development Environment and Tools

Tracing WDK framework operations

The following tracing flags in com.documentum.web.common.Trace and
web.formext.Trace can be used to trace various framework operations:

Flag type Description

THREADLOCALVARI-
ABLE

Traces binding of variables to threads.

LOCALESERVICE Traces set locale and create locale hook

ACTIONSERVICE Traces getActionDef(), queryExecute(), preconditions and
results, execute(), return values

CONFIGSERVICE Traces lookupElement(), inheritance resolution, qualifiers,
lookup hooks, IConfigElement()

PREFERENCES Traces preference setting, caching, and retrieving

ROLESERVICE Traces role preconditions called by action service

BRANDINGSERVICE,
CONFIGTHEMERE-
SOLVER

BRANDINGSERVICE traces the resource folder used for
branding; CONFIGTHEMERESOLVER traces theme cache
refresh, prints theme list, default theme, CSS for theme,
resource folder path

CLIPBOARD Traces clipboard operations on objects: cut or copy to, paste
or paste as link from clipboard, remove, read and write to
repository clipboard cache, clipboard ID

MESSAGING Not used

FOLDER_UTIL Traces cache updates, hits, and refreshes

PERSISTENTOBJECT-
CACHE

Traces caching and retrieval of persistent objects such as
DFC objects

Tracing controls and validation

The following flags in com.documentum.web.form.Trace can be used after you turn
on session tracing:

Flag type Description

CONTROL Traces the TreeTag renderEnd event

CONTROLTAG Traces image folder or file path resolution error, control
creation,doStartTag and doEndTag events

Web Development Kit and Client Applications Development Guide 337

Development Environment and Tools

Flag type Description

DATABOUND Traces query object built, resultset and resultset data handler
events, query data handler events, and data provider events

VALIDATOR Traces the following validators: QuoteValidator,
CompareValidator, RangeValidator, InputMaskValidator,
DateValidator, and RegExpValidator.

DOCBASEATTR Traces notifications of start and finish to DocbaseAt-
tributeRequestListener, form empty notification, calls to
listener postServerEventControls(), calls to updateAttribute-
AndDependentList(), traces adding and removing entries
to attribute list (can be used to trace duplicate names), and
traces the attribute dependency list.

DOCBASEATTRLIST Dumps the DOM of attributes that are obtained from the
data dictionary.

DOCBAS-
ESCOPECONFIGSER-
VICE

Traces operations that read scope and attribute categories
from the data dictionary

Tracing JSP processing

Flag type Description

Forms and form tags FORM traces URLs for return, nest, and redirect, validation,
browser history setting, form binding and unbinding to
HTTP session; FORMTAG traces doStartTag and doEndTag
events and WebformTag includes. FORMINCLUDETAG is
not used.

Page navigation Several tracing flags give more granularity to form processor
tracing: JUMPOPERATION traces onExit event, jumped-to
form construction and onInit event, update, change events,
and validate; HISTORYRELEASEDOPERATION (not used);
NESTOPERATION traces nested form creation and onInit
event; PAGEJUMPOPERATION traces update, change,
and validate events; RECALLOPERATION traces update,
change, validate, and action events; RETURNOPERATION
traces onExit; REDIRECTOPERATION (not used); event;
TIMEOUTOPERATION (not used); INCLUDEOPERATION
(not used);

338 Web Development Kit and Client Applications Development Guide

Development Environment and Tools

Flag type Description

FORMHISTORY Traces form init and exit, snapshot number, removal,
binding, release, recovery

Page processing FORMPROCESSOR traces form open, URL request, and
calls to jump, nest, page jump, recall, redirect, return and
jump, and return operations; FORMPROCESSORACTIONS
traces form forwarding, rendering, refresh, and form
processor hook creation

OPTIMIZE Times the processing of a form from doStartTag to end of
doEndTag.

Form info FORMINFOCOMMENTS renders form (form class, NLS
resource, and URL) or component (component name, config
file, vcontext, page, form class, NLS resource, and URL) info
into HTML comments; FORMREQUEST traces session state
for the form; FORMRESPONSE (not used).

FRAGMENTBUNDLE-
SERVICE

Traces bundle cache refresh, storing in cache, bundle not
found, base bundle used, fragment tag rendered

Tracing components and applications

Flag type Description

Components COMPONENT traces component launching, role
precondition check, nesting, form class and NLS bundle,
and dispatching context, start page.

CONTAINMENT Displays the containing form; COMBOCONTAINER traces
visitor callbacks, getValue() and setValue() failure

APPCONTEXT Traces the web application root context and calls to
setFolderPath and setFolderId in the AppSessionContext
class.

VDMTREEGRID Traces resynch, create root node, add a node ID to VDM
tree grid

Tracing virtual links

The following flags in com.documentum.web.virtuallink.Trace can be used to trace
virtual linking:

Web Development Kit and Client Applications Development Guide 339

Development Environment and Tools

Flag type Description

VIRTUALLINK Traces virtual link servlet request, error in repository path,
stack trace, authentication request, redirect, invalid 404
error, servlet exception, could not retrieve object from
repository, non-sysobject.

VIRTUALLINKCON-
TENT

Traces Documentum object ID, format error, extraction and
mim-type details, file stream initialization, stream written,
end of file.

VIRTU-
ALLINKMATCHING

Traces virtual link path and path exception, partial match
path.

VIRTUALLINKRE-
QUEST

Traces request string and writes details to the log.

Tracing servlets

The following flags in com.documentum.web.servlet.Trace can be used to trace servlet
operations:

RESPONSE_COMPRESSION Reports processing times and compression
ratio for zipped compression, which is
enabled in web.xml

RESPONSE_HEADER_CONTROL Logs the response headers and session ID

FORMAT_RESOLVER Traces operations of the file format icon
resolver

Tracing asynchronous operations

The following tracing flags in com.documentum.job.async.Trace and
com.documentum.job.Trace can be used to trace asynchronous jobs:

ASYNC_MGR Traces job operations by the async
manager including creating and getting
jobs, job events, notification, queueing,
timing, execution, and job count

JOB_EXEC_SERVICE Not used

JOB Traces job construction and status report

340 Web Development Kit and Client Applications Development Guide

Development Environment and Tools

JOB_STATUS_REPORT Traces job status report requests and
messages

JOB_STATUS_LISTENER Traces calls to the job status listener
including job completion percentages, job
termination, completion of all jobs

Tracing content transfer

The following flags in com.documentum.web.form.contentxfer.Trace and web.util.Trace:

Flag type Description

ZIPARCHIVE Traces the zip archive that is created to transfer content
including stream open, close, file name, and folder name.

GETCONTENT Traces servlet initiation and completion, object retrieval,
format test, extraction, streaming, and writing to local host.

The following tracing flags in com.documentum.web.contentxfer.Trace can be used
to trace UCF operations:

UCF_MANAGER Traces UCF server session initialized,
new server session ID, server session
acquire and release, session disconnect,
communication manager registration,
and UCF requirement by component
(all components with <ucfrequired/> in
definition)

HTTP_MANAGER Traces add outgoing content file, send
outgoing file, remove outgoing file, and
set client download event

WDK_API_TRACE Traces file path for HTTP multi-part file
upload

The following tracing flags in com.documentum.web.common.Trace and
com.documentum.web.contentxfer can be used to trace ACF content transfer operations.

Web Development Kit and Client Applications Development Guide 341

Development Environment and Tools

CLIENTNETWORKLOCATION Traces the network location used by
the client: get, store, clear preference,
get applicable and available network
locations

ACS Traces the reading of the ACS preference
(use ACS for HTTP transfer)

CONTENTTRANSFER Client-side trace flag that provides ACS
info for HTTP-based transfer if app.xml is
configured to use ACS for HTTP transfer

Adding custom tracing ags

You can add tracing flags specific to your application, and then use the flags as outlined
above.

Example 10-1. Adding tracing ags to your application
The following example adds two custom tracing flags to the application.

1. Create a custom trace class that extends one of the WDK trace classes. For example:
public class MyTrace extends com.documentum.web.common.Trace

2. Add your tracing flags to the custom tracing class as member variables. For example:
public static boolean MYTIMEOUTCONTROL;

3. Add your tracing flags to com.documentum.debug.TraceProp.properties in
/WEB-INF/classes//com/documentum/debug.

4. Use your flag in the application.
String timeoutValue = request.getParameter(TIMEOUT_PARAM);
if (Trace.MYTIMEOUTCONTROL)
{
Trace.println("TIMEOUT_PARAM value read: " + timeoutValue);

}

Client-side tracing

You can insert client-side tracing in your JSP pages. The client-side tracing JavaScript
file trace.js is provided in the WDK include directory. To change the JavaScript file
that handles client-side tracing output, specify your custom JavaScript file in the
WebformScripts.properties resource file. The trace JavaScript file, and all other JavaScript

342 Web Development Kit and Client Applications Development Guide

Development Environment and Tools

parameters in WebformScripts.properties, are rendered into form HTML output by the
WebformTag class.

To output client-side tracing messages to a popup browser window, call the Trace_println
function, passing in the message as the sole parameter. For example, within the <html>
tags of a JSP page:
<script language="JavaScript">Trace_println
("hello, World");

</script>
You can also turn on server-side tracing in a JSP page during development. The trace
output will be written to standard output (stdout) and, for some application servers, the
output is displayed in the console.

Logging
The open source Apache logging library log4j is installed by the DFC installer. This
package allows you to enable logging at runtime without modifying the application
library or incurring a significant performance impact. The Apache log4j library is used
by the DFC logger class DfLogger. Each log4j Logger class method such as debug() and
warn() is wrapped by a DfLogger method. The WDK Trace class uses DfLogger to write
the log file for all enabled traces.

The log file location is specified in a log4j.properties file, which is installed by the
WDK and client applications installers to DOCUMENTUM_HOME/config. By default,
the log file name (not path) is specified in log4j.properties as the value of the key
log4j.appender.file.File, for example:
log4j.appender.file.File=C\:/Documentum/logs/wdk.log

You can configure the log file to create a new file each time the log file reaches maximum
size by setting the value of log4j.appender.file.MaxBackupIndex=1 to the maximum
number of log files you want, for example, 10 or 20.

To turn on logging of all warnings, change the rootCategory property as follows:
log4j.rootCategory=WARN, stdout, file

To add DfLogger entries to the log file, import com.documentum.fc.common.* in your
class and add log statements similar to the following for tasks that you wish to log. The
log statement will be written to trace.log:
DfLogger.warn ("tracing", "message here", null, null);

You can also enable console logging in the log4j.properties file. Some application servers
automatically route console messages to a log, so this setting may not be necessary for
your application server. For information on console logging, consult your application

Web Development Kit and Client Applications Development Guide 343

Development Environment and Tools

server documentation. For more information on configuring log4j, refer to the Apache
Web site.

You can enable logging of DFC tracing with the log4j package for DFC classes in the file
dfcfull.properties, which is installed to DOCUMENTUM_HOME/config. By default,
DFC logging is suppressed. You can turn on tracing of method calls, parameters, return
values, trace formatting, tracing depth, and DMCL. You can replace this with the full
path and file name. To enable logging of DFC trace calls, change the following line:
dfc.tracing.enabled=false

to the following value:
dfc.tracing.enabled=true

The DFC trace file dfctrace.log is written to the J2EE server directory that contains
the app server executable. For example, in Tomcat the trace file will be located in
C:\Program Files\Apache Tomcat 4.0\bin.

Performance
There are several application guidelines that can significantly improve performance
of your Web application:
• Action implementation, page 345
• Documentum object creation, page 345
• String management, page 346
• Paging, page 346
• J2EE memory allocation, page 346
• HTTP sessions, page 348
• Preferences, page 349
• Browser history, page 349
• Value assistance, page 349
• Search query performance, page 350
• High latency and low bandwidth connections, page 350
• Qualifiers and performance, page 352
• Import performance, page 352
• Load balancing, page 352
• Modal windows, page 353
You can also follow these simple recommendations for performance:
• Event handling

344 Web Development Kit and Client Applications Development Guide

http://jakarta.apache.org/log4j/docs/

Development Environment and Tools

Server event handling provides code reuse across the application, state management,
and better performance.

• Queries

Set <showfolderpath> to false in the search component to speed queries.
• Tracing

Turn off tracing to improve performance. Navigate to the page /wdk/tracing.jsp
and deselect all tracing flags.

Action implementation

The states of all actions associated with dynamic action controls are evaluated when the
actionmultiselect control is rendered. A large number of selectable items or associated
actions can degrade performance. For example, if there are ten selectable items and a
hundred associated actions, one thousand states will be evaluated.

Preconditions are called for each item in a list component or actionmultiselect control.
The action service checks preconditions for each control, and the control tag class renders
JavaScript to dynamically show, disable, or hide the controls based on the state of
checkboxes. For 10 multiselect items and 50 dynamic actions, this results in a possible
500 precondition calls before page rendering. Action precondition classes must be
optimized to manage performance. The actionmultiselect control in particular should
not have too many selectable items or associated actions.

To reduce the query time for preconditions, you may be able to use a dm_sysobject with a
custom a_content_type attribute instead of a custom object type for type-specific actions.

Another strategy to improve action precondition performance is to cache custom
attributes that are used by the precondition by means of a custom attribute data handler.
Refer to Using custom attribute data handlers, page 375 for details.

Documentum object creation

Whenever possible, do not call IDfSession.getObject(), which performs a fetch of the
object. Most attribute arguments can be retrieved without a call to getObject(), because
they are cached by the initial query on the page rather than from a getObject() call. For
example, if the page has a databound control to r_lock_owner, that attribute value is
cached. Your component can check for the existence of the argument value and query
only if the argument was not passed.

Queries inside an action class queryExecute() method can seriously degrade performance.

Web Development Kit and Client Applications Development Guide 345

Development Environment and Tools

String management

The following coding practices can enhance the performance of your application:

• Replace string concatenation using "+” with string buffers, and initialize the string
buffer to an appropriate size.

• Strip white space and comments from JSP pages to reduce their size. WDK
provides a utility to strip white space and comments: CommentStripper, in
WEB-INF/classes/com/documentum/web/tools. Refer to Comment stripper, page
353 for information on using this tool.

Paging

Controls can retrieve any number of rows from a data provider unless you limit the
cache size or apply paging to the datagrid.

Cache size for the number of objects returned by a query is configurable in
Databound.properties, in /WEB-INF/classes/com/documentum/web/form/control.
Paging is configured on a JSP page that contains a datagrid. You can limit the choices for
page sizes by setting the pagesizevalues of the datapagesize JSP tag.

The paged attribute on the datagrid control provides links that enable the user to jump
between pages of data within the enclosing data container. You should page your data
for better performance and display. If you set the paged attribute to true, the data
provider or data container will render the appropriate links only if the provider has
returned multiple pages of data from the query.

J2EE memory allocation

If the memory allocated to the J2EE server Java virtual machine (VM) is not correctly
set, the VM will spend a lot of time destroying Java objects, garbage collecting, and
creating new objects. To change the memory allocation, use a setting similar to the
following in the Java arguments in the J2EE server start script that was installed by
the WDK application installer:
-Xms256m -Xmx256m

The command elements are described below:
1-Xms256m 2-Xmx256m 3-verbose:gc

1 Starting memory heap size, in MB. In general, increased heap size increases
performance up until the point at which the heap begins swapping to disk.

346 Web Development Kit and Client Applications Development Guide

Development Environment and Tools

2 Maximum Heap size. For a single VM, Sun recommends that you set maximum
heap size to 25% of total physical memory on the server host to avoid disk swapping.
Increased heap size will increase the intervals between garbage collection (GC), which
thus increases the pause time for GC.

3 Turns on output of garbage collection trace to standard output (refer to below)

For more information on these settings, refer to your application server documentation.

You can monitor memory usage by the Java process in the Windows task manager to
determine whether your memory allocations are optimum.

You can monitor Java garbage collection by setting the command –verbose:gc in the J2EE
server start script. Increased Java memory settings will increase the amount of time
before a major garbage collection takes and will also increase the amount of time that
garbage collection takes to execute. Garbage collection is the greatest bottleneck in the
application, and all application work pauses during garbage collection.

Garbage collection tracing has the following syntax:
[GC 776527K->544591K(1040384K), 0.4283872 secs]

The trace can be interpreted as follows:
1[GC 2776527K->3544591K(
41040384K), 50.4283872 secs]

1 GC indicates minor garbage collection event, Full GC indicates full garbage collection

2 Amount of total allocated memory at start of minor collection

3 Amount of total allocated memory at end of minor collection

4 Amount of total memory on host

5 Time in seconds to run garbage collection

Allocated memory as shown in consecutive GC traces continues to grow until full
garbage collection occurs. Full garbage collection takes much longer than minor garbage
collection, often on the order of 10 times as long.

The following table describes some memory troubleshooting inferences that can be
drawn from garbage collection.

Web Development Kit and Client Applications Development Guide 347

Development Environment and Tools

Symptom Reason

Frequent full GC, starting point higher
after each full GC, decreasing number of
GC between full GC

Total memory too small, or memory leak

Garbage collections take too long (GC 1
sec, full GC 5 sec), server cannot create
new threads

Too much memory allocated to JVM

J2EE servers also have configurable settings for thread management which can
significantly affect performance. The symptom of insufficient threads is that, as the
number of users increases, performance degrades without increased CPU usage. Some
users will get socket errors. In Tomcat, the log catalina.log shows that all threads up to
maxProcessors have been started, and new requests are rejected with "Connected Reset
By Peer.” In WebLogic, the execute queue shows waiting threads (0 idle threads, with
queue length growing).

The symptom of too many threads is excessive context switching between live threads
and degraded response time.

To change the number of worker threads in WebLogic, change the value of Threads
Maximum in the Configuration screen for the WDK application domain. Alternatively,
you can increase the ThreadCount setting in the WebLogic web.xml file:
<Server ListenPort="7001" Name="dctm" NativeIOEnabled="true"
ServerVersion="7.0.0.0">
<COM Name="dctm"></COM>
<ExecuteQueue Name="default" ThreadCount="35"></ExecuteQueue>

</Server>

In Tomcat, you can change the maximum number of processors (maxProcessors)
/conf/config.xml:
<!-- Define a non-SSL HTTP/1.1 Connector on port 8080 -->
<Connector className="org.apache.catalina.connector.http.HttpConnector"
port="8080" minProcessors="50" maxProcessors="7.0.0.0">

</Connector>

HTTP sessions

You can set the maximum number of HTTP sessions for your application in the
/wdk/app.xml element <application>.<session_config>.<max_sessions>. When the
maximum number of sessions is reached, subsequent requests return a serverBusy JSP
page. A value of -1 indicates that there is no limit on the number of sessions.

You can also override the normal J2EE session timeout when the top browser frame is
unloaded, such as when the user navigates to another Web site. Instead of the usual 60
minute HTTP timeout, the timeout setting <client_shutdown_session_timeout> is set to

348 Web Development Kit and Client Applications Development Guide

Development Environment and Tools

60 seconds when the main (top) window has been closed. Refer to Number of user
sessions, page 112 for details.

Preferences

Preferences are stored as cookies. Since cookies are passed back and forth with every
request and response, there is a small increase in network traffic. If you need to minimize
network traffic or service users on low-bandwidth connections, you may wish to not
use preferences.

Browser history

The number of history pages maintained on the server for each window or frame is
set by the requestHistorySize flag in the file FormProcessorProp.properties, which is
located in /WEB-INF/classes/com/documentum/web/form. The default value is 10. If
the value is empty or zero, then history is maintained indefinitely. This setting could
significantly affect performance.

Memory that is allocated to maintaining browser history is managed more efficiently
on the J2EE server if you generate framesets and frames using the <dmf:frameset> and
<dmf:frame> tags. Refer to Managing frames, page 120 for more information.

Value assistance

Performance is affected by the number of value assistance queries to be displayed in the
properties component and in other components that display a set of properties. Several
interventions will enhance this performance:

• For each value assistance query, turn on the option to allow caching in Documentum
Application Builder

• Set the cache_queries option to false (F) in the dcml.ini on the WDK application
server host. This will ensure that queries are not persistently cached for a long time,
only for the life of the DFC user session.

• Index the associated attributes in Content Server.

Web Development Kit and Client Applications Development Guide 349

Development Environment and Tools

Search query performance

In advanced search, you can add a checkbox for case-sensitive search. Set the casevisible
attribute on the search controls to true. Set the default match case as the value of the
element <defaultmatchcase> (true | false) in /wdk/advsearchex.xml. Case-sensitive
queries perform faster.

Note: The 5.3 FAST indexer is not case-sensitive, so the case-sensitive checkboxes are
applicable only to non-indexed 5.3 Content Server or 5.2.5 Content Server.

Set <displayresultspath> to false in the 5.3 search component definition to speed all
queries. (Does not query for folder path of each object.)

High latency and low bandwidth connections

Use streamline views (drilldown) in applications for high latency connections. The
classic (objectlist) view is slower.

Two filters are available to improve performance in high latency or low bandwidth
networks. The filters are defined as servlet filters in /WEB-INF/web.xml. They are turned
on by default. The filters are as follows:
• Response compression filter (CompressionFilter)

Compresses text responses by mapping requests for *.jsp, *.css, *.js, *.htm, *.html,
and the component dispatcher servlet. If the request accept-encoding header
indicates that the browser accepts compression, the filter swaps the output stream
for a compressed stream in either gzip or deflate compression formats, depending
on which format is accepted by the browser as indicated by the Accept-Encoding
request header.

The configurable value for this filter, init-param compressThreshold, is a size in KB or
MB thatsets the threshold file size at which output will be compressed. Compression
does not decrease the size of the stream for small inputs. Additional, high-bandwidth
networks may show improvement for only very large files (hundreds of KB). A value
of 3kb indicates that files 3 KB or larger will be compressed.

Additionally there are init-params for turning on compression filter debugging and
excluding specific JSP pages from compression filtering.

Limitations:

— Not compatible with all application servers, such as WebSphere 5 or WebLogic
7. Can be enabled on WebSphere by enabling compression on the integrated
Apache Web server.

350 Web Development Kit and Client Applications Development Guide

Development Environment and Tools

— Browsers Safari 1.0 and IE on Macintosh do not support compression. IE
through a proxy does not accept compressed responses. A workaround for this
is to set up a transparent proxy that the browser is not aware of.

— There is an unknown CPU cost for the compression.
• Cache control (ClientCacheControl)

Limits the number of requests by telling the client browser and any intermediary
caches such as caching proxies to cache static elements such as *.gif, *.js, and *.css
files, by adding a Cache-Control response header. After the browser has received a
response with this header, it will not re-get the content until the maximum age or
until the content is cleared manually from the browser cache.

The configurable value for this filter, init-param Cache-Control, is the maximum age
in seconds of the static content before revalidation, for example, max-age=86400
(one day).

Add URL patterns to specify the file types that will be cached. In the following
example, *.gif files are cached for up to two days:
<filter>
<filter-name>ClientCacheControl</filter-name>
<filter-class>com...ResponseHeaderControlFilter</filter-class>
<init-param>
<param-name>Cache-Control</param-name>
<param-value>max-age=172800</param-value>

</init-param>
</filter>
</filter>
<filter-mapping>
<filter-name>ClientCacheControl></filter-name>
<url-pattern>*.gif</url-pattern>

</filter-mapping>

Note: Safari browser and IE browsers on the Mac and 5.5 on Windows do not
apply this header. Later versions of IE do not support both the cache-control and
compression mechanisms at the same time.

Tracing for these filters can be enabled through the standard tracing mechanism
(TraceProp.properties) or by adding the debug <init-param> element to the application
deployment descriptor (/WEB-INF/web.xml). For example:
<filter>
<filter-name>CompressionFilter</filter-name>
<filter-class>com.documentum.web.servlet.CompressionFilter</filter-class>
<init-param>
<param-name>compressThreshold</param-name>
<param-value>3kb</param-value>

</init-param>
<init-param>
<param-name>debug</param-name>
<param-value>true</param-value>

</init-param>
</filter>

Web Development Kit and Client Applications Development Guide 351

Development Environment and Tools

Qualiers and performance

Each qualifier that is defined in the application slows performance the first time a
component is called. Navigation components must evaluate qualifiers for each action
in the component JSP page. To improve performance, remove from your custom
app.xml file the qualifiers that your application does not need (the application qualifier is
required). In the following example from an app.xml file in the /custom directory, only
the type qualifier is used by a custom application. The app qualifier is required for all
applications. No components or actions can be scoped to role in this example, because
the role qualifier is not defined for the application.
<qualifiers>
<qualifier>com.documentum.web.formext.config.DocbaseTypeQualifier
</qualifier>
<qualifier>com.documentum.web.formext.config.AppQualifier
</qualifier>

</qualifiers>

Import performance

You can limit the number of files that can be imported by a user during a single import
operation. This configuration setting is the <max-import-file-count> element with a
default of 1000 in the importcontainer component. Extend this component definition
to configure a different maximum value.

Certain environments have forward or reverse proxy Web servers that do not support
HTTP 1.1 chunking, which is used by UCF for content transfer. For those environments,
you must configure UCF to use alternative chunking, and you can tune the chunk
size for the Web server. In general, the default chunk size works best for large file
transfers. Smaller chunk sizes may enhance performance for small (less than 1MB) files
but degrade performance for large files. Refer to Configuring UCF support for chunked
transfer encoding, page 522 for more information.

Load balancing

WDK applications can be load balanced using network load balancers. Session
"stickiness" (or affinity) must be used. That is, once a session has been established
between a browser and a back-end application server then all subsequent traffic from
that browser must be routed to that server by the load balancer for the duration of the
session. The affinity can be done by IP address or by session cookie depending on the
available settings in the load balancing software.

352 Web Development Kit and Client Applications Development Guide

Development Environment and Tools

Because content transfer is disk-intensive, best performance spreads the I/O of the WDK
content directory over a striped disk volume.

Modal windows

Modal windows provide a performance enhancement in web applications that use
several frames. With a modal window, other frames do not need to refresh after the
modal frame closes. Refer to Using modal windows, page 425 for more information.

Finding component information
The componentlist component (virtual_root/component/componentlist) displays all of
the components in your application. By clicking on a link to a component name, you will
see displayed the following information about the component :
• Name of configuration file
• NLS bundle name
• Component parameters
• Whether the component is a container
• Whether the component is configurable
• Fully qualified component class name
• Component description from the component definition

Comment stripper
Your JSP pages will load faster if you strip out white space and comments. A comment
stripper tool, CommentStripper, is provided in /WEB-INF/classes/com/documentum/
web/tools. This utility is called by the WAR file tool CreateInstallerWAR, so you do not
need to use the comment stripper if you are using CreateInstallerWAR (refer to WAR
packaging tool, page 155).

The parameters to use in starting this tool from the console are as follows:

–args filename Remove comments from a single file

–args *.ext Remove comments from all files with the
specified extension

–? Display help

Web Development Kit and Client Applications Development Guide 353

Development Environment and Tools

–l Remove leading white space

–t Remove trailing white space

–m Remove HTML comment blocks <!-...->
and <!--...-->

–j Remove JSP and JavaScript / * ... * /
comments

–r Recurse directories from current

–oxx Use specified extension instead of
overwriting original file

–v Verbose output (OFF by default)

Testing components
WDK provides a sample library of JSP pages and server classes that test and display all
of the WDK controls. The JSP pages are located in the /wdk/samples directory and
its subdirectories.

The file wdk/config/fxtest_component.xml defines simple components that test the
controls. The component definitions specify the start JSP page that is located in
/wdk/samples.

To use a testing component, specify the test component in a URL similar to the following:
http://APP_HOME/component/docbaseicontest

Additional test suites are provided through two special components:
• testbed_generic and componenttestbed components
• testbed component

Component that can test any action or component from the WDK library, WDK
client application library, or custom library built on WDK. This component also
provides a common GUI for test automation.

For more information on using the test components, refer to Web Development Kit
Reference Guide.

Debugging tips
This topic introduces some debugging tips based on error messages that are displayed in
the J2EE console or log. Your application server also has documentation on programming

354 Web Development Kit and Client Applications Development Guide

Development Environment and Tools

practices specific to the server. There is more information available on JSP, XML,
JavaScript, and Java debugging in references specific to the programming tool.

The following topics include debugging tips:
• Refreshing configuration and data dictionary, page 355
• JSP debugging, page 355
• XML debugging, page 356
• JavaScript debugging, page 356
• Java debugging, page 357

Refreshing conguration and data dictionary

Changes to the data dictionary and changes to XML configuration files are not refreshed
in the application. You must explicitly navigate to the refresh page /wdk/refresh.jsp
after logging into the application.

If you expect frequent data dictionary changes to your connected repositories, you may
wish to set a script that issues the refresh URL at appropriate intervals.

JSP debugging

If the JSP compiler encounters errors in compiling the JSP page, the stack trace can
be helpful in pinpointing the error. In the following example, an attribute value in a
Documentum JSP tag was malformed. The attribute on the JSP page was "label” instead
of "name”. The following error was displayed in the browser and logged in the Tomcat
server log:
2003-06-23 17:05:00 ApplicationDispatcher[/wdk52bis] Servlet.service()
for servlet jsp threw exception
org.apache.jasper.compiler.CompileException:
/custom/main.jsp(25,0)
Attribute label invalid according to the specified TLD

The nature of the error (malformed attribute called "label”) as well as the line number
and position in the line (25,0) are provided, making it easy to track down the error.

Web Development Kit and Client Applications Development Guide 355

Development Environment and Tools

XML debugging

The stack trace in the browser can give helpful information on the type of error in an
XML configuration file. In the following example, a typographical error in an element
name, <acomponent> instead of <component>, resulted in this error message:
org.xml.sax.SAXParseException: The element type "acomponent"
must be terminated by the matching end-tag "".
at com.documentum.xerces_2_3_0.xerces.parsers.DOMParser.parse(
Unknown Source)

This message indicates that the error comes from the XML parser and that the element
<acomponent> does not have a matching closing tag. This error is returned at startup,
when all configuration files are read into memory.

If the error is due to an unknown element, such as <acomponent>...</acomponent>, the
error is reported as a Java error when the component is called, because the typographical
error effectively removes the component definition. The error is reported similar to
the following:
java.lang.IllegalStateException: Component Definition
renditions 'component[id=renditions]' does not exist
within context REQUEST()SESSION(location=homecabinet_streamline)APP()
at com.documentum.web.formext.component.ComponentDef.(Unknown Source)

A nonexistent start page is reported in a popup window as follows. The path (which is
incorrect) is displayed in the stack trace:
Stack Trace:
javax.servlet.ServletException:
/webcomponent/library/properties/custom/library/
attributes/attributes_dm_document.jsp

JavaScript debugging

You can install debuggers for IE and Netscape in order to debug JavaScript errors in your
JSP pages, JavaScript included files, or JavaScript that is generated by custom classes.
Without a debugger, a JavaScript error is reported in the IE status bar as "Error on Page.”

JavaScript errors in which the script calls a non-existent server method or component
are displayed in the stack trace in the same way that Java, JSP, and XML errors are
displayed. In the following example, a JavaScript function that calls the main component
contains a typographical error:
window.location.replace("/" + strVirtualDir + "/component/mainX");

The following stack trace is displayed:
java.lang.IllegalStateException:

356 Web Development Kit and Client Applications Development Guide

Development Environment and Tools

Component Definition mainX 'component[id=mainX]' does not exist
within context REQUEST()SESSION()APP()
at com.documentum.web.formext.component.ComponentDef.(Unknown Source)

Java debugging

Java debugging is provided through integrated development environments (IDEs) and
compilers. Consult the documentation for your compiler or IDE (if the IDE includes a
compiler) for details on debugging your Java code.

Web Development Kit and Client Applications Development Guide 357

Development Environment and Tools

358 Web Development Kit and Client Applications Development Guide

Chapter 11
Component, Action, and Control
Design Guidelines

This chapter presents guidelines and checklists for developing a component.

The following topics describe guidelines and checklists for development:
• General guidelines, page 359
• Design checklists, page 362
• Component checklist, page 367
• Component unit test checklist, page 376
• Control checklist detail, page 365
• Component checklist detail, page 373

General guidelines
The following general guidelines describe conventions that apply to file names and
locations, accessibility, and internationalization:
• File follows naming convention, page 359
• File follows location convention, page 361
• Follows accessibility guidelines (Section 508), page 362
• Externalizes and tests strings, page 362

File follows naming convention

The following naming conventions are used in the WDK libraries, as a suggested model
for custom libraries. Italics show variables, and [] show optional elements:
• Action configuration file

Web Development Kit and Client Applications Development Guide 359

Component, Action, and Control Design Guidelines

object type_actions.xml For example: dm_folder_actions.xml.

Action names must be all lowercase, and where practicable, the first word of any
action name should be a verb, the second a noun. For example: importrendition

All actions that are pertinent to an object type should be defined in one actions
definition file.

• Action behavior file

Actions class names should use mixed case, with the first and each subsequent
word capitalized. The naming syntax is [Verb][Noun]Action.java. For example:
DeleteQueueItemAction.java

Precondition class name should use mixed case, with the first and each subsequent
word capitalized. The naming syntax is [Verb][Noun]Precondition.java. For example:
DeleteDocPrecondition.java

All action package names must be entirely lowercase and should follow the location
of the action definition file. For example :com.mycompany.actions

• Component configuration file

operation_[object type]_component.xml. For example: delete_notification_component.
xml.

Component names must be all lowercase; and where practicable, the first word of
any component name should be a verb, the second a noun. For example: checkin

For components that are containers, "container” should be appended to the name.
For example: checkincontainer

Only one component should be defined in one component definition file.
• Component behavior file

Component class name should resemble the component ID and use mixed
case, with the first and each subsequent word capitalized. For example:
CustomSubscription.java, which matches the customsubscription component.

All component package names must be entirely lowercase. For example:
com.mycompany.subscription

The first word of any event handler method should be ‘on’. For example:
onShowOptions()

• Component unit test file

Test class name should be the same as the behavior class name and be prefixed with
"Test”. For example: behavior class NewCabinet, test class TestNewCabinet.

• Component JSP file

Name should be descriptive, contain no spaces, and use mixed case, with
each word capitalized except the first letter of the first word. For example:
customSubscription.jsp

360 Web Development Kit and Client Applications Development Guide

Component, Action, and Control Design Guidelines

• NLS file

NLS properties file names should use mixed cas,e with the first and
each subsequent word capitalized, and have the following name syntax:
ActionNameNlsProp.properties, or ComponentNameNlsProp.properties. For example:
CustomSubscriptionNlsProp.properties

Follow Java’s ResourceBundle naming convention in order to generate localized
versions of the properties files. Refer to Naming properties files, page 140 for details.

• Control class

All control package names must be entirely lowercase and end with control, for
example, com.mycompany.control.

A control class name should be descriptive, contain no spaces, and use mixed case
with the first and each subsequent word capitalized, for example, Image.java,
Label.java. The corresponding tag class should start with the control name and end
with Tag, for example, ImageTag.java, LabelTag.java. All tag and attribute names
must be entirely lowercase, for example, <mylib: specialtag width=’100’>.

File follows location convention

The following location conventions are used in WDK libraries, as a suggested model
for custom libraries:
• Action configuration file:

Action configuration files reside in an actions folder. For example:
T:\app\custom\config\actions

• Action behavior file

Java class packages will dictate where source codes and compiled classes will reside.
• Component configuration file

Component configuration files reside in a config folder under the library folder.
For example: /custom/config

• Component behavior file

Java class packages will dictate where source codes and compiled classes will reside.
• Component unit test file

Java class packages will dictate where source codes and compiled classes will reside.
If test classes require access to protected methods, place them in a separate parallel
directory structure with package alignment (recommended for all test assets):
src
com
mycompany

Web Development Kit and Client Applications Development Guide 361

Component, Action, and Control Design Guidelines

attributes
Attributes.java

test
com
mycompany
attributes
TestAttributes.java

• JSP pages:

JSP files reside in a component folder. For example: /custom/checkin

All JSP files that are pertinent to a component should reside in the same component
folder.

• NLS properties file

NLS properties file reside in a /strings folder in a path similar
to the associated component or action class location. For
example:T:\app\custom\strings\com\mycompany\checkin. The associated
component class is located in /WEB-INF/classes/com/mycompany/checkin.

Follows accessibility guidelines (Section 508)

Follows guidelines on complying withU.S. government Section 508 accessibility
requirements. Refer to "Accessibility Service” in Web Development Kit and Client
Applications Development Guide for WDK guidelines. See also US government guidelines.

Externalizes and tests strings

Components, actions, and control should externalize all strings used in the UI
and in error messages to the user or log using properties files. For information on
internationalization and localization practices, refer to the documentation on properties
files and the locale service inWeb Development Kit Reference Guide.

Design checklists
Use the following checklists as you develop WDK-based components, actions, and
controls:
• Control checklist, page 363
• Control checklist detail, page 365
• Component checklist, page 367

362 Web Development Kit and Client Applications Development Guide

http://www.section508.gov

Component, Action, and Control Design Guidelines

• Component checklist detail, page 373
• Component unit test checklist, page 376
Each checklist table has the following columns:

• Checklist item

Describes the design feature
• Impact

Rates the importance of the checklist item for the success of the feature:

— High: Not following this item will cause lack of reusability, buggy behavior,
inability to migrate, or failure of the component to run

— Medium: Not following this item will impact the success of the feature but will
not cause disastrous consequences

— Low: A standard or design practice that facilitates the reuse of the component
but will not affect the success of the component itself

• Significance

Describes the type of impact for this design feature. For example, Reuse indicates
that not following this checklist item will impact the ability of this component
to be reused.

• Followed Y/N

Use this column to check off whether you have followed the checklist item or not.
• Justification if ignored

Write a justification of why a particular checklist item has not been followed.

Control checklist

The following checklist provides a summary of the guidelines for WDK controls and
offers a quick test of whether the guidelines have been followed. Follow the link in the
Checklist Item column to jump to more detailed information about a specific guideline.

Note: All items are required unless labeled "Best Practice.”

Web Development Kit and Client Applications Development Guide 363

Component, Action, and Control Design Guidelines

Table 11-1. Control checklist

Item Impact Signifi-
cance

Followed
Y/N

Justification
if ignored

Control is named using a
constant defined in behavior
class

L Reuse

Control is defined at design
time:

Appearance in the UI
State
Properties
Events that it fires

H Standard

Creates New Control if
Needed. Creating new control
if needed, page 365

H Migration

Control and tag class follow
naming convention. File
follows naming convention,
page 359

M Reuse

The namespace for the
control clearly classifies the
control into an appropriate
functional area/application:
Related to specific functional
area/application, placed in
appropriate control library
(not Documentum)

H Reuse

Uses base tag class rendering
helpers to render HTML tags
that conform to WDK protocol

H Quality

Implements the tag class
release method or calls
super.release.

H Quality

Control class property getters
and setters are type safe. For
example, boolean values are
passed/returned for boolean
properties.

H Exten-
sibility
Usability

364 Web Development Kit and Client Applications Development Guide

Component, Action, and Control Design Guidelines

Item Impact Signifi-
cance

Followed
Y/N

Justification
if ignored

Uses a theme style (skinnable),
tested against supported
schemes

H Reuse

Formats and escapes all values
to render well formed HTML
using ControlTag.formatText()
or formatAttribute()

H Security
Quality
Reuse

Externalizes and tests strings,
page 362. Externalizes and
tests strings, does not cache
strings that will be localized.

H I18N

Rendering JavaScript: Ensures
that page is loaded and
initialized. Ensuring that page
is loaded and initialized, page
367

H Quality

Creates a control pen and tests
control attributes

H Quality

Control checklist detail

The following guidelines apply to controls:
• Creating new control if needed, page 365
• Using base tag rendering helpers, page 366
• Formating and escaping rendered HTML, page 366
• Ensuring that page is loaded and initialized, page 367

Creating new control if needed

Does not use code to generate HTML controls. Instead, uses existing controls or
constructs new custom controls based on WDK control framework. This leverates the
WDK programming model of handling controls, such as rendering, event handling,
state management.

Web Development Kit and Client Applications Development Guide 365

Component, Action, and Control Design Guidelines

Using base tag rendering helpers

The rendering helpers render HTML tags that conform to WDK protocols:
• renderEventHREF() and renderEventCall()
• renderNameAndId()
• renderStartToolTip() and renderEndToolTip()
Caution: Don’t render HREFs directly. Doing so can cause servlet write connection
exceptions in certain application or portal servers such as BEA WebLogic.

Formating and escaping rendered HTML

All rendered HTML values should be formatted and escaped to render well-formed
HTML that is not vulnerable to cross-site scripting, a security risk in which JavaScript
can be entered as a value. (For information on app.xml configuration to detect URL
parameters susceptible to cross-site scripting, refer to <requestvalidation> element,
page 71.)

Use the ControlTag class methods formatText(), for a string, or formatAttribute(),
for an HTML attribute , to generate a safe string. The following example from
BookmarkLinkTag formats a label:
buf.append(formatText(link.getLabel()));

The following example from the DateTimeTag class renders time as a text control:
strTime = getString("MSG_TIME");
buf.append(" value='").append(formatAttribute(strTime)).append("'");

The following type of URL (or the scripting portion of it) can be used to test cross-site
scripting vulnerability of component parameters or user input controls (line is broken for
display purposes):
http://hostname:port/webtop/component/tabbar?entryTab=>'><script>alert('
Appscan%20-%20CSS%20attack%20may%20be%20used')</script>&Reload=
1107912068508&__dmfFrameId=Streamline_tabbar_0

http://hostname:port/webtop/component/tabbar?entryTab=>%22%27>
<img%20src%3d%22javascript:alert(%27Appscan%20-%20CSS%20attack
%20may%20be%20used%27)%22>&Reload=1107912068508&__dmfFrameId=
Streamline_tabbar_0

Encoding for a particular label control can be enabled or disabled by calling
setEncodeLabel() on the control from your component class. For information on global
enabling or disabling of attribute encoding, see Display of escaped HTML strings,
page 201.

366 Web Development Kit and Client Applications Development Guide

Component, Action, and Control Design Guidelines

Ensuring that page is loaded and initialized

JavaScript should not be executed until after the page had been fully initialized. The
act of initialization is performed in concert by the client browser and the server. If the
JavaScript code uses the safeCall() method, then initialization is assured. The JavaScript
code can also use the isWindowInitialised() method to determine whether initialization
is complete. If initialization is not complete, then the control rendering code should
fail gracefully. In the following example, a component class generates JavaScript that
includes a call to isWindowInitialised():
buf.append("<script>");
buf.append("function _showmenu() {if (isWindowInitialised(
window) == true) {popupMenu('" + MENU_ID + "');} else {setTimeout(
'_showmenu();',250);} }");

buf.append("</script>");

Component checklist

The following checklist provides a summary of the guidelines for WDK components and
offers a quick test of whether the guidelines have been followed. Follow the link in the
Checklist Item column to jump to more detailed information about a specific guideline.

Note: All items are required unless labeled "Best Practice.” Follow the hyperlink for
certain checklist items to find more information.

Table 11-2. Component design checklist

Item Impact Signifi-
cance

Followed
Y/N

Justification
if ignored

Creates a new XML
configuration file for this
component (doesn’t modify
existing file)

H Migration

Creates a new JSP file if page
modifications are needed

H Migration

File follows naming
convention. File follows
naming convention, page 359

M Reuse

File follows location
convention. File follows
location convention, page 361

H Reuse

Web Development Kit and Client Applications Development Guide 367

Component, Action, and Control Design Guidelines

Item Impact Signifi-
cance

Followed
Y/N

Justification
if ignored

Extends rather than copies
original component definition

M Reuse
Extensibility

Describing a component ,
page 374 Definition describes
component using <desc> value,
including why component is
being extended or created

M Reuse

Making a component
configurable, page 374
Contains values that can
be configured to change
behavior rather than requiring
customization. Includes
comments explaining what
is configurable and possible
values.

H Reuse
Extensibility

Required parameters are
marked <required>true</
required>

H Reuse

Has help ID defined. Make
help ID = component ID

M Usability

Making the component
definition backward-
compatible, page 374 If
component definition is
inherited, does not add or
remove required <params>.
Did not remove structural
elements from configuration
data.

H Migration

368 Web Development Kit and Client Applications Development Guide

Component, Action, and Control Design Guidelines

Table 11-3. JSP page checklist

Item Impact Signifi-
cance

Followed
Y/N

Justification
if ignored

No Java code in JSP: Uses
existing or new controls rather
than code in JSP

H Maintain-
ability

JavaScript: Uses safeCall(…)
and isWindowInitialised()
helpers. Ensuring that page is
loaded and initialized, page
367

H Quality

File follows naming
convention. File follows
naming convention, page 359

M Reuse

File follows location
convention. File follows
location convention, page 361

H Reuse

Follows section 508
accessibility guidelines.
Follows accessibility guidelines
(Section 508), page 362

H Standard
Usability

Uses an HTML element
ID instead of Form[0].
Form-indexed elements do not
work in portal environment.

H Reuse

Externalizes and tests strings,
page 362. Externalizes and
tests strings

H I18N

Uses WDK control tags, not
HTML input controls

M Quality
Portability

Uses WDK layout tags such as
body, header in place of HTML
tags

H Reuse in
portal

Uses a background style such
as contentBackground on a
body tag. Other styles can
bleed through.

H Reuse

Uses UTF-8 encoding H I18N

Web Development Kit and Client Applications Development Guide 369

Component, Action, and Control Design Guidelines

Item Impact Signifi-
cance

Followed
Y/N

Justification
if ignored

Uses WDK 5 error directive H Reuse

Uses WDK theme styles. Tests
component with all themes
defined in app.xml (component
is ‘skin worthy’)

H Reuse
Usability
(consis-
tency)
Configurability

Layout is consistent with other
components in library and is
provided by and reviewed by
UI group

H Reuse
Usability

Is compilable: a tag library is
defined for the JSP

H Quality
Reuse

Table 11-4. Behavior class checklist

Item Impact Signifi-
cance

Followed
Y/N

Justification
if ignored

If not a container, does not
contain container controls
such as a title or OK, Cancel,
or Help buttons. Container
component extends an existing
container if possible.

H Reuse

Creates a new behavior class
file if modifications necessary

H Migration

File follows naming
convention. File follows
naming convention, page 359

M Reuse

File follows your component
library location conventions

H Reuse

Class follows section 508
accessibility guidelines.
Follows accessibility guidelines
(Section 508), page 362

H Usability

Extends a component class
rather than duplicates it

H Migration
Extensibility

370 Web Development Kit and Client Applications Development Guide

Component, Action, and Control Design Guidelines

Item Impact Signifi-
cance

Followed
Y/N

Justification
if ignored

Does not have context-sensitive
behavior: Uses WDK filter to
configure component behavior
in XML definition. Removing
context-sensitive behavior
from the class, page 375

H Reuse

Extensibil-
ity

Data is not globally cached.
Caching data, page 375

H Reuse

Designed for subclassing:
Applies "template method”
pattern, provides hooks for
component configuration
(class implements a "hook”
interface” for complicated
application logic)

H Extensibil-
ity

Contains presentation logic
only, and invokes encapsulated
business logic (DFC SBOs
or TBOs). When this is not
possible, encapsulates business
logic in the behavior class.

H Exten-
sibility
Interoperability

Uses the asynchronous
job execution framework
if possible: pre- and
post-processing of business
logic, business logic runs
asynchronously.

H Exten-
sibility
Performance

Binds datagrids with a session
on every render method
(session is only valid for one
request)

H Quality

Uses getControl() instead
of caching/holding control
instances as member variables

L Quality
Extensibility

Calls super.xxx on all
component lifecycle events
(onInit, onRender…)

H Quality

Web Development Kit and Client Applications Development Guide 371

Component, Action, and Control Design Guidelines

Item Impact Signifi-
cance

Followed
Y/N

Justification
if ignored

Uses request scope instead of
component scope as parameter
for component.getSession
rather than DFC
sessionmanager.getSession

H Perfor-
mance (scal-
ability)

Does not do the following:
Remove non-private
methods, constants,
member variables
Change signature
Change behavior of
methods or interface
Break previous unit tests

H Migration

Uses custom attribute data
handlers. Using custom
attribute data handlers, page
375

H Perfor-
mance

Uses getters and setters
for accessing and setting
properties.

H Exten-
sibility
Reuse

Instances of action and
precondition classes do not
have state associated with
them.

H Quality

Externalizes and tests strings,
page 362. Externalizes and
tests strings, does not cache
strings that will be localized.

H I18N

Follows DFC guidelines for
DFC objects in WDK classes:
no API calls, creates all objects
using IDfClientX. Following
DFC guidelines, page 376

H Migration
Reuse

372 Web Development Kit and Client Applications Development Guide

Component, Action, and Control Design Guidelines

Table 11-5. Internationalization checklist

Checklist Item Impact Signifi-
cance

Followed
Y/N

Justification
if ignored

Creates a new NLS Properties
file for any new strings

H I18N

NLS properties file follows
naming convention. File
follows naming convention,
page 359

H I18N

NLS properties file follows
location convention. File
follows location convention,
page 361

H I18N

Uses NLSINCLUDE rather
than duplicating strings

M Localiza-
tion cost
Extensibility

Uses "MSG_xxx” as naming
convention for resource strings

L Standard

Escapes non-Latin characters H Quality

Does not use sentence/text
fragments as values for
resource strings

H Localiza-
tion cost
Quality

Uses Preferences debug
settings to run NLS checks
to make sure strings in
XML definition, JSP page,
and component class are
externalized.

M

Component checklist detail

The guidelines in this section provide clarification or examples for some of the items in
the checklists:
• Describing a component , page 374
• Making a component configurable, page 374
• Making the component definition backward-compatible, page 374
• Removing context-sensitive behavior from the class, page 375

Web Development Kit and Client Applications Development Guide 373

Component, Action, and Control Design Guidelines

• Caching data, page 375
• Using custom attribute data handlers, page 375
• Following DFC guidelines, page 376

Describing a component

The <desc> tag in the XML configuration file should contain a summary of the
component. It should NOT be a restatement of the component name. While the
description does not affect the functionality of the component itself, it is extremely
important for reus. It should provide enough information to help a developer decide
whether the component is a candidate for reuse when scanning a list of descriptions such
as those generated by the componentlist component.

The following are bad and good examples of the description for a component called
checkin_component.xml:

Poor: <desc>Component to check in objects. </desc>

Better: <desc>You can use the checkin component to allow users to do the following: 1.
Check in previously checked-out components. 2. Set various properties, such as version
numbering, locking, and format.</desc>

Making a component congurable

Contains values that can be configured to change behavior of components rather than
requiring customization. For example: Allows configuration of whether major and/or
minor versioning is allowed for checkin, which columns are visible, and more.

Comments should be included to explain what is configurable and the associated
possible values.

Making the component denition backward-compatible

Does not add or remove required <params>. Adding or removing required params of
extended components with new names will affect backward compatibility.

Adding or removing optional params will not affect backward compatibility.

374 Web Development Kit and Client Applications Development Guide

Component, Action, and Control Design Guidelines

Removing context-sensitive behavior from the class

A behavior class should use a WDK filter in the component definition to configuration
context-sensitive behavior. For example, the following filter applies a context-sensitive
scope to the configuration option enableShowAll:
<filter role='administrator'>
<enableshowall>true</enableshowall>

</filter>

In the behavior class, the filter is applied as follows:
Boolean bEnableShowAll = false;
Boolean enableOption = lookupBoolean("enableshowall”);
if (enableOption!= null && enableOption.booleanValue == true)
{
bEnableShowAll = true;

}

Note that the boolean variable bEnableShowAll will be set to true only if the user is has
the role of administrator.

Caching data

A component class should use component arguments and return values to pass data to
another component. Avoid using HTTP sessions or static variables. If you need to pass
data between components, perform the following steps:
• The calling component should generate a unique variable name within the current

user session and store the object with SessionState under this unique name. The
caller component should remove the object from the "SessionState” upon return from
the calling component

• Add a required parameter to the calling component that specifies the variable name
that holds the object in the SessionState

Using custom attribute data handlers

The interface ICustomAttributeDataHandler facilitates more efficient queries for custom
data for most, if not all, pages in WDK. Refer to Adding custom attributes to a datagrid,
page 407. for details.

Web Development Kit and Client Applications Development Guide 375

Component, Action, and Control Design Guidelines

Following DFC guidelines

Do not use apiGet() or apiSet() calls. API calls are deprecated in Content Server 5.3.
Instead, use the appropriate DFC method. For exampe, the following call uses apiGet:
strId = getDfSession().apiGet("get", strObjId + ",i_folder_id, 0");

This call should be changed to the following:
IDfSysObject sysobj = (IDfSysObject) session.getObject(objectId);
strId = sysobj.getFolderId(0);

Do not create DFC objects such as DfId, DfQuery, or DfList directly. Instead, create the
object using IDfClientX. For example, to create an ID, use the following:
IDfClientX clientX = new DfClientX();
IDfId myId = clientX.getId(string);

Do not use DfTypedObject or classes that are derived from it. Instead, use
IDfTypedObject APIs. In the following example, the session manager returns the
interface which is then used to access other objects:
IDfSessionManager mgr = SessionManagerHttpBinding.
getSessionManager();

IDfSession dfSession = null;
...
dfSession = mgr.getSession(strDocbase);
IDfTypedObject config = dfSession.getDocbaseConfig();
boolean bInstalled = config.getBoolean(MEDIASERVER_INSTALLED);

Component unit test checklist

This checklist assumes the unit test harness is JUnit with the Cactus extension (used for
testing server-side Java code) and that a test infrastructure has been established for
creating Documentum sessions, creating Documentum objects, data driving tests , etc.

Table 11-6. Unit test checklist

Item Impact Signifi-
cance

Followed
Y/N

Justification
if ignored

Creates a new test behavior
class file

H Standard

File follows naming
convention. File follows
naming convention, page 359

L Quality

376 Web Development Kit and Client Applications Development Guide

Component, Action, and Control Design Guidelines

Item Impact Signifi-
cance

Followed
Y/N

Justification
if ignored

File follows location
convention. File follows
location convention, page 361

L Quality

For each public method
in the behavior class, a
corresponding test method
exists in the test class.

H Quality

(Optional) For each protected
method in the behavior class,
a corresponding test method
exists in the test class and is
prefixed with "test”.

L Quality

Where feasible, a test should
exist to exercise all branches
of code in behavior class
methods.

M Quality

Valid parameter values should
be passed to behavior class
methods and no errors should
occur.

H Quality

Invalid parameter values
should be passed to behavior
class methods and exceptions
should be gracefully handled.

H Quality

All test classes compile with
no errors or warnings.

H Quality

All JUnit tests should pass and
there should be no errors in the
app server console window.

H Quality

Web Development Kit and Client Applications Development Guide 377

Component, Action, and Control Design Guidelines

Table 11-7. Component functional testing checklist

Item Impact Signifi-
cance

Followed
Y/N

Justification
if ignored

The component can be
launched standalone in a
browser (unless it extends
combocontainer, which
must be launched by the
LaunchComponent action
class).

H Quality

The component can be
launched from within the
parent application in a browser
(e.g. from within Webtop).

H Quality

When launched with invalid
parameters, the component
gracefully handles the
exception.

H Quality

The core behavior of the
component works correctly
and is in accordance with the
functional specification.

H Quality

Core behavior of the
component works correctly
against the current version of
the Content Server as well as
the last version of the Content
Server.

H Quality

378 Web Development Kit and Client Applications Development Guide

Chapter 12
Customizing Controls

Controls are represented by a class that extends com.documentum.web.form.Control. Each control
has a corresponding tag represented by a class that extends com.documentum.web.form.ControlTag.

Controls are found in twoWDKpackages: basicHTML controls in com.documentum.web.form.control
and repository-enabled controls in com.documentum.web.formext.control. The webcomponent
layer does not contain any controls. Webtop and Web Publisher add controls in the
com.documentum.webtop.control and com.documentum.wp.control packages, respectively.

For information on the configurable attributes for individual controls, refer toWeb Development Kit
Reference Guide.

The following topics describe control APIs and their use in custom applications:
• Control classes, page 380
• Using controls programmatically, page 382
• Programming databound controls, page 389
• Generating UI, page 409
• Generating a link in a control, page 410
• Making a control accessible to JavaScript, page 411
• Displaying folder paths and breadcrumbs, page 412
• Implementing multiple selection, page 415
• Managing control events, page 416
• Validating a control value, page 428
• Validating a repository object, page 429
• Adding a control listener, page 430
• Control lifecycle events, page 428
• How controls and tags work together, page 432
• Control arguments, page 433

Web Development Kit and Client Applications Development Guide 379

Customizing Controls

Control classes
The Control class implements member variables, server-side getter and setter methods,
and event handlers for a control. The control tag class initializes the control, provides
setter and getter methods on the control members, and renders HTML and JavaScript
output for the control. Use the control class methods to change the values of a control’s
properties. Use the tag class methods to programmatically change the UI.

Control arguments, page 433 maintain the control constants and pass event arguments.

The Control class in the documentum.web.form package is an abstract class. Each control
object is contained by a container (parent control). The control class exposes type-safe
methods to access contained controls and the parent container.

The Control class performs the following functions:

• Exposes methods to get and set control properties
• Implements getEventNames() to list the events raised by the control
• Implements updateStateFromRequest() and hasChanged() to support input data

from the client
Control properties are modeled as Control class member variables. Control instances
on the server are bound to successive requests, so that member variable values are
preserved across requests.

Properties are named and manipulated by public access methods. Custom controls must
provide methods that set and get the properties of the control.

The following table describes properties that are common to all controls:

Table 12-1. Control class properties

Property Description

name String that identifies the control so that it can be
manipulated by server-side event handlers

nlsid National Language Support (NLS) ID, which is used
by Form.getString() to look up a localized string. The
string is displayed as a UI element.

datafield Name of a data column in a recordset that contains
data. The control that obtains data from a datafield
must be embedded inside a dataprovider control
such as datagrid.

elementName Name of a control when it is rendered as an HTML
element

380 Web Development Kit and Client Applications Development Guide

Customizing Controls

Property Description

ID Identifier that is generated by the framework to
identify the control

enabled Boolean attribute that specifies whether the control is
enabled

visible Boolean attribute that specifies whether a control is
visible in the UI

The WDK tag classes extend two JSP tag classes: TagSupport and BodyTagSupport. The
table below describes the WDK base tag classes and their uses.

Table 12-2. Base tag classes

Class Use

ControlTag Extends javax.servlet.jsp.tagext.TagSupport. Binds and
renders the control class instance to the UI (JSP page) and
renders the control’s layout into HTML and JavaScript.
The ControlTag class instance lasts only within the
lifetime of the HTTP request. Extend this class when your
control does not accept user input and does not need to
process tags contained within it. Overrides renderStart()
and renderEnd() to render HTML. For example: Button,
Image, Link, Label.

BodyControlTag Extends javax.servlet.jsp.tagext.BodyTagSupport.
Extend this class when your control does not accept
user input but does process tags inside it. Overrides
javax.servlet.jsp.tagext.BodyTagSupport methods for
HTML rendition. For example: DatagridRow, Panel,
NoDataRow.

StringInputControlTag Extends ControlTag. Extend this class when your control
accepts a string from user input but doesn’t need access
to tags contained within the control. The value attribute
accepts user input. The corresponding control class
must extend StringInputControl. Overrides renderStart()
and renderEnd() to render HTML. For example: Text,
Password, Hidden.

BooleanInputControlTag Extends ControlTag. Extend this class when your control
accepts a Boolean input from the user but doesn’t need
access to tags contained within the control. The value
attribute accepts user input. Overrides renderStart() and
renderEnd() to render HTML. The corresponding control

Web Development Kit and Client Applications Development Guide 381

Customizing Controls

Class Use

class must extend BooleanInputControl. For example
controls: Checkbox, Radio.

The ControlTag class performs the following functions:

• Exposes setter methods for tag attributes
• Implements getControlClass() and setControlProperties(). These methods are called

when the control is first rendered, so that the framework can create the control.
• Implements renderStart() and renderEnd() to generate the HTML rendition of the

control
Custom controls must implement the release() method in order to maintain the state of a
control. Some J2EE servers use the same instance of a tag class for all instances of the
tag on a JSP page.

The control rendition code is implemented in the tag classes that extend ControlTag. The
rendition methods renderStart() and renderEnd() are defined by the super class.

The tag library specifies whether a control can process body content with the bodycontent
attribute. If the value for the bodycontent attribute in the tag library entry is "empty”, the
control will not process body content. If the value is "jsp”, JSP content between the start
and end tag will be processed. In the following example, the argument tag bodycontent
value is "empty”, so the tag contains no content:
<dmfx:argument name='objectId' contextvalue='objectId'/>

A tag that contains JSP content has a start and end tag. For example:
<dmf:nodataRow>
<td><dmf:label nlsid='MSG_NO_DOCUMENTS'/>

</dmf:nodataRow>

Tag attributes correspond to control class properties. The control tag caches the attribute
values and then sets the control properties by callling Control.setControlProperties().

You can set or get control values using methods on the control tag class, but do not
set default values in your tag class or they will override the values that you try to set
programmatically. Instead, set default values using setControlProperties() or using the
tag attributes in the JSP page. The first time the control is rendered, the framework
initializes member variable values by calling setControlProperties(). If you set a value for
a control tag in a JSP page, the value takes precedence over a value set programmatically.

Using controls programmatically
You can use controls programmatically in the following ways:
• Creating controls, page 383

382 Web Development Kit and Client Applications Development Guide

Customizing Controls

• Naming and getting controls, page 384
• Setting control values, page 386
• Getting datagrid controls, page 388
• Passing arguments to action-enabled controls, page 389

Creating controls

There are three ways to create a control:
Creating a control in a non-component class, page 383
Creating a control in a component class, page 383
Creating a control in a tag class, page 384

Example 12-1. Creating a control in a non-component class
You can create a control using the new operator. Controls require no constructor
arguments.

The following example fromWebtop creates a tab control, sets its name, label, and parent
form, and adds it to a tab bar control:
Tab tab = new Tab();
tab.setForm(this);
tab.setValue(strComponentLabel);
tab.setName(strComponentId, 0);
Tabbar tabs = (Tabbar)getControl(TABBAR_CONTROL_NAME);
tabs.addTab(tab);

Example 12-2. Creating a control in a component class
You can create a control using Form.getControl(), passing in the name of the control and
the control class name. If the requested control does not exist, it is created. If you use
the single argument for getControl(), without the control class argument, the control
must already exist.

The following example from the Webtop About class gets the Webtop version control,
looks up the version value from an NLS resource file, and sets the version value:
ResourceBundle bundle = ResourceBundle.getBundle(WEBTOP_BUILD_PROPERTIES);
if (bundle != null)
{
String strBuild = bundle.getString("Build");
if (strBuild != null && strBuild.length() != 0)
{
Label lblBuild = (Label)getControl(CONTROL_BUILD, Label.class);
lblBuild.setLabel(strBuild);

}
}

Web Development Kit and Client Applications Development Guide 383

Customizing Controls

Example 12-3. Creating a control in a tag class
The control tag class implementation creates a control when the control is first rendered.
The tag class extends ControlTag, which implements getControl() to look up a control
by name. If the control doesn’t exist or doesn’t have a name, getControl() calls
createControl(), and a new instance of the control is created for every rendition of the
form. The tag class then calls setControlProperties(), passing in the new control object.

Your implementation of setControlProperties() should set tag attributes as properties of
the control object.

In the following example from the Webtop control tag class DocbaseSelectorTag, the
renderStart() method initializes the control and gets the visibility of the control from
the tag arguments:
DocbaseSelector selector = (DocbaseSelector)getControl();
if (selector.isVisible() == true)
{ ... }

Naming and getting controls

A control is rendered into one or more HTML elements. A control can be identified by
its name, by a reference to the control object in server memory, by the name of its root
HTML element, by the name of a specific HTML element, or by the ID of a specific
HTML element.

In a JSP page, set the name attribute on the control tag. The control name must contain
only JavaScript symbols A-Z, a-z, 0–9, and underscore. For example:
<dmf:text name="my_text" .../>

You can also set the control name programmatically by calling setName(String strName).

When a control is named, server code and JSP code can access the control by calling
getControl(String strName). Named controls are retained in server memory and bound
to each HTTP request, so that the control’s state is maintained between HTTP requests.
Controls that deliver input, such as a text box, must be named. Controls that are used for
display, such as a label, or for raising events, such as a button, should be named if you
need to access the control state on the server.

Caution: If you do not name a control, it will not retain state information when the user
navigates through browser history. This can cause unexpected errors such as the wrong
event handler being called on a control.

Example 12-4. Retrieving a control value
You can retrieve the value of control attributes by using accessor methods for the controls.

The following example gets the values of a checkbox control on a JSP page in the
component:

384 Web Development Kit and Client Applications Development Guide

Customizing Controls

Checkbox control = (Checkbox)getControl(
SEQUENTIAL_CHECKBOX_CONTROL_NAME);
retval = control.getValue();

The next example gets the value of a text control:
String accessorNameForQuery = ((Text) getControl(
jumptotextbox)).getValue();

Within a Web application, each control has a unique ID and unique name. The name is
formed from a root name and an index. Each control maintains an index of contained
controls by name and ID. Thus, a component (which is a specialized control) has an
index of all of its named controls. The name index contains the names of the child
controls. The ID index contains the IDs of all generations of contained controls.

The ID is not used by the WDK framework, but you might need to use it in JavaScript.
JavaScript doesn’t have access to the form name, so you must access the control by HTML
ID. You can set the ID programmatically by calling setId(String strId).

The control ID is set by the framework when you have specified an ID attribute on a
control tag. If you do not give the control an ID, the framework generates an ID that is a
combination of the form name, control name (or control type, for unnamed controls),
and index, for example, Login_username_0. If a control is not named in the JSP tag
attributes, the form or control class name is used.

Example 12-5. Getting a control by ID in JavaScript
In the following example from advSearch.jsp, a text control is given an ID:
<dmf:text name='location' id='location' size='70' defaultonenter='true'
tooltipnlsid="MSG_LOOK_IN" />

The control is retrieved in JavaScript in the same page using the JavaScript function
document.getElementById():
<script>
if (document.getElementById("location") != null)
document.getElementById("location").focus();

</script>

Example 12-6. Getting the value of a hidden control
When multiple controls on a JSP page have the same name (for example, controls in a
data grid) the controls are automatically assigned an index number. The numbers start
with zero and are assigned to the controls in the order that the controls are created. You
can pass in an index number when you call getControl().

The following example processes a click on a link in a data grid. The onClickLink() event
handler gets the index of a hidden control and then gets the object ID of the object::
public void onClickLink(Link link, ArgumentList, arg)
{
//Get the index of the link that was clicked
int nIndex = link.getIndex();

Web Development Kit and Client Applications Development Guide 385

Customizing Controls

//Get a corresponding hidden control with object ID as its value
Hidden hidden = getControl("r_object_id", nIndex);
IDfId id = new DfId(hidden.getValue());
...

}

Setting control values

In your component behavior class, you can get a control by name. You can set the
control state before the control is rendered. To do this, call getControl(), passing the
control class to the component onInit() class. Then get or set values in the control. using
the class setX methods.

Note: To get the control in server-side code, the control must be named, either in a JSP
tag or programmatically. To set the control name programmatically, call setName(String
strName).

In the control tag class, which renders the control into HTML, set your default control
properties using setControlProperties. Any properties that are set on the JSP page will
override these default properties.

Example 12-7. Initializing control properties
The following example from a button tag class initializes the width, height, label, event
handler, and default value on a button:
protected void setControlProperties(Control control)
{
super.setControlProperties(control);
Button button = (Button)control;
button.setEventHandler(Button.EVENT_ONCLICK,
m_strOnclick, null);
button.setDefault(m_bDefault.booleanValue());
button.setWidth(m_strWidth);
button.setHeight(m_strHeight);
button.setLabel(m_strLabel);

}
private String m_bDefault = null;
...

Example 12-8. Setting default control values
You can set default control values in your call to setControlProperties().

The following example sets a default string on a control:
if (m_strMyString != null)
{
control.setMyString(m_strMyString);

}
else if (control.getMyString() == null)
{

386 Web Development Kit and Client Applications Development Guide

Customizing Controls

control.setMyString("This is my default string");
}

Example 12-9. Setting the title on a label
The following example from a component class sets a title on a label control before
the label is instantiated:
//Set a label from a form argument
public void onInit(ArgumentList arg)
{
//Get the title argument
//String strTitle = arg.get("title");

//Pre-create the label control for the title
Label lblTitle = getControl("title", Label.class);

//Set the title property on the control class
lblTitle.setValue(strTitle);
...

}

Caution: If you set an attribute on a control that you created during component
initialization and then specify a setting for the same attribute in the control tag, the JSP
tag value overwrites the initialized value.

Example 12-10. Setting a control label in the component class
In this example, the component class tests for a context value of user group and selects
the label that is displayed on to the user based on the group value. To do this, get the
control and call setLabel(), passing in the string value.
if (group.equals("HR") == true)
{
Label lbl = (Label)getControl("attrLabel", Label.class);
lbl.setLabel("Human Resources");

}

Example 12-11. Setting a control label in the tag class
You can set or get control values programmatically by calling methods defined in the
tag class.

The following example, in a render() method, sets the value of a label:
import com.documentum.web.form.LabelTag;
...
protected void renderEnd(JspWriter out)
{
LabelTag label = new LabelTag();
String strValue = "My label";
label.setLabel(strValue);

}

Web Development Kit and Client Applications Development Guide 387

Customizing Controls

Example 12-12. Setting the state of a checkbox
The following example is an onInit() function in a JSP page that sets the named checkbox
to unchecked:
<%
public void onInit()
{
Checkbox cb = (Checkbox)getControl("selectAll", Checkbox.class);
cb.setValue(false);

}
%>
<dmf:row>
<td>
<dmf:checkbox name='selectAll' onclick='onSelectAll'/>

</td>
</dmf:row>
...

Getting datagrid controls

You can iterate through the rows of a datagrid and get values of the contained controls
using Control.getContainedControls().

Example 12-13. Getting a value from a datagrid row
The following example is taken from code that fetches a datafield value from the row, in
order to test the value and render the row in a specific color depending on the datafield
value. You must iterate through the rows to find the required control and value:
Datagrid grid = (datagrid) getControl("grid",Datagrid.class)
Iterator iterGrid = grid.getContainedControls();
while(iterGrid.hasNext())
{
Control ctrl = (Control) iterGrid.next();
if(ctrl instanceof DatagridRow)
{
Iterator iterRow = ctrl.getContainedControls();
while(iterRow.hasNext())
{
Control ctrl = iterRow.
if(ctrl instanceof Checkbox)
{
Checkbox chk = (Checkbox) ctrl;
boolean isSelected = chk.getValue();
if(isSelected)
{
//test the value and set cssclass on the row

}
}

}
}

}

388 Web Development Kit and Client Applications Development Guide

Customizing Controls

Passing arguments to action-enabled controls

You can pass arguments from the original query, such as a datagrid query, to the action
precondition class.

Example 12-14. Passing a precondition argument
The CheckinAction precondition class takes an optional lock owner argument. If you
pass this argument when the action control is rendered, then the precondition class will
not have to look up the lock owner based on the object ID, which is a relatively slower
process. You pass the precondition in an argument tag as follows:
<dmfx:actionmultiselect name="multiselect...>
<dmf:datagrid...>
...
<datagridrow>
<dmfx:actionmultiselectcheckbox name=’multiselectcheckbox’>
<dmfx:argument name='objectId' datafield='r_object_id'>
<dmfx:argument name='lockOwner' datafield='r_lock_owner'

</dmfx:actionmultiselectcheckbox>
</datagridrow>
...
</dmf:datagrid>
</dmfx:actionmultiselect>

<dmfx:actionbutton action='checkin' dynamic='true'
nlsid="MSG_CHECKIN'/>

The checkin action class CheckinAction gets the arguments as follows:
public boolean queryExecute(String strAction, IConfigElement config,
ArgumentList arg, Context context, Component component)

{
...
String strLockOwner = arg.get("lockOwner");

}

Programming databound controls
The following topics describe databound controls:
• Data support classes, page 390
• Getting data, page 390
• Modifying the display and handling of attributes, page 395
• Rendering data with result sets, page 404
• Formatting data with handlers, page 406
• Adding custom attributes to a datagrid, page 407

Web Development Kit and Client Applications Development Guide 389

Customizing Controls

Data support classes

The databound control package com.documentum.web.form.control.databound contains
controls and helper classes that read one or more values from a database or a repository
and display the data in a formatted table or list. The data is retrieved from a DFC session
interface, a JDBC connection, or an existing in-memory recordset. Other WDK controls
can dynamically bind to the resulting data and display it.

The classes in the com.documentum.web.form.control.databound package can be
grouped by the functions they perform:

• DataProvider classes

Base class and framework for any databound control to use to get data from a query
or result set. (Refer to Getting data, page 390.)

• Databound controls

Controls that bind to data from a DataProvider instance. Many of the controls in
WDK can be databound, but they must have a DataProvider class that provides the
query results or recordset. A databound control implements IDataboundControl or
extends a class that implements it, for example, DataDropDownList, DataListBox,
and Datagrid. Each databound control has a tag class that renders the layout for
the databound control.

• Data result set classes

Classes that implement primitives for handling queried data, paged data,
unbounded sets of data, and in-memory sets of data. (Refer to Rendering data with
result sets, page 404.)

• Data handler classes

Classes that format the data from result sets. (Refer to Formatting data with
handlers, page 406.)

• Data binding utility controls and classes

Classes that display data in various layouts and assist other framework classes.
(Refer to Control arguments, page 433.)

Getting data

The DataProvider class establishes the connection to the data source and reads the data
received from the source. Other data manipulations such as paging, sorting, and caching,
are handled by data handler classes. You can get the DataProvider class either in your
component class or in the JSP page.

390 Web Development Kit and Client Applications Development Guide

Customizing Controls

You can use a data provider to render data in a tag class. All tag classes that extend
ControlTag can call resolveDatafield() method to get an instance of DataProvider.

You can also get data for your behavior class using DfQuery.

The following topics describe how to get data:
• Getting data in a component, page 391
• Getting data in a tag class, page 391
• Getting data in a behavior class, page 392
• Getting or overriding data in a JSP page, page 393
• Refreshing data, page 394
• Caching data, page 394

Getting data in a component

Example 12-15. Getting data in the component class
If your component JSP pages contain databound controls, you must instantiate a
DataProvider class to provide data to the controls. The setQuery() method fetches the
data. In the following example from AclList, the DataProvider class provides data:
public void onInit(ArgumentList args)
{
super.onInit(args);

// create (instantiate) the datagrid
Datagrid datagrid = ((Datagrid) getControl(CONTROL_GRID, Datagrid.class));
datagrid.getDataProvider().setDfSession(getDfSession());
// set initial query for acls
datagrid.getDataProvider().setQuery(BASE_QUERY + QUERY_ORDERBY);
...

}

Getting data in a tag class

For controls that are contained within a datagrid, the tag class can get the data from
the enclosing datagrid using the FindEnclosingDataProvider utility class in the
com.documentum.web.form.control.databound package.

Example 12-16. Getting data in a tag class
In the following example from DataSortImageTag, the renderEnd() method gets the
enclosing datagrid control in order to access the sort columns:
DataSortImage sort = (DataSortImage)getControl();
Form form = getForm();
FindEnclosingDataProvider v = new FindEnclosingDataProvider();

Web Development Kit and Client Applications Development Guide 391

Customizing Controls

sort.visitContainer(v);
DataProvider db = v.getDataProvider();
...
// find out if the parent dataprovider is sorted by this column
boolean bSorted = false;
String strCol = sort.getColumn();

// find out if we were the last column sorted
String strSortCol = db.getSortColumnName();
...

Getting data in a behavior class

Your component or action class may need to run a query that does not provide data
directly to a databound control. In this case, use DfQuery to get the data.

A java.sql.ResultSet object. can be obtained from XML definitions wrapped in a
ConfigResultSet, from JDBC result sets, or from DFC IDfCollection objects wrapped
in a CollectionResultSet.

Example 12-17. Running a query
The following example runs a query using DfQuery. The results are returned in an
IDfCollection.
public IDfCollection getDocuments(IDfSession session,
String additionalAttrs)

{
IDfCollection result = null;
String defaultAttrs = "r_object_id, object_name";

// build up the query
StringBuffer queryBuf = new StringBuffer(128);
queryBuf.append("SELECT ")
.append(" FROM dm_sysobject (ALL) WHERE r_object_id IN (");
//appendStr() concatenates strings into a StringBuffer
appendStr(m_documents, queryBuf);
queryBuf.append(')');

IDfQuery query = new DfQuery();
query.setDQL(queryBuf.toString());
result = query.execute(session, query.READ_QUERY);
return result;

}

Note: When you use IDfCollection objects, you must close the collection after using it.
Unclosed collections cause bugs that are hard to find.

In the component onRender() or onInit() method, you can fill a databound control with
values from an XML file or JDBC result set.

392 Web Development Kit and Client Applications Development Guide

Customizing Controls

Example 12-18. Setting control values from an XML le
The following example from AdvSearch reads elements from a search configuration
file and stores it as a result set:

IConfigElement dateOptions = lookupElement(DATE_OPTIONS);
m_currentDateOptions = new ConfigResultSet(dateOptions.
getDescendantElement(DATE_CONDITIONS), null, "label", "date",
null, "value", "value");

Then the values from the XML configuration file are used to populate a dropdown
list control:
DataDropDownList dateOptionList = (DataDropDownList) getControl(
DATE_PARAMS, DataDropDownList.class);

dateOptionList.getDataProvider().setResultSet(
m_currentDateOptions, null);

Getting or overriding data in a JSP page

There are two ways you can get data by modifying a JSP page:
• Override the databound control query attribute, if it has one
• Get the data provider and use it to get data
Example 12-19. Overriding a query in a JSP page
The following example sets a query for a datagrid in the JSP page:
<dmf:datagrid name="controlgrid1" cellspacing="2"
cellpadding="3" bordersize="0" cssclass="databoundExampleDatagrid"
paged="true" query="select r_object_id, object_name,
home_url from km_enterprise">

</dmf:datagrid>

Example 12-20. Getting data in the JSP page
If your databound controls on the JSP page need access to a value in a query or recordset,
you must include the DataProvider class and create an instance of it. In the following
example from relationships_streamline.jsp, the data provider gets data for the datagrid
control on the page:
<%
Relationships form = (Relationships)pageContext.getAttribute(
Relationships.FORM, PageContext.REQUEST_SCOPE);

DataProvider dataProvider = ((Datagrid)form.getControl(
Relationships.GRID_NAME, Datagrid.class)).getDataProvider();

%>
...
<%
if (dataProvider.getResultsCount() > 1)
{%>

Web Development Kit and Client Applications Development Guide 393

Customizing Controls

...
<%
}

%>

Refreshing data

If the data you display can be changed by another component, refresh the data using the
data provider. For example, you can nest to the properties component from a datagrid.
When the user changes a property, you must refresh when you return to the grid. The
provider then requeries the data and steps through the results. It also reapplies sort
settings.

Example 12-21. Refreshing data
The GroupWhereUsed class has an onRefreshData() method that uses a DataProvider
instance to refresh data. The onRefreshData() lifecycle event handler is called by the
form processor when a form is rendered:
public void onRefreshData()
{
Datagrid datagrid = ((Datagrid)getControl(CONTROL_GRID, Datagrid.class));
datagrid.getDataProvider().refresh();

}

Caching data

Caching is done automatically by the data handler classes. The default
value of the cache is 100 rows. The DataProvider class sets the cache
size based on the value in DataboundProperties.properties in the package
com.documentum.web.form.control.databound (in /WEB-INF/classes). When the cache
size is reached and more data is requested, the query is reissued to retrieve more results.
The cache is discarded when the user navigates to another page.

You can override the cache size using DataProvider.setCacheSize.

Example 12-22. Overriding the record cache size
To override the cache size that is set in DataboundProperties.properties, call
DataProvider.setCacheSize. In the following example from DatagridTag, the cache size is
set to the value of the recordcachecount attribute on the datagrid tag:
if (m_nRecordCacheCount != null)
{
grid.getDataProvider().setCacheSize(m_nRecordCacheCount.intValue());

}

394 Web Development Kit and Client Applications Development Guide

Customizing Controls

You can change the cache size for an individual control by getting the control and
calling setCacheSize(). You can also override the cache size by setting the value of the
recordcachecount attribute on a datagrid tag.

Modifying the display and handling of attributes

You can modify how certain attributes or attribute types are displayed by using
a formatter class. You can modify how the attribute is saved by using a value
handler class. These classes are used to display or handle data in a docbaseattribute,
docbaseattributevalue, or docbaseattributelist control.

You can modify which control is used to render an attribute by specifying a tag class
that extends DocbaseAttributeValueTag. You can add configuration elements that are
used by the formatter, handler, or tag class.

Custom formatters, handlers, and custom tag classes are registered in a docbaseobject
configuration file whose root element is <docbaseobjectconfiguration>. A JSP page
references this configuration by setting the configid attribute of <dmfx:docbaseobject>
to the same value as the id of the <docbaseobjectconfiguration> element. If this
attribute is not specified on the docbaseobject tag, the default configuration
is used. This default configuration has an id of "attributes” and is found in
/webcomponent/config/library/docbaseobjectconfiguration_dm_sysobject.xml.

The following topics describe the configuration file, formatters, value handlers, and
docbaseattributelist lookup process:
• docbaseobjectconfiguration file, page 395
• Attribute formatters, page 397
• Value handlers, page 398
• Tag classes, page 398
• Custom elements and editing components in object configuration, page 401
• Default configuration, page 402
• DocbaseAttributeList lookup process, page 403

docbaseobjectconguration le

The docbaseobjectconfiguration definition contained in a configuration file with the
primary element <docbaseobjectconfiguration> specifies all formatters and value
handlers that should be applied for the display and handling of specific attributes
and attribute types. You can also specify custom classes to display attributes that are
generated by a docbaseattributelist control and a component that will be launched to

Web Development Kit and Client Applications Development Guide 395

Customizing Controls

edit the attribute value. You can define additional elements to be used by your tag
implementation.

Note: The formatters and handlers in this file apply to all instances of the attribute that
are rendered by various DocbaseAttribute* controls. These controls are most commonly
seen on the Properties/Attribute pages but are also used within Import and Check In
screens. Components that retrieve their data through queries, such as navigation pages,
do not render attributes based on this configuration file.

Specific attributes are listed in the <names> element, and attribute types are listed
in the <types> element. The more specific attributes in the <names> element override
the formatting or handling specified in the <types> element. For example, there is a
formatter for attributes of the type "id” that displays the object name instead of the ID.
This is overridden for the attribute r_object_id, whose formatter displays the actual
ID as a text string.

The configuration file has the following elements:
1<docbaseobjectconfiguration id='attributes'>
2<names>
3<attribute name='some_attribute">
4<valuehandler>fully.qualified.class.name</valuehandler>
5<valueformatter>fully.qualified.class.name</valueformatter>
6<tagclass>fully.qualified.class.name</tagclass>
7<labeltagclass>fully.qualified.class.name</labeltagclass>
8<valuetagclass>fully.qualified.class.name</valuetagclass>
9<editcomponent>fully.qualified.class.name</editcomponent>
10<custom_element_name>some_value</custom_element_name>

</names>

<types>
11<attribute type='type_name" repeatingonly="true | false"
singleonly="true | false">
<!-- Same elements as names.attribute above -->

</types>
</docbaseobjectconfiguration>

1 Defines formatters, value handlers, tags, editing components, and custom elements
for object attributes or attribute types. The id attribute matches this configuration to the
configid attribute on a docbaseobject control in a component JSP page.

2 Contains a list of attribute names for which there are special handlers.

3 Specifies the name for an attribute that is defined in the repository data dictionary.

4 Fully qualified class name for a class that implements
IDocbaseAttributeSetValueHandler to set the value of the attribute. The handler class
will be used by DocbaseAttribute and DocbaseAttributeValue to determine whether
the attribute is modifiable. Use this class for modifiable attributes whose value
cannot be set by the standard DocbaseObject.save() implementation, which uses the
IDfTypedObject.setXXX methods.

396 Web Development Kit and Client Applications Development Guide

Customizing Controls

5 Fully qualified class name for a class that implements IDocbaseAttributeValueformatter
to format the display of the attribute. The formatter class will be used by
DocbaseAttributeValueTag to determine the value that is rendered for display. Use
this class for attributes whose value is not clear to the user. For example, the value for
the attribute r_resume_state is an integer. The formatter class renders the name of the
lifecycle state for display.

6 Fully qualified class name for a class that extends DocbaseAttributeTag. The class will
be used by DocbaseAttributeListTag to render the attribute. Use this class to render the
attribute when <labeltagclass> and <valuetagclass> are insufficient for the rendering
requirements.

7 Fully qualified class name for a class that extends DocbaseAttributeLabelTag. The
class will be used by DocbaseAttributeListTag to render the attribute label.

8 Fully qualified class name for a class that extends DocbaseAttributeValueTag. The
class will be used by DocbaseAttributeListTag to render the attribute value. For example,
this control could render a textarea instead of a text box for an attribute.

9 ID of component that will be used to display a UI for editing the attribute value. The
component is launched from the Edit link that is rendered by DocbaseAttributeValueTag.
The default is to use the docbaserepeatingattribute and docbasesingleattribute
components for repeating and single attributes, respectively.

10Custom elements can be inserted into the definition. The element and value will be
available to the tag classes specified in the definition.

11 Specifies an attribute type in the data dictionary or a pseudotype that is handled by
the tag class. The repeatingonly attribute on this element applies the customization only
to multi-valued attributes. The singleonly attribute applies the customization only to
single-valued attributes. The default value for both attributes is false.

Attribute formatters

Attribute formatters change the presentation of an attribute. Register your
custom formatter for a specific attribute as the value of <names><attribute
name=...>.<attribute>.<valueformatter>. Register your custom formatter for an attribute
type as the value of <types><attribute type=...>.<attribute>.<valueformatter>.

The default presentation of an attribute is its value, but some attributes do not have
values that are meaningful for the user. For example, the business policy (lifecycle)

Web Development Kit and Client Applications Development Guide 397

Customizing Controls

ID has no meaning for most users, so the formatter looks up the policy name (error
handling code removed):
public String getAttributeDisplayValue(String attribute,
DocbaseObject docbaseObject)

{
String value = null;
IDfPersistentObject persistentObject = docbaseObject.getDfObject();
IDfSysObject sysObject = (IDfSysObject)persistentObject;
value = sysObject.getPolicyName();
return value;

}

Value handlers

Attribute value handlers change the handling of a value. If the value cannot be saved
using the standard DocbaseObject.save() method, or you need to perform additional
processing after a save such as saving the value elsewhere in your application,
implement a custom value handler class. Register your custom handler for a specific
attribute as the value of <names><attribute name=...>.<attribute>.<valuehandler>.
Register your custom handler for an attribute type as the value of <types><attribute
type=...>.<attribute>.<valuehandler>.

The default presentation of an attribute is its value, but some values cannot be saved by
the standard DocbaseObject.save() implementation. For example, the r_version_label
attribute must be saved or deleted with a call to IDfSysObject.mark() or unmark(),
respectively. The value handler class performs a check for read-only status and then calls
mark() or unmark() in the setAttributeValue() method (error handling removed):
public void setAttributeValue(String attribute, IValue value,
DocbaseObject docbaseObject) throws DfException

{
IDfPersistentObject persistentObject = docbaseObject.getDfObject();
...
String label;
//test label
IDfSysObject sysObject = (IDfSysObject)persistentObject;
sysObject.unmark(labelBuffer.toString());
//add new label
String[] labelValues = value.getStringArray();
sysObject.mark(label);

}

Tag classes

You can configure a custom tag class to render your attribute label, attribute value,
or both. Your custom class will be instantiated by DocbaseAttributeList to render

398 Web Development Kit and Client Applications Development Guide

Customizing Controls

the label and/or value. The following example adds a custom tag class that extends
DocbaseAttributeValue to render the subject attribute of dm_document as a TextArea
control instead of the default Text control. The default rendering of the subject attribute
is a single line, as shown below:

Figure 12-1. String attribute rendered as text control

The following excerpt is from a copy of docbaseobjectconfiguration_dm_sysobject.xml,
copied to /custom/config as docbaseobjectconfiguration_dm_document.xml:
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<config version='1.0'>
<scope type="dm_document">
<docbaseobjectconfiguration id='attributes'>
<names>
<attribute name='subject'>
<valuetagclass>com.mycompany.control.SubjectAttributeValueTag
</valuetagclass>
<lines>5</lines>

</attribute>
...

</docbaseobjectconfiguration>
</scope>
</config>

The elements in a docbaseobjectconfiguration file are described in detail in Web
Development Kit and Client Applications Development Guide.

The custom tag class that is registered in the configuration file shown above extends
DocbaseAttributeValue and sets the number of lines on the TextArea control from the
custom element <lines/>:
package com.mycompany.control;

import com.documentum.web.formext.config.IConfigElement;
import com.documentum.web.formext.control.docbase.DocbaseAttributeValue;
import com.documentum.web.formext.control.docbase.DocbaseAttributeValueTag;
import com.documentum.web.formext.control.docbase.DocbaseObject;
import java.io.IOException;
import javax.servlet.jsp.JspTagException;
import javax.servlet.jsp.JspWriter;

public class SubjectAttributeValueTag extends DocbaseAttributeValueTag
{

Web Development Kit and Client Applications Development Guide 399

Customizing Controls

protected void renderSingleAttribute(String strFormattedValue,
String strValue,
boolean bReadonly,
boolean bHasCompleteList,
JspWriter out)

throws IOException, JspTagException
{

//String strLines = "3";
String strLines = setDynamicLines();
DocbaseAttributeValue value = (DocbaseAttributeValue)getControl();
value.setLines(strLines);
super.renderSingleAttribute(strFormattedValue, strValue,
bReadonly, bHasCompleteList, out);

}

private String setDynamicLines()
{

DocbaseAttributeValue value = (DocbaseAttributeValue) getControl();
DocbaseObject obj = (DocbaseObject) getForm().getControl(value.getObject());

IConfigElement iConfigElement = obj.getConfigForAttribute(
value.getAttribute(), "lines");

if (iConfigElement != null)
{

return (iConfigElement.getValue());
}
return "1";

}
}

After restarting the application server, the same attribute is rendered as a TextArea
control as shown below:

400 Web Development Kit and Client Applications Development Guide

Customizing Controls

Figure 12-2. String attribute rendered as TextArea control

Custom elements and editing components in object conguration

You can specify a component that will be launched to edit the specified attribute
(<attribute name=...>or attributes of the specified type (<attribute type=...>). For example,
the default docbaseobjectconfiguration definition specifies that the versionlabels
component should be used to edit the r_version_label attribute.

You can add elements whose values will be used in your custom tag class. For
example, the rich_text pseudoattribute specifies custom tag classes and custom elements
such as <showfonts>. The boolean value of the showfonts element is used in the
RichTextDocbaseAttributeValueTag class:
DocbaseAttributeValue value = (DocbaseAttributeValue) getControl();
DocbaseObject obj = (DocbaseObject) getForm().getControl(value.getObject());

IConfigElement iConfigElement = obj.getConfigForAttribute(value.getAttribute(),
"showfonts");

if (iConfigElement != null)
{
richtext.setHasFonts(iConfigElement.getValue());

}

Web Development Kit and Client Applications Development Guide 401

Customizing Controls

Default conguration

If no configuration is specified on the DocbaseObject control, then the default
configuration in docbaseobjectconfiguration_dm_sysobject.xml is used. The following
attributes have special handling as specified in this configuration file:

Table 12-3. Default attribute handling

Attribute Customization

a_storage_type Renders storage name instead of integer

r_object_id Renders object ID as text, overrides the
rendering of the ID type

i_chronicle_id Renders chronicile ID as text, overrides
the rendering of the ID type

r_policy_id Renders policy name instead of ID

r_version_label Sets changes to version labels, uses
versionlabels component instead of
docbaserepeatingattributes component

r_current_state Renders state name instead of state
number

r_resume_state Renders state name instead of state
number

type =” id” Renders name or path instead of ID
value. Overridden by specific attribute
customizations. To remove specific
customizations, or this type-based
customization, comment out the attribute
element in your extended configuration.

type=”rich_text” Specifies handlers for attributes with the
pseudoattribute type "rich_text.” This
customization is applied to attributes
in a scoped attributelist definition that
contains in <pseduo_attributes> element.
The attribute within this element must
have the type rich_text, for example:
<attribute name=”folder_description”
type=”rich_text” ...>

402 Web Development Kit and Client Applications Development Guide

Customizing Controls

DocbaseAttributeList lookup process

WDK registers a lookup hook to intercept lookup calls from the docbaseattributelist
control. The hook class DocbaseScopeConfigLookupHook is registered in
com.documentum.web.formext.Environment.properties. The lookup hook as the
following settings:
LookupHookPath.1=displayconfig.*
LookupHookArgument.1=relative
LookupHookClass.1=com.documentum.web.formext.config.DocbaseScopeConfigLookupHook

DocbaseAttributeList class looks up the element displayconfig.root, and the lookup hook
then collects the display configuration information from the data dictionary or config file,
depending on whether the docbaseattributelist configuration is set to use data dictionary
lookup (<data_dictionary_population>). This process is diagrammed below:

Figure 12-3. Docbaseattributelist lookup

DocbaseScopeConfigService collects the display configuration information for the
current repository from its data dictionary and passes a DOM representation of the
dm_scope_config object to ConfigServices. DocbaseScopeConfigService also keeps a
map of repositories, locales, and data dictionary application names.

When a DocbaseAttributeValue control is rendered by DocbaseAttributeValueTag, it
looks up the repository to get associated value assistance for the attribute by calling
DocbaseAttributeValue::hasValueAssistance. The appropriate value assistance controls
are rendered for value assistance: dropdown, label, or link. For attributes with
conditional value assistance, an event handler is registered to do preprocessing.

Web Development Kit and Client Applications Development Guide 403

Customizing Controls

Rendering data with result sets

A data provider returns data in the form of a result set. You must select the appropriate
result set class to handle the data. The DataProvider class matches a data handler class to
the result set in order to render the data.

You must set the result set for the databound control using DataProvider.setResultSet()
(refer to below).

The result sets are described in the following topics:
• Making data scrollable, page 404
• Handling data from a configuration file, page 404
• Handling data from an array or vector, page 405

Making data scrollable

The base recordset class, ScrollableResultSet, creates in-memory recordset objects.
ScrollableResultSet extends java.sql.ResultSet. All other in-memory recordset objects,
such as those backed by arrays or lists, extend ScrollableResultSet. Each type of scrollable
result set handles a different type of data: You can pass data from a scrollable result
set to a data grid.

You can call setScrollableResultSet() on DataProvider to set data in a databound control.

Example 12-23. Setting data to a databound control
In the following example from ChangeHomeDocase, a ListResultSet is set by the
DataProvider to a data dropdown list control:
DataDropDownList docbaseList = (DataDropDownList) getControl(
DOCBASE_LIST,DataDropDownList.class);

docbaseList.getDataProvider().setDfSession(getDfSession());

ListResultSet docbaseListResultSet = new ListResultSet(
getDocbaseNames(),"docbasename");

...
docbaseList.getDataProvider().setScrollableResultSet(docbaseListResultSet);

Handling data from a conguration le

ConfigResultSet gets data from an XML configuration file. Refer to Passing Data from a
Vector to a TableResultSet, page 405 for an example of putting configuration file content
into a Vector and passing the data to a table or list.

404 Web Development Kit and Client Applications Development Guide

Customizing Controls

Example 12-24. Passing data from a conguration le to a data dropdown list
In the following example from AdvSearch, the ConfigResultSet reads the value of the
config file element <date_options> and its child element <date_conditions> and the
values to a datadropdownlist control:
IConfigElement dateOptions = lookupElement(date_options);
m_currentDateOptions = new ConfigResultSet(dateOptions.
getDescendantElement(date_conditions), null, "label",
"date", null, "value", "value");

//put the results into the named control
DataDropDownList dateOptionList =
(DateDropDownList)getControl(dateparams, DataDropDownList.class);
dateOptionList.getDataProvider().setResultSet(m_currentDateOptions, null);

Handling data from an array or vector

Example 12-25. Handling a vector of data in ArrayResultSet
In the following example from ChangePassword, Array data is passed to an
ArrayResultSet data handler and then to a ScrollableResultSet:
Collator collator = Collator.getInstance(LocaleService.getLocale());
// do case-insensitive comparison
collator.setStrength(collator.SECONDARY);
Arrays.sort(docbases, collator);
ArrayResultSet arrDocbases = new ArrayResultSet(docbases, "docbase");
arrDocbases.sort("docbase", IDataboundParams.SORTDIR_FORWARD,
IDataboundParams.SORTMODE_TEXT);

listDocbases.getDataProvider().setScrollableResultSet(arrDocbases);

The TableResultSet handles a vector of data and returns it in table format.

Example 12-26. Passing Data from a Vector to a TableResultSet
In the following example from Administration, the Vector consists of data read from
elements in the configuration file. The Vector is passed to a table result set which is
displayed in a datagrid:
Vector oToolData = new Vector();
//add config data to Vector
...
m_oAdminTools = new TableResultSet(oToolData, s_strDefaultAttributes);
((Datagrid)getControl(CONTROL_GRID)).getDataProvider().setScrollableResultSet(
m_oAdminTools);

The ListResultSet handles a vector of data and returns it as a list.

Example 12-27. Passing Data from a Vector to a ListResultSet
In the following example from UserImport, getDocbaseNames() provides a Vector of
repository names for dropdown list:

Web Development Kit and Client Applications Development Guide 405

Customizing Controls

protected Vector getDocbaseNames()
{
Vector docbaseNames = new Vector();
IDfDocbaseMap docbaseMap = client.getDocbaseMap();
//iterate through Map from DocBroker
return docbaseNames;

}
...
DataDropDownList docbaseList = (DataDropDownList) getControl(
USER_HOME_LIST,DataDropDownList.class);

ListResultSet docbaseListResultSet = new ListResultSet(
getDocbaseNames(),"docbasename");

docbaseListResultSet.sort("docbasename", IDataboundParams.
SORTDIR_FORWARD, IDataboundParams.SORTMODE_TEXT);

docbaseList.getDataProvider().setScrollableResultSet(docbaseListResultSet);

Formatting data with handlers

Data handlers are used by the DataProvider class to format the data from result sets.
Each data handler is paired with a result set. For information on custom attribute data
handlers, refer to Adding custom attributes to a datagrid, page 407.

DataHandler — Abstract data handler class.

QueryDataHandler — Used with the results of a query. The handler provides cached
access to the RecordSet generated by the query. You can set the default cache size (number
of rows) in your Web application in the resource file DataboundProperties.properties
found in /WEB-INF/com/documentum/web/form/control/databound/.

Sorting: When the data is sorted, a new query is performed using the column sort
information.

Caching: Records are cached in memory up to the size of the cache or up to the current
page required by the user. If the user requests a page not currently in the cache, the data
is requeried and another data block is cached. ResultSet objects are never left open
beyond the life of a page render.

Performance: In large result sets, there is a performance hit to requery and reopen the
ResultSet.

ResultSetDataHandler — This data handler is used when a ResultSet and a Statement
are used. The data handler provides access to data from an existing ResultSet.

Sorting: Callbacks must be handled by the developer.

Caching: Paging is provided.

406 Web Development Kit and Client Applications Development Guide

Customizing Controls

ScrollableResultSetDataHandler — This data handler is used with a class that extends
ScrollableResultSet. The data handler provides access to data held in a scrollable
ResultSet object.

Sorting: Callbacks must be handled by the developer of the ScrollableResultSet class.

Caching: Paging is provided.

DFCQueryDataHandler: This data handler is used when a DQL string is provided, and
the query is executed using an IDfQuery object.

Adding custom attributes to a datagrid

To add columns of data to a datagrid, you can define a column in the component
definition and render the column with a formatter. Each formatter queries the
individual values, which can slow performance. To improve performance, you can
display custom attributes using a custom attribute data handler that implements
ICustomAttributeDataHandler. This data handler can add an entire column of data to
the underlying record set when a datagrid is rendered.

The custom attribute data handler serves the following purposes:

• Adds columns of data to a grid where the data comes from other queries
• Supplies hidden columns of data to actions whose preconditions require data

retrieved from other queries

The custom attribute data handler and record set — A custom attribute data handler
class implements getRequiredAttributes(), which is called by the DFCQueryDataHandler
class to determine which attributes are required by the data handler. The custom handler
implements getData(), which is called if the custom attribute columns that are specified
in the XML definition are present in the underlying record set. The method getData()
fills a custom record set with appropriate values.

The custom attribute handler is paired with a custom record set that implements
ICustomAttributeRecordSet.

WDKprovides a custom attribute data handler, DFCQueryCustomAttributeDataHandler,
which will get data for custom attributes if they are specified in a column element of a
component definition. If the object type does not have the attribute, the column is empty
for that object. For example, if your custom drilldown component definition contains
attribute columns for a custom type, objects of that type will be displayed with their
custom attribute values. Objects in the list that do not have those custom attributes will
be displayed with empty values in each custom attribute column.

Web Development Kit and Client Applications Development Guide 407

Customizing Controls

To create a custom attribute data handler:
If your attribute display requires special processing before displaying the column, create
a custom attribute data handler.

1. Implement ICustomAttributeDataHandler (refer to below) to retrieve the custom
parameter.

2. Add an entry for the custom data handler in app.xml. For example:
...
<application>
<custom_attribute_data_handlers>
<custom_attribute_data_handler>fully_qualified_class_name
</custom_attribute_data_handler>

</custom_attribute_data_handlers>
...
</application>

3. Add the custom parameter to your action definition to pass it from the JSP page to
the precondition class, action class, or component that is launched by the component.

4. Add the custom parameter to the control instance on the form.

5. Modify the action precondition or execution class, or the component class, to use
the new parameter.

6. Add the custom parameter to the component column configuration.

7. If your component’s controls require invisible parameters, include the
<loadinvisibleattribute> element in the <columns> definition.

Note: Some components, such as com.web.component.library.search.Search, override
ComponentColumnDescriptorList and pass all columns to the DataProvider instance.
You must override this behavior and change the UI to hide the attributes that should
be invisible to the user.

Example 12-28. Custom attribute data handlers in Digital Asset Manager
The Digital Asset Manager (DAM) application uses several custom attribute data
handlers that provide examples of custom data handlers that pass hidden data to actions.
The DAM custom attributes are hidden from the data display and passed to actions
when the user selects objects in the display. Several custom data handlers are defined in
the dam app.xml file, for example:
<custom_attribute_data_handler>

com.documentum.dam.formext.docbase.TotalStoryboardsAttributeHandler
</custom_attribute_data_handler>

Custom attributes are specified in the component XML file as columns. The
following example is excerpted from dam_myfiles_classic_component.xml and
specifies an invisible column of data for total number of storyboards. Note that the
loadinvisibleattribute element must have a value of true in order for the invisible
columns to be queried:
<columns>

408 Web Development Kit and Client Applications Development Guide

Customizing Controls

<loadinvisibleattribute>true</loadinvisibleattribute>
...
<column>
<attribute>total_storyboards</attribute>
<visible>false</visible>

</column>
</columns>

The data handler class TotalStoryboardsAttributeHandler implements
getRequiredAttributes() to require the object IDs:
public String[] getRequiredAttributes()
{
return new String[] {"r_object_id"};

}

The data handler class implements getData(), passing in the ICustomAttributeRecordSet
to receive the query data:
public void getData(IDfSession dfSession, ICustomAttributeRecordSet recordSet)
{ ... }

The getData() method then gets the object IDs and puts them into an ArrayList, in
preparation for building the query:
String[] objectIdArray = recordSet.getAttributeValues("r_object_id");
List objectIds = new ArrayList(Arrays.asList(objectIdArray));

Next (code not shown) the method builds and executes a query that will get the
number of storyboards for each object ID. The method then iterates over the returned
IDfCollection to set the data in the recordset:
recordSet.setCustomAttributeValue(iRow, s_attributeName, strTotalStoryboards);

The total_storyboards datafield is passed as an argument by the datagrid to two controls
in the myobjects_drilldown_body JSP page: an actionimage and an actionlinklist. Thus
the hidden datafield value is passed to the actions represented by the actionimage and
actionlinklist.

Generating UI
The JSP tag classes provide methods to write out HTML and JavaScript. You can also
override these methods and call other methods that write out data.

Each control tag generates one or more HTML elements. The HTML element name is
formed from the form name and the control name, the control index, and an optional ID.
formname_controlname_controlindex

Web Development Kit and Client Applications Development Guide 409

Customizing Controls

Example 12-29. Generating HTML
The following example from a JSP tag class generates HTML to the browser:
protected void renderEnd(JspWriter out)
throws IOException

{
MyControl myControl = (MyControl)getControl();
StringBuffer buf = new StringBuffer(256);
.append(myControl.getElementName()). append("'");
if (myControl.getId() != null)
{
buf.append(" id='").append(myControl.getId()).append("'";

}
buf.append(" value='")
.append(formatText(myControl.getValue()))
.append("'>");
out.println(buf.toString());

}

Example 12-30. Setting a control value in onRender()
The following example sets a label with the value of the selected object ID in a component
onRender() method. You must set the control state before calling super.onRender():
public void onRender()
{
IDfId objId = new DfId(objectId);
try
{
dmAdminSession = getDmAdminSession();
IDfSysObject obj = (IDfSysObject)dmAdminSession.getObject(objId);
Label objectIdLabel = (Label)getControl("objectIdLabel",Label.class);
objectIdLabel.setLabel(objectId);
Label objectNameLabel = (Label)getControl("objectNameLabel",Label.class);
objectNameLabel.setLabel(obj.getObjectName());
Label dumpLabel = (Label)getControl("dump", Label.class);
dumpLabel.setLabel(obj.dump());

}
catch (DfException e)
{
e.printStackTrace();

}
super.onRender();

}

Generating a link in a control
Links that are generated by controls are susceptible to server errors in a high latency
network. The errors occur when users are waiting for a page to refresh and click on
several links. The browser cancels the first request and processes only the last click.
The browser kills the connection associated with the early links, which are still being
processed by the server. Since the connection to early links was closed by the browser,

410 Web Development Kit and Client Applications Development Guide

Customizing Controls

the server code generates exceptions: socket exceptions and temporary instability
including incorrectly generated pages.

To avoid this problem, you should not put a URL or JavaScript call into the HREF tag but
instead use the onclick handler to call postServerEvent(), which implements a client-side
locking. Put the number symbol "#” into the HREF so that the link will appear active.
The actual action is done by the onclick event handler that is specified in the HTML tag.

Example 12-31. Rendering an HTML link
The ControlTag class renders a link using the renderEventHREF() method. Your custom
control tag should call renderEventHREF() to render the link. In the following example
from the renderEnd() method of DataSortLinkTag, the link is rendered into HTML
buf.append("<a");
renderEventHREF(buf, DataSortLink.EVENT_ONCLICK);

This method will generate a link similar to the following HTML:
Sort

Note: setKeys(event) always returns false. The onclick handler must return false to
prevent the processing of the HREF content.

The postServerEvent() call ensures that only one click will be processed by the browser
at a time. The first click will be processed, and subsequent clicks will be ignored until the
first click has been completely processed.

Making a control accessible to JavaScript
The method getFunctionName() is a utility method in the Control class that is used in a
control tag class to generate a function name including a unique hex number to use for
generated JavaScript. For example:

Example 12-32. Generating a function name in JavaScript

getFunctionName()=>_x0
//or
getFunctionName("onclick")->_x0onclick

In the following example, the FileBrowse tag class generates a hidden input control:
String strUpdateHiddenCtrlFunctionName = filebrowse.getFunctionName();
out.write("<input type='hidden'");
out.write(" name='");
out.write(strHiddenCtrlName);
out.write("' id='");
out.write(strHiddenCtrlName);
out.write('\'');
out.write(" value='");
out.write(formatAttribute(filebrowse.getValue()));
out.write('\'');

Web Development Kit and Client Applications Development Guide 411

Customizing Controls

out.write('>');

Displaying folder paths and breadcrumbs
You can display the user’s navigation path in a component using the
primaryfolderpathlink control. Primary folder paths are also displayed in folder links
and attributes.

Subscriptions store the navigation folder path so that the user will see the same path
when the subscription is displayed.

The following topics describe the interfaces for folder path and breadcrumb support:
• Getting the primary folder path, page 412
• Displaying the folder path, page 412
• Adding support for a breadcrumb, page 413
• Using a hidden folder path in a component, page 414

Getting the primary folder path

An object’s primary folder path is calculated by the WDK application for each user
from the list of possible folder paths (r_folder_path entries) to an object: the first path
on which the user has browse permissions on every folder in the path is taken as the
primary folder path for that user. Thus the primary folder path to an object for one user
may be different from the primary folder path for another user.

To get the object’s primary folder path for the user, call FolderUtil.getPrimaryFolderPath(),
passing in an object ID and optionally a boolean flag that specifies whether the name of
the passed object should be appended on the return path.

If your component can list the r_folder_path attribute of objects, add a cell template to
the JSP page that uses a primaryfolderpathlink or FolderUtil.formatFolderPath() to
display the value.

Displaying the folder path

If the user does not have browse permissions on any full path, the first entry in the list of
paths is used as the primary folder path for display, and the folders on which the user
does not have browse permissions are displayed as a partial folder path with ellipses.
For example, if the user has browse permissions on the Documents cabinet and the

412 Web Development Kit and Client Applications Development Guide

Customizing Controls

Attachments folder in the path /Documents/Reviews/Attachments, the path will be
displayed to the user as follows:

Figure 12-4. Folder path display

In a partial folder path such as the example above, only the portion on which the user
has full browse permissions is displayed. The strings for path display are generated by
FolderUtil.formatFolderPath(String strFolderPath). The return values are illustrated in
the table below. The user has access to the underlined folders:

Table 12-4. Folder path display rules

Argument value Return value

"/a/b/c/d/e” "/a/b/c/d/e”

"/a/b/c/d/e” "/.../c/d/e”

"/a/b/c/d/e” "/.../d/e”

"/a/b/c/d/e” " "

"/” or "/” "/ "

" " or null " "

Adding support for a breadcrumb

You can use a breadcrumb for components by adding the breadcrumb control to the
component JSP page.Components that extend ObjectLocator need no additional support
for the breadcrumb.

Web Development Kit and Client Applications Development Guide 413

Customizing Controls

If the component that displays a breadcrumb is in a container, add the breadcrumb to
the container JSP page. If the contained component does not extend ObjectLocator,
your container class must implement IBreadcrumbContainer. (Refer to the source
code for LocatorContainer for an example.) Implement getBreadcrumbPath() and
setBreadcrumbPath() so that you get and set the breadcrumb path or event handler on
the control that you get from the container. The contained component should handle the
breadcrumb event that is specified in Breadcrumb.setEventHandler() call. For example,
if you have the following call in your contained component, you will need to implement
a method called "onClickBreadcrumbABC()":
breadcrumb.setEventHandler(
Breadcrumb.EVENT_ONCLICK, "onClickBreadcrumbABC", this);

Initialize a breadcrumb control by passing a prefix, folder path, and postfix to
FolderUtil.initBreadcrumb().

The full or partial folder path that is returned by getPrimaryFolderPath(strObject),
and the folder path formatting that is returned by formatFolderPath(), are cached for
10 minutes to improve performance of repeated calls. You can refresh the cache after
folder properties or permissions have changed or a folder has been linked or unlinked
by calling FolderUtil.refresh().

Using a hidden folder path in a component

Navigation components pass repository folder paths in a dmf:hidden control and use the
value to support the browser Back button.

Components that write repository folder paths in hidden controls can encrypt the value
using the encrypt attribute so that names of folders the user does not have rights to view
are not written in the generated HTML hidden field. For example:
<dmf:hidden name='folder-path' encrypt='true'/>

Get the path in the component class as shown in the following example:
public void onClickFolder(Link linkbtn, ArgumentList args)
{
// get current path
String strPath;
Hidden pathCtrl = (Hidden)getControl(CONTROL_FOLDERPATH, Hidden.class);
if (pathCtrl.getValue() != null)
{
StringBuffer buf = new StringBuffer(
pathCtrl.getValue().length() + linkbtn.getLabel().length() + 1);
buf.append(pathCtrl.getValue())
.append('/')
.append(linkbtn.getLabel());
strPath = buf.toString();
...

}

414 Web Development Kit and Client Applications Development Guide

Customizing Controls

updateContextFromPath(strPath);
}

Note: Any hidden control value can be encrypted to hide it from the View Source
browser feature. When your component class calls getValue() on the Hidden control
class instance, the value is decrypted.

Implementing multiple selection
Web applications can support actions on more than one selected object. The
actionmultiselect and actionmultiselectcheckbox controls provide support for invoking
actions on multiple selected items. Use the actionmultiselectall control within a header
to allow the user to select all checkboxes with a single click.

Note: When the user accessibility option is turned on, multiple selection is replaced by a
link to an action page for each item and a global actions link.

The actionmultiselect control contains a block of actionmultiselectcheckbox controls,
typically within a datagrid. In the following example, a checkbox is rendered next to
each item, identified here by the <dmf:argument> tag with a datafield that is populated
by r_object_id:
<dmfx:actionmultiselect name='multiselect'>
<dmf:datagrid ...>
<datagridrow>
<dmfx:actionmultiselectcheckbox name='multiselectcheckbox'>
<dmf:argument name='objectId' datafield='r_object_id'/>

</dmfx:actionmultiselectcheckbox>
...

</datagridrow>
...
</dmf:datagrid>

</dmfx:actionmultiselect>

Within each actionmultiselectcheckbox control, you can embed argument controls to
pass arguments to the associated dynamic actions and to define the context that will be
used to resolved the appropriate action definition. The actual action to be performed
is defined using standard action controls, with the dynamic attribute set to multiselect.
These action tags can be located in other frames.

Note: You can use only one actionmultiselect control per set of open frames in your
application. If you have more than one <actionmultiselect> tag, then dynamic controls
do not know which selected item to operate on. You cannot embed an actionmultiselect
control within another actionmultiselect control.

Web Development Kit and Client Applications Development Guide 415

Customizing Controls

Caution: The states of all actions associated with dynamic action controls are evaluated
when the actionmultiselect control is rendered. A large number of selectable items or
associated actions can degrade performance. For example, if there are ten selectable
items and a hundred associated actions, one thousand states will be evaluated.

There are two ways you can get the arguments for multiple selections:
• Use mutiargdialogcontainer for your component

For example, the sendtodistributionlist component uses this container.
The multiargdialogcontainer passes the arguments to one instance of the
sendtodistributionlist component for each selected object.

• Add a required componentArgs parameter to your container:
<param name="componentArgs" required="true"></param>

In your container onInit() method, get the arguments and pass them to the contained
component in the following way:
//set array of component arguments
String strComponentArgs[] = arg.getValues("componentArgs");
ArgumentList componentArgs = new ArgumentList();
for (int i=0; i < srgComponentArgs.length; i++)
{
String strEncodedArgs = strComponentArgs[i];
componentArgs.add(ArgumentList.decode(strEncodedArgs));

}
setContainedComponentArgs(componentArgs);

Retrieve the argument collection in your contained component:
String [] vals = arg.getValues("objectId");

Managing control events
To fire a client event from a client control, follow the scripting language rules for firing
and handling client events. If you wish to register a particular event handler for the client
event, refer toRegistering client event handlers, page 114.

Server events that are handled on the server are implemented as calls to methods in
server classes. Follow the Java language rules by importing and calling the appropriate
class method.

The following topics describe control event handling on the server and some typical
event scenarios in custom Web applications:
• Use server-side or client-side processing?, page 417
• Firing a server event from the client, page 417
• Handling a control event on the server, page 420
• Updating components with client events, page 421

416 Web Development Kit and Client Applications Development Guide

Customizing Controls

• Firing a client event from the server, page 422
• Linking controls by events, page 422
• State change events, page 423
• How control events are raised, page 424
• Using modal windows, page 425
• Setting event handlers programmatically, page 427
• Control lifecycle events, page 428

Use server-side or client-side processing?

When you develop a WDK component, answer the following questions to help you
choose between client-side and server-side event handling:

Is the cost of a client/server round trip too expensive for the user interaction? For
example, is the user connected over a narrow-bandwidth line? If yes, then a client-side
event handler may be more appropriate.

Is a highly dynamic user interface required? If yes, then a client-side event handler
may be more efficient.

Are calls to business logic required? If yes, then a server-side event handler is required.

Firing a server event from the client

Any server-side event handler may be called from the client. Server-side event handlers
are automatically called by the framework for control events unless the runatclient
attribute is set to true.

postServerEvent — The WDK event client script events.js provides a postServerEvent
function that you can use to explicitly call a server event handler. This script is
automatically included in all rendered forms. The signature of the postServerEvent is:
function postServerEvent(strFormId, strSrcCtrl, strHandlerCtrl,
strHandlerMethod, strEventArgName, strEventArgValue);

where:
• strFormId: String ID of the form to submit. If null, the first form on the page is

assumed.
• strSrcCtrl: String ID of control that fires the event (optional).
• strHandlerCtrl: String ID of the control that handles the event (optional).

Web Development Kit and Client Applications Development Guide 417

Customizing Controls

• strHandlerMethod: String Java method name of the event handler in a class on the
J2EE application server.

• strEventArgName: String Event argument name
• strEventArgValue: String Event argument value

Note: Note: Multiple argument names and values may be specified.

You can generate a postServerEvent call using the <dmf:postserverevent> tag,
whose attributes supply the arguments to the function. Use this tag to generate the
postServerEvent() call within a portlet JSP page. You can pass only one event argument
and value with this control.

You can also call the postServerEvent function explicitly. When you explicitly use the
postServerEvent() function, the first three arguments are typically passed as NULL.
However, if your JSP page is in a portlet, you must have a named form, so you should
provide a form name for the first parameter.

Typically, postServerEvent is called from within a client-side event handler. For example:
<script>
function handleClick(srcObject)
{
postServerEvent(null, null, null, "onUpdateData", "objectId", id,
"type", type);

}
</script>

An arbitrary number of event arguments and values may be passed to the server-side
event handler by an explicit postServerEvent() call. The dmf:postserverevent tag passes
only one event argument and value.

In the server-side event handler, the event arguments are available in the usual manner
through the second ArgumentList parameter. For example:
public void eventHandler(Control control, ArgumentList arg)
{
String argValue1 = arg.get("argName1”);
String argValue2 = arg.get("argName2”);

}

When postServerEvent is called, the generated HTML Form is submitted (via an HTTP
POST) to the J2EE server. The Form Processor accepts the request and invokes the named
server-side event handler method on the Form. You must ensure that the JSP page
imports the Java class that contains the named event handler.

The postServerEvent() method ties control events to their associated server-side event
handlers. Each WDK control generates the appropriate HTML and JavaScript to hook the
call to postServerEvent(). The generated HTML for the Button Control is shown below:
<input type='button' name='__10_btn' value='Update Status - Available’
class="defaultButtonHtmlStyle" onclick='postServerEvent
"_1013087507570_1","","_1013087507570_1","onUpdateStatus");'>

418 Web Development Kit and Client Applications Development Guide

Customizing Controls

The button control generates the HTML and JavaScript when the form is rendered. The
button tag class renders the standard HTML <input> tag and associated onclick event so
that when the user clicks on the HTML button, the postServerEvent is invoked. To ensure
that the appropriate server-side event handler is located when the request is sent back to
the server, the button control populates the first three arguments of postServerEvent:
The ID of the form, the ID of the firing control, and the ID of the handler control.

Example 12-33. Client to server event
The following JSP page and associated Java behavior class demonstrate the use of
client-side control events that are posted as server-side events.

The layout consists of two buttons, each with a status argument. Each button event
updates the form layout to show the status of the selected button. The status is displayed
using a WDK label control and is updated using a server-side event handler called
onUpdateStatus(). This event handler accepts as an argument the status string to be
displayed. The onclick event of the first button is handled normally on the server. The
onclick event of the second button is handled on the client-side by setting its runatclient
attribute to true.

A JavaScript event handler in the layout JSP page accepts a status argument in the same
manner as its server-side counterpart. The event handler modifies the status by adding
the message "intercepted by client” and then uses postServerEvent to call the server-side
onUpdateStatus event handler with the modified status. The server-side event handler
updates the status label as before and the form is redisplayed with the updated status.

When the first button is pressed, the form displays the status "Available”. When the
second button is pressed, the form displays the status "Off-line (intercepted by client)”.
This demonstrates the addition of the message string by the client event handler to the
argument value for the second button ("Off-line”).

JSP client event —
<%@ page contentType="text/html; charset=UTF-8" %>
<%@ taglib uri="/WEB-INF/tlds/dmform_1_0.tld" prefix="dmf" %>
<%@ taglib uri="/WEB-INF/tlds/dmformext_1_0.tld" prefix="dmfx" %>
<html>
<head>
<dmf:webform formclass="com.documentum.web.samples.client.PostServerEvent"/>
<title><dmf:label label="Simple postServerEvent Example"/></title>
<script>
function onUpdateStatus(obj, status)
{
var newStatus = status + " (intercepted by client)";
alert("Client-side setting status from '" + status + "' to '" +
newStatus + "'");

postServerEvent(null, null, null, "onUpdateStatus", "status",
newStatus);

}
</script>
</head>

Web Development Kit and Client Applications Development Guide 419

Customizing Controls

<body class='contentBackground'>
<dmf:form>
<h3><dmf:label label="Simple postServerEvent Example"/></h3>

<dmf:button label="Update Status - Available" onclick="onUpdateStatus">
<dmf:argument name='status' value='Available'/>

</dmf:button>

<dmf:button label="Update Status - Off-line" onclick="onUpdateStatus"
runatclient="true">
<dmf:argument name='status' value='Off-line'/>

</dmf:button>

Status: <dmf:label name="status"/>
</dmf:form>
</body>
</html>

Server event handler —
package com.documentum.web.samples.client;
import com.documentum.web.form.Form;
import com.documentum.web.form.control.Button;
import com.documentum.web.form.control.Label;
import com.documentum.web.common.ArgumentList;
public class PostServerEvent extends Form
{
/**
* Handle server-side event
*/
public void onUpdateStatus(Button button, ArgumentList arg)
{
Label status = (Label)getControl("status", Label.class);
status.setLabel(arg.get("status"));

}
}

Handling a control event on the server

A server-side Java event handler can be registered for each control event. For example:
<dmf:button name=‘button1’ onclick=‘handleClick’/>

In this example, when the user clicks button1, the WDK framework automatically
invokes the event handler, a Java function named handleClick().

Server-side event handlers must have the following signature:
public void some_event_handler(Type control, ArgumentList args)
where Type is the class or supertype of the control that raised the event.

420 Web Development Kit and Client Applications Development Guide

Customizing Controls

To define the event handler method on the JSP layout page, use the following syntax.
FormType is a class or supertype of the Form class, and Type is the class or supertype of
the control that raised the event. You must declare the event handler as a static method
and pass the form to it when you define the event handler in a JSP page:
<%
public static void action(FormType
form, Type control, ArgumentList args)
{
...

}
%>

Updating components with client events

If your component needs to be updated by events on the client, the component class
should implement com.documentum.webcomponent.IClientUpdateEvent. This interface
provides the event handler method onUpdateData(). You can fire the onUpdateData
event from the client when an update of the control is required.

Components that implement IClientUpdateEvent include AbstractInbox, VDMView,
DocList, and ObjectGrid. For example, when a user clicks an object in the object grid
component JSP page objectgrid_classic.jsp, an onClickObject event is fired:
<dmf:link name="object_name" datafield="object_name"
onclick="onClickObject" runatclient="true">
<dmf:argument name="objectId" datafield="r_object_id">
</dmf:argument>
<dmf:argument name="type" datafield="r_object_type">
</dmf:argument>

</dmf:link>

The onClickObject client-side event handler (in the same page) fires the server event
onUpdateData:
function onClickObject(obj, id, type)
{
// update our content component
postServerEvent(null, null, null, "onUpdateData", "objectId",
id, "type", type);
...

}

The onUpdateData() event handler method in ObjectGrid determines whether the object
is a document, a virtual document, or a folder, and performs the appropriate action
for each type.

Web Development Kit and Client Applications Development Guide 421

Customizing Controls

Firing a client event from the server

You can fire a client event from server code using Form.setClientEvent(). You may need
to fire a client event after some server processing has taken place. When you fire an event
from server code, you must register the event handler. Refer to Registering client event
handlers, page 114 for information on registering client event handlers.

Do not encode client event arguments using SafeHTMLString.escapeText(). Instead, use
escapeScriptLiteral to encode client event arguments.

The setClientEvent method has the following signature:
public void setClientEvent(String strClientEventName,
ArgumentList clientEventArgs)

An example of a client event fired from a control class on the server can be seen with the
GeneralPreferences class. Its onCommitChanges() method sets the user’s preferences
and then fires a client event to refresh all of the frames except the content frame:
ArgumentList args = new ArgumentList();
args.add("exclude", "content");
setClientEvent("RefreshFrames", args);

The event handler is contained within the same frame’s JSP page or JavaScript file:
function onRefreshFrames(strExclude)
{
for (var iFrame=0; iFrame < window.frames.length; iFrame++)
{
window.frames[iFrame].location.reload();

}
}

Linking controls by events

You can link controls in several ways:
• Set up conditional value assistance for attributes in DocumentumApplication Builder

For conditional value assistance, refer to the documentation for Documentum
Application Builder.

• Set up a defaultonenter control that fires a button event

You can set the defaultonenter attribute on an editable control such as text,
filebrowse, or password to true, and then set a button default attribute to true. This
will fire the event on the button control when the user hits the Enter key on the
keyboard while in the editable control.

• Set up an event handler for one control that enables another control

Refer to the following example.

422 Web Development Kit and Client Applications Development Guide

Customizing Controls

Example 12-34. Activating a dependent control
In the following example, you have a Car Model control (CML) that displays values only
when the user has selected a value in the Car Make control (CMK). Initially, you set the
dependent control to be disabled (disabled=”true”). In your initial control, specify a
server-side onselect event handler:
onselect="activateControl"

In your component event handler, activate the dependent control:
public void activateControl(DropDownList oList, ArgumentList oArgs)
{
m_list = Integer.parseInt(oList.getValue());
if (m_list != null)
{
DropDownList o2ndList = (DropDownList) getControl("CMK", DropDownList.class);
o2ndList.setEnabled(true);

}
}
protected int m_list = 0;

State change events

When a form is reloaded, the form requests each control on the form to look for updated
state in the HTTP request. If a state update is present, the control overwrites its current
state. The form then interrogates each control to determine whether its state has changed
and whether the control has a change event handler. If there is a change event handler,
the form fires the change event.

The change event handler signature in the server class is:
public void event_Name(Type control)

The change event handler signature in a JSP page is:
public static void event_name(FormType form, Type control)

The control onchange event is set by ControlTag.setControlProperties. For example,
dqlEditor.jsp contains a dropdownlist control with an onchange event:
<dmf:dropdownlist name="<%=DQLeditor.CONTROL_MAXRESULTS%/>"
onchange='onSetMaxResults'>

The onchange event is handled in the DQL editor component class, DqlEditor, by a
method that has the same name (onSetMaxResults):
public void onSetMaxResults(DropDownList list)
{...}

Web Development Kit and Client Applications Development Guide 423

Customizing Controls

How control events are raised

Control events are raised when a form URL requests operations on the server. The form
(URL) is posted again as a recall operation. The URL that is generated is in the following
form (substitute actual values for italicized values):
http://1source_UI.jsp?2__dmfRequestId=requestID&3__dmfAction=action&__
4dmfHandler=handler&5__dmfControl=control

1 JSP page
(Required) The URL for the source JSP page. If the URL is not the same as the

originating form, the form processor interprets the URL as a jump rather than a recall
operation.
2 __dmfRequestId
(Required) Unique ID for the URL. The request ID is automatically generated by the

FormTag class into a hidden form field.
3 __dmfAction
(Required) The action is the name of the method to call as the event handler.

4 __ dmfHandler
Name of the control that handles the event. If the handler parameter is not set, the

top-level form is assumed.
5 __dmfControl
Name of the control that raised the event.

The following diagram illustrates the interaction between client-side and server-side
processing:

Figure 12-5. Client-side and server-side event processing

1. The WDK form, which consists of a layout JSP page and a Java behavior class, is
processed on the server-side, resulting in HTML being sent to the browser.

424 Web Development Kit and Client Applications Development Guide

Customizing Controls

2. The user clicks on a button contained within the HTML.

3. The "onclick” event is handled by an event handler, either as client-side JavaScript
event handler or a server-side Java event handler. The client-side event handler
handles the user’s selection through dynamic HTML (one less round trip) or posts
the event to server-side code.

4. If the event handler posts a server-side event, a new request is sent back to the J2EE
server.

5. The server-side event handler is called by the form processor. The form processor
may call business logic, update the state of the form, or navigate to another form.

For example, when the about component is called with the enableTools parameter set to
true, the following JSP tag is compiled by the application server:
<dmf:button ...onclick='onDQLEditor' runatclient='true' .../>

The application server renders the following snippet of HTML to the browser to display
a button that launches the dqleditor component:

<table border=0 cellspacing=0 cellpadding=0 name='About_btnDQL_0'
onclick='setKeys(event);safeCall(onDQLEditor,this);'...>

<tr style='cursor:hand' height=16>
...
<td style='cursor:hand' background='/wdk525sp1/wdk/theme/kaleidoscope/images/
dialogbutton/bg.gif' nowrap align=center class=buttonLink>DQL Editor</td>
...</tr></table>

The client side event handler onDqlEditor() raises a server-side event that nests to the
dql component:
<script>
function onDQLEditor
{
postComponentNestEvent(null, "dql", "dql");

}

Using modal windows

Modal windows provide a performance enhancement in web applications that use
several frames. With a modal window, other frames do not need to refresh after the
modal frame closes. All non-modal frames are collapsed when a non-modal frame is
presented.

Some components that use modal windows are containers, advanced search, login,
import file selection, prompt, single and repeating attributes UI pages, and add from
clipboard. By default, all nested and contained components are modal and all other
component navigation is not modal. Nested components are set to modal by the WDK

Web Development Kit and Client Applications Development Guide 425

Customizing Controls

framework. If you do not want your nested component to be modal, call setModal(false)
in your component onInit() method.

Modality hides all frames except the current mdal frame and then restores frames on
completion of the modal transaction. The modal window can be referenced by an
application JavaScript variable getTopLevelWnd().modalWnd.

You can explicitly set modality for a form or component in the onInit() event handler.
Call the Form method setModal() to launch a page in a modal window. The modal
window will be displayed within the current frame. The Form class has an isModal()
method that gets whether the form should be displayed in a modal window. The
following example sets modality in a component class:
public void onInit(ArgumentList args)
{
super.onInit(args);

// overwrite the modality
setModal(false);
...

}

If your component is in a container and you wish it to be non-modal, add the following
lines to the container onInit():
public void onInit(ArgumentList args)
{
super.onInit(args);
Control control = getContainer();
if(control instanceof Form)
((Form)control).setModal(false);
setModal(false);
...

}

To open a modal window outside the application frameset

1. Call launchModalDialog(). This JavaScript function is in /wdk/include/
formnavigation.js.

2. Specify the windows parameters in launchModalDialog: URL, window title,
window width and height, and window resizeability flag.

To add tracing of modal windows:

1. Open WebformScripts.properties in /WEB-INF/classes/com/documentum/web/form
and add the following line:
XX_Modal.trace=true
where XX matches the number of the line that includes modal.js, for example:
09_Modal.href=/wdk/include/modal.js
09_Modal.language=javascript1.2
09_Modal.trace=true

426 Web Development Kit and Client Applications Development Guide

Customizing Controls

2. Restart the application server and exercise a component that uses a modal window,
such a properties. a popup window displays trace output as in the following excerpt:
modal.js: Resizing Frame : timeoutcontrol
modal.js: Resizing Frame : titlebar
modal.js: Resizing Frame : view
modal.js: Resizing Frame : toolbar
modal.js: Resizing Frame : browser
modal.js: Resizing Frame : workarea
modal.js: Resizing Frame : divider
modal.js: Resizing Frame : menubar
modal.js: Resizing Frame : content
modal.js: Resizing Frame :
modal.js: Resizing Frame :
modal.js: Resizing Frame : status
modal.js: Resizing Frame : messagebar
modal.js: Resizing Frame : statusbar

You see the names of all framesets below the top WDK application frame. The two
unnamed frames are from nest.jsp.

Caution: The JavaScript file modal.js does not handle frameset that have both rows and
cols attributes, although this is a valid HTML construct. A workaround is to rewrite the
framesets to use nested framesets, with one frameset having the rows attribute and the
other having the cols attribute.

Setting event handlers programmatically

A control can launch an action or operation through a UI button. To set the event handler
programmatically, call the control class getEventNames() method. To add new event
names, override this method in your control class.

Specify the name of the event in the control event handler using the method signature
void eventName(). The following example sets an event handler for a button:
public void onInit(ArgumentList arg)
{
Button btn = (Button)getControl("the_button", Button.class);
btn.setEventHandler(Button.EVENT_ONCLICK, "onButtonClick", this);

}

The operation event is handled by a method defined in the JSP page that contains the
control. In the following example, the onclick event handler is onOkUserSelect:
<dmf:button ... onclick="onOkUserSelect" label="Ok" ...>
</dmf:button>

The onOkUserSelect event handler is defined as a method in the component class:
public void onOkUserSelect(Control control, ArgumentList args)

Web Development Kit and Client Applications Development Guide 427

Customizing Controls

{...}

Control lifecycle events

A control goes through a lifecycle. At each stage of the lifecycle, the control can be in a
different state, have different capabilities, and can raise events to notify your component
class. A control has the following lifecycle:

1. Pre-creation. A control is pre-created if it has a name and the control is referenced in
a form or component onInit() method. Some attributes can be set on the pre-created
control. Any attribute except the name can be overwritten by a setting in the JSP
page when the control is rendered.

2. Create. A control is in the create state when it is rendered for the first time. When
it is created, the control’s onInit() event handler is called and the control’s internal
isInitialized() method returns true.

3. Render. Every time a form is rendered, some or all of the form’s controls are
rendered. Controls on an invisible panel are not rendered, but other invisible
controls are rendered. The control tests the isVisible() method to determine how to
render the control. The control rendition method names HTML input elements by
calling the helper method getElementName().

4. Update. When an event is processed on a form, all form controls are updated.
The framework calls updateStateFromRequest() on each control, passing the
HttpServletRequest object as a parameter. The framework calls the control’s
hasChanged() method to determine whether to fire a change event.

5. Raise an event. Client-side code can raise a server-side event by calling
postServerEvent(). This JavaScript function takes a control object as an optional
parameter. Alternatively, a control can raise an event by passing itself as the event
parameter.

Events maintain the control lifecycle and state, and events launch control operations.
Events are modeled as named methods; this means that when a control fires an event, it
calls a method with the specified name. All events are synchronous.

Validating a control value
The form processor validates controls on a form (JSP page). Validation is implemented
by configurable validation controls. Each validation control checks one input control for
a specific type of error condition and displays a message if an error is found.

428 Web Development Kit and Client Applications Development Guide

Customizing Controls

When a server-side action event is fired on a form, the processor validates the form
before calling any event handlers. If a control is not valid, the event is still fired. Your
control event handler, in the component that is using the control, must handle the
validation error. For example, your component can call getIsValid() to ensure that all
controls have passed validation.

You can call the Form class method validate() to validate controls on a JSP page after
application logic has changed input controls.

Example 12-35. Validating controls on a JSP page
The CheckinContainer class validates controls in the onOk() event handler, when the
user submits the checkin form:
public void onOk(Control button, ArgumentList args)
{
validate();
boolean bValid = getIsValid();
if (bValid == false)
{
return;

}
//do checkin logic

}

An input control that contains a null or empty value is assumed to be valid by all
validators except for the required field validator, which will not accept a null or empty
field. Use requiredfieldvalidator if your control must have a value.

The BaseValueValidator class, which extends BaseValidator, is the base class for most
validator controls because it returns true for null or empty strings. If your control
should not accept null values, extend BaseValidator to throw an exception for null or
empty values.

Validating a repository object
All validator controls extend the Label control and implement the IValidator interface.
This interface defines three methods: validate(), getIsValid(), and getErrorMessage().

The base implementation class is BaseValidator. This class does the following:

• Accepts the name of the control to validate
• Provides an error message if validation fails
• Overrides doValidate()
• Maintains state when events are fired
There are three ways to pass the object ID to your JSP page or component for validation:

Web Development Kit and Client Applications Development Guide 429

Customizing Controls

• Set the ID as the value of a query attribute in the docbaseobject tag, and then display
attributes for the object. For example:
<dmfx:docbaseobject name='f1' src="dm_folder where object_name=
'System'"/>

<table><tr><th>Name, Object, Attribute</th></tr>
<tr><td>
<dmfx:docbaseattribute name='folder' object='f1'
attribute='object_name'/>

</td></tr>
</table>

• Set the ID as the value of a Java expression. For example:
<dmfx:docbaseobject name='f1' id='<%=(String)pageContext
.getAttribute("idF1")%>'/>

• Set the ID in your component class by calling DocbaseObject.setObjectId(). You
should also make object ID a required parameter for your component class.

Example 12-36. Passing an object ID for validation
The following example from DeleteDocument initializes a DocbaseObject control
with the object ID:
public void onInit(ArgumentList arg)
{
super.onInit(arg);
m_strObjectId = arg.get("objectId");
m_strFolderId = arg.get("folderId");
...
// Initialise the Docbase Object
DocbaseObject docbaseObj = (DocbaseObject) getControl(
"object", DocbaseObject.class);

docbaseObj.setObjectId(m_strObjectId);
...
}

Adding a control listener
You can add control listeners to allow other classes to be notified of control lifecycle
events.

The Prompt class adds a control listener in its onInit() method:
addControlListener(this);

The listener class provides the IControlListener implementation to handle the
onControlInitialized event, which is fired by every control when it is initialized.

Example 12-37. Implementing a control listener
In the following example from the Web Publisher class ReadOnlyListener, the
onControlInitialized() sets a DocbaseAttributeValue control to read-only:

430 Web Development Kit and Client Applications Development Guide

Customizing Controls

if (bReadOnly)
{
class ReadOnlyListener implements IControlListener
{
public void onControlInitialized(Form form, Control control)
{
// set Docbase attribute value controls as read-only
if (control instanceof DocbaseAttributeValue)
{
DocbaseAttributeValue value = (DocbaseAttributeValue)control;
value.setReadonly(true);

}
}

};

// Add listener
addControlListener(new ReadOnlyListener());

}

Creating custom pseudoattributes
To add a pseudoattribute type for a repository type, open the docbaseobjectconfiguration
definition for the repository type. For example, the default configuration for the display
of dm_sysobjects is found in /webcomponent/config/library/docbaseobjectconfiguration_
dm_sysobject.xml. A pseudoattribute type rich_text is defined. The definition specifies
tag classes to handle the display and saving of the rich_text attribute:
<scope type="dm_sysobject">
<docbaseobjectconfiguration id="attributes">
<names>...</names>
<types>
<attribute type="rich_text" repeatingonly="false" singleonly="false">
<tagclass>com.documentum.web.formext.control.docbase.
RichTextDocbaseAttributeTag

</tagclass>
<labeltagclass>com.documentum.web.formext.control.docbase.
RichTextDocbaseAttributeLabelTag

</labeltagclass>
<valuetagclass>com.documentum.web.formext.control.docbase.
RichTextDocbaseAttributeValueTag

</valuetagclass>
<!-- optional elements -->

</attribute>
</types>
...

For more information about configuring custom formatters, handlers, tag classes,
or configuration elements for a pseudoattribute, refer to Modifying the display and
handling of attributes, page 395.

To configure a pseudoattribute type for an attribute list, add it to the
attributelist definition for the appropriate scope. For example, the rich_text

Web Development Kit and Client Applications Development Guide 431

Customizing Controls

type is used to define a pseudoattribute for folder descriptions in the
attributes_dm_folder_docbaseattributelist.xml file:
<scope type="dm_folder">
<attributelist id="attributes" extends="
attributes:webcomponent/config/library/attributes_docbaseattributelist.xml">

1<pseudo_attributes>
2<attribute name="folder_description" 3type="rich_text" category="info"
display_after="title">
<label_text>Description</label_text>

</attribute>
</pseudo_attributes>
...

The pseudoattribute is then used in a JSP page. To use the same example, the folder
description is displayed with a rich text control in the newfolder.jsp page:
<!-- Rich text description. Use the panel to prevent display if Rich Text is
not installed -->
<dmfx:richtextpanel>
<tr>
<td scope="row" width="10%" align="right">
<dmf:label nlsid="MSG_DESCRIPTION_COLON"/>

</td>
<td width="90%" align="left" colspan="3">

<dmfx:richtexteditor name='<%=DocList.FOLDER_DESCRIPTION%>' hasImages='true'/>
</td>

</tr>
</dmfx:richtextpanel>

The richtexteditor control name DocList.FOLDER_DESCRIPTION maps to the
folder_description pseudoattribute.

1 Contains pseudoattributes that are attached to the object type. The pseudoattribute
must be handled by a custom tag class.
2 Name of an attribute that does not exist in the repository. The attribute is handled
by the classes that are specified for the attribute in the docbaseobjectconfiguration
definition. For more information, refer to Modifying the display and handling of
attributes, page 395.
3 Type of the pseudoattribute as specified in the docbaseobjectconfiguration definition.
For more information, refer to Modifying the display and handling of attributes, page
395.

To add a pseudoattribute programmatically, call DocbaseObject.
addPseudoDocbaseAttribute().

How controls and tags work together
Controls and tags interact as follows:

432 Web Development Kit and Client Applications Development Guide

Customizing Controls

1. The Web designer sets default values for the control attributes on the JSP page.

2. The JSP page is requested by the client browser

3. The UI control display is initialized using the control attribute values set on the JSP
page and rendered to the browser as HTML and JavaScript.

4. A user changes a control value.

5. The new value is submitted when the form is submitted, along with any other
control changes.

6. The form then updates the control state on the server and also performs any
operation that is triggered by form submission.

An instance of a Control subclass lasts for the lifetime of the control, while an instance of
a ControlTag subclass lasts only within the lifetime of the HTTP request.

The following figure diagrams the relationship between the Control and ControlTag
classes.

Figure 12-6. Control and ControlTag relationship

Control arguments
Controls can use the ArgumentTag class to centralize the use of control constants and
to pass event arguments to an event handler. The class provides methods to access
the attributes of the parent tag. The argument tag should always be contained within
another tag.

Both the basic controls and the repository-enabled controls have an ArgumentTag class.
The formext.control.ArgumentTag class extends form.control.ArgumentTag and adds a
contextvalue attribute to the tag.

Web Development Kit and Client Applications Development Guide 433

Customizing Controls

Example 12-38. Passing arguments to a component or action
The following example sets the values for the actionmultiselectcheckbox tag arguments
using the argument tag.
<dmfx:actionmultiselectcheckbox name='check' value='false'>
<dmfx:argument name='objectId' datafield='r_object_id'/>
<dmfx:argument name='type' datafield='r_object_type'/>
<dmfx:argument name='lockOwner' datafield='r_lock_owner'/>
<dmfx:argument name='folderId' contextvalue='objectId'/>

</dmfx:actionmultiselectcheckbox>

Argument tags are required for every action that can be applied to the selected objects
as well as for the components that are launched by those actions. The above example
passes all of the arguments to the selected action, but one action may use only some of
the arguments and another action may use different arguments.

The arguments are passed to the action class that launches the multiple action. The
action class passes the arguments on the component. For example, the delete component
gets the arguments of the object ID and its containing folder as follows:
public void onInit(ArgumentList arg)
{
super.onInit(arg);
m_strObjectId = arg.get("objectId");
m_strFolderId = arg.get("folderId");
...

}

Additional utility classes and methods can be found in com.documentum.web.form.Util
and the com.documentum.web.util package.

434 Web Development Kit and Client Applications Development Guide

Chapter 13
Customizing Components

The Component class and derived classes contain the logic for business component behavior. All
components that use WDK 5 functionality must extend Component. The base Component class
includes component lifecycle event handlers.

You can manage and translate messages and labels for your component using the NLS service (refer to
Using messages and labels, page 236). Components can be included within other components (refer
to Including a component in another component, page 240), and you can give a group of components
a common UI through the use of a container (refer to Configuring containers, page 243).

Component APIs are described in the following topics:
• Component base class, page 436
• Component public interface, page 436
• Navigating within and between components, page 437
• Implementing failover support, page 442
• Implementing a component, page 445
• Using a component listener, page 447
• Accessing an included component, page 449
• Supporting drag and drop, page 450
• Customizing containers, page 457
• Multi-repository support, page 463
• Component dispatching, page 467
• Component lifecycle, page 469
• JSP page processing (form processor), page 470
• Form classes, page 475

Web Development Kit and Client Applications Development Guide 435

Customizing Components

Component base class
The Component class extends the Form class and provides the following
component-specific support:
• Implementation of the parameters defined in the definition XML file
• Helpers for navigating between components and within components
• Helpers for retrieving component-specific configuration values
• Helpers for accessing the repository
• Call-backs for container support
If your component does not need to support behavior in addition to that provided
by com.documentum.web.formext.component.Component, you can simply use the
Component class for your custom component class in the component definition. In this
case, your component definition can have the following static settings: JSP start page,
scope qualifier, nlsbundle, and helpcontextid.

Component public interface
Each component supports a public interface through which all other components and
containers communicate. The component interface consists of the following elements:
• Parameters

Parameters initialize the component. Parameters are configured in the component
definition.

• Events

Events are raised by controls in the component JSP pages and handled in the
component behavior class.

• Properties

Properties get or set the component state. Properties can be set in the user interface
or programmatically by the component behavior class. Default property values can
be supplied by custom elements in the component configuration file.

A component can be extended to add support new functionality, without changing
the component's caller. Components inherit or override the contractual behavior of
the component that they extend.

436 Web Development Kit and Client Applications Development Guide

Customizing Components

Navigating within and between components
The following topics describe navigation from one component to another and within
a component:

Navigating within a component, page 437
Jumping to a component, page 437
Nesting to another component, page 438
Returning to the calling component, page 440
Returning to a component, then jumping to another, page 440
Navigating within a container, page 441

For information on container navigation, refer to Customizing containers, page 457.

Navigating within a component

Use the method setComponentPage() in your event handler to jump to a named page in
a component.

Example 13-1. Changing the component JSP page
In the following example, the import container definition specifies a page named
importupload. jumps to the importupload page as named in the container configuration
file:
<pages>
...
<importupload>
/webcomponent/library/importContent/importUpload.jsp

</importupload>
</pages>

The onOk() event handler of the container class sets the file path, format, content type,
import folder ID, file name, category, and descendants information, and then navigates
to the importupload page:
setComponentPage("importupload");

Jumping to a component

The method setComponentJump() jumps to another component. You can call
setComponentJump() from within an event handler. The form processor will add the
JUMP argument to the redirect URL and forward to the target URL. The state of the
calling component is lost when you jump to another component.

Web Development Kit and Client Applications Development Guide 437

Customizing Components

Example 13-2. Jumping to another component
The parameters for jump and nest are as follows:

String name of component (required)
String component start page (optional)
Argument List (optional)
Context

In the following example from Subscriptions, the navigateToFolder() method calls
setComponentJump() in order to jump to the drilldown component and adds a folder ID
argument for the folder to jump to:
ArgumentList args = new ArgumentList();
args.add("folderId", strFolderId);
setComponentJump("drilldown", args, getContext());

Your component can also jump to a component in the browsertree component using the
Component class method jumpToTargetComponent(ArgumentList args). The argument
list that is passed to this method should contain a nodeIds parameter, which is the name
of the node in the tree to jump to. The method jumpToTargetComponent then calls
setComponentJump().

Example 13-3. Jumping to a node in the browser tree
In this example from the administration component, the onInit() function calls
jumpToTargetComponent to jump to the requested node in the tree:
{
jumpToTargetComponent(args);
super.onInit(args);
...

}

Nesting to another component

Server-side nested navigation displays one or more JSP pages, maintaining the state of
the calling JSP page. The state of the calling component is maintained on a nested call
and on return.

Nest to another component by calling setComponentNested(). The method
setComponentNested() takes the same set of parameters as setComponentJump() with
the addition of an IReturnListener argument. The return listener is called when the
nested component returns, and return results and arguments can be passed back to the
listener. For more information about the return listener, refer to Using a component
listener, page 447.

You can added arguments to the nested form with the method
addFormNestedArgs(ArgumentList arg).

438 Web Development Kit and Client Applications Development Guide

Customizing Components

Example 13-4. Passing arguments to a nested component
You can call the nest method in a server-side event handler in a Java class or in a JSP page
scriptlet. The following example shows how you pass arguments from the argument list
to a nested component. First assemble your arguments to pass to the nested class:
args.add(Prompt.ARG_DONTSHOWAGAIN, "true");
setComponentNested("prompt", args, getContext(), this);

In your nested component, you get the arguments and use them. For example:
String strDontShowAgain = args.get(ARG_DONTSHOWAGAIN);

Example 13-5. Passing arguments from a nested component
You can pass arguments from the nested component back to the calling component
using the Form class method setReturnValue(). You should call your nested component
using the action service, either with a user-initiated action through an actionlink or
actionbutton or with a call to the action service in your component class. The following
example from the reportmainlist component is an event handler for the link Edit Settings.
The event handler calls the nested component reportmainsettings.
public void onEditSettings (Control control, ArgumentList args)
{
...
args.add(ReportMainSettings.PARAM_OVERDUE_DAYS, String.valueOf(m_overdueDays));
ActionService.execute("reportmainsettings", args, getContext(), this, this);

}

In the nested component reportmainsettings, the user selects settings that are passed to
the calling component.:
public boolean onCommitChanges ()
{
// validate
Text textCtrl = (Text) getControl(OVERDUE_DAYS_TEXT_CONTROL_NAME, Text.class);
m_overdueDays = Integer.parseInt(textCtrl.getValue());
...
setReturnValue(PARAM_OVERDUE_DAYS, new Integer(m_overdueDays));
return true;

}

In the calling component class ReportMain, the onComplete() method is called when the
action completes, and this method gets the returned arguments:
public void onComplete (String strAction, boolean bSuccess, Map completionArgs)
{
if (strAction.equals("reportmainsettings") && bSuccess)
onReturnFromEditSettings(this, completionArgs);

}

The arguments are used in the method onReturnFromEditSettings():
Object obj = map.get(ReportMainSettings.PARAM_FILTER);
m_overdueDays = ((Integer) map.get(
ReportMainSettings.PARAM_OVERDUE_DAYS)).intValue();

Web Development Kit and Client Applications Development Guide 439

Customizing Components

Returning to the calling component

Server-side return navigation returns to the calling page, which can be the same page.
The method setComponentReturn() takes no parameters, so state is dropped for the
component. You can use this call in an event handler for a cancel button or to return to
the same page after some other user event has been processed.

To return to the caller from a contained component, use the following call:
((Component)getTopForm()).setComponentReturn();

Note: Do not call setComponentReturn() in an onExit() event handler, because the
component form has been unloaded from memory, and the form dispatcher is unable to
return to the caller.

Example 13-6. Return to a calling component in an event handler
In the following example from the About component, the onClose() button event handler
returns to the calling page:
public void onClose(Button control, ArgumentList args)
{
setComponentReturn();

}

Note: If you are calling setComponentReturn() from an included component, such
as a component within a container, you must call setComponentReturn() on the
parent component. For example, the advanced search component class handles the
onCloseSearch event as follows:
public void onCloseSearch(Control control, ArgumentList args)
{
Form topform = getTopForm();
if (topform instanceof Component)
{
((Component)topform).setComponentReturn();

}
else
{
topform.setFormReturn();

}
}

Alternatively, if you are jumping from a contained component to another component
outside the container, call setComponentReturnJump to exit the modal contained
component.

Returning to a component, then jumping to another

An additional method, setComponentReturnJump(), returns to the calling page
and performs a jump to another component. If you are jumping from a contained

440 Web Development Kit and Client Applications Development Guide

Customizing Components

component, which is by nature modal, to a component outside the container, you must
call setComponentReturnJump(), which returns to the container and then to the outside
component.

Example 13-7. Return and jump to another component
In the following example, the advanced search component jumps to the search
component in its doSearch() method:
setComponentReturnJump("search", args, context);

Navigating within a container

You can define any order of page presentation for the Next and Previous buttons in
a container. You can implement the onNextPage() method either in the contained
component or in the container class, depending on your business case.

Example 13-8. Navigating to the next or previous component
In the following example, the finishworkflowtask component class onNextPage() method
determines the current page and navigates appropriately depending on the current page:
public boolean onNextPage()
{
boolean retValue;
String page = getComponentPage();

// we're on the assign performers page
if(page.equals("assignperformers"))
{
setComponentPage("finish");
retValue = true;

}

// we're on the Finish page
else
{
retValue = false;

}
if(retValue == true)
{
updateControls();
}
return retValue;

}

In this example, the code first gets the current component page (getComponentPage()) in
order to navigate to the appropriate next page. If the current page is assignperformers
(named <pages><assignperformers> in the finishworkflowtask component definition),

Web Development Kit and Client Applications Development Guide 441

Customizing Components

this method navigates to the finish page and updates the controls.. If the current page is
the finish page, then onNextPage() does nothing.

Implementing failover support
The topic Configuring application failover support, page 89 describes how to enable
failover support for an application and its existing components. This topic describes how
to implement failover support in a custom component.

Failover is controlled by the servlet WDKController, which intercepts each request and
serializes the state. The failover servlet sets a flag before state is serialized and removes it
after state has been serialized. When the controller encounters a request with the flag
still set, it detects a failover state and instructs the FormProcessor to call onRecover() on
all components in memory. This process is diagrammed below.

Figure 13-1. Serialization process

442 Web Development Kit and Client Applications Development Guide

Customizing Components

The Control class implements serializable, so all components inherit this implementation.
Perform the following additional steps to support failover in your component:

1. Define the component as failover-enabled by adding the element
<failoverenabled>true</failoverenabled> to the component definition

If the component in included within a container, verify that the container definition
supports failover. If not, the component will not be serialized.

2. Verify that failover is enabled in the application configuration file (/custom/app.xml)
and in the application server. (Consult the application server documentation
for information on enabling failover or session serialization as well as the WDK
client installation guide for WDK-specific configuration for supported clustered
application servers.)

3. Decide which variables within your component should not be serialized. Hide data
that should not be serialized by placing the keyword transient before the data type in
the variable declaration, for example:
private transient Class m_pageClass = null;
Use the following criteria to decide whether a variable should be transient:

• Mark as serializable or transient all member variables of Control and Component
subclasses. (You can also mark variables as Externalizable, which allows a
custom implementation of Serializable.) Example:
private transient Class m_pageClass = null;

• Make sure that there are no static variables that store session state. Java does
not serialize static variables. Use the class SessionState to store session state.
Example from AclValidate:
SessionState.setAttribute("accessorlist",accessorNames.toString());

• Mark member DFC objects as transient . DFC objects are not serializable and
should not be stored in the HTTP session beyond the request scope. For
DFC objects that must be serialized, instantiate the object using methods of
IDfClientX, mark it externalizable, and use the serialize and deserialize methods
of IDfClientX to persist the object. BOF classes are also not serializable

Note: Some WDK components that are not yet serialized may instantiate DFC
objects, which would prevent your extending the component and rendering it
serializable.

• Check for large objects, such as objects created for caching purposes, and
sensitive information such as passwords, to mark as transient.

4. Override onRecover() to do any necessary cleanup and recovery after the application
server restores the session:

• Initialize variables that are marked as transient; if you do not, these variables
will have unexpected null values after recovery.

Web Development Kit and Client Applications Development Guide 443

Customizing Components

• Call super.onRecover() before your cleanup and recovery code. For example,
if you have a custom checkin component, you could implement onRecover() to
check whether there any unfinished file uploads, remove the file, and retry the
upload.

For actions, implement recovery in the action execute() method. Make sure that no
state (instance variables) is associated with action and precondition classes. Their
instances are used as singletons, and state caching would cause concurrency issues.

5. Check for non-serializable data using the FAILOVER tracing flag (see below).

Testing for non-serializable data — All session attributes in WDK classes are either
serializable or transient. To find session attributes that are not serializable, use the
FAILOVER flag in tracing. Non-serializable attributes will produce a runtime exception
with a message that a non-serializable attribute has been placed in the session. The
following type of tracing statement will be generated in the log (default location
DOCUMENTUM_HOME/logs/wdk.log):
188193 [http-8080-Processor25] DEBUG com.documentum.web.common.Trace -
Object in session is not serializable: preferredrenditionsservice,
Reason: com.documentum.web.formext.config.ConfigService$LookupFilter

You can turn on the FAILOVER_DIAGNOSTICS tracing flag. WDK will print the total
size of the session(in bytes that are serialized at the end of each request. This is a very
expensive call and should be used only for debugging purposes.

You can also test for non-serializable data by using Tomcat 5, which persists session data
and restores it by default. Tomcat writes serialization errors to the console and log. (You
must add a section to the server.xml configuration file to turn off this feature.) Other
application servers have configuration parameters that turn on failover support. Consult
the application server documentation for details.

The WDKController servlet filter intercepts requests from the application server. The
filter sets a flag to keep track of the request and detect failover. In case of a failover,
the load balancing mechanism routes the request to the next available server in the
cluster. The request is intercepted by the filter, which detects the failover and marks the
session to indicate that is a recovered session. All forms are notified to perform recovery.
Restored components will perform cleanup and resume operations.

The following example shows how the advanced search component persists the query
and reexecutes it in onRecover().

Example 13-9. Implementing onRecover()
Search queries are persisted. The advsearch class AdvSearchEx delegates recovery in
onRecover() to SearchInfo and then re-executes the query:
public void onRecover()
{
super.onRecover();
if (m_searchInfo != null)

444 Web Development Kit and Client Applications Development Guide

Customizing Components

{
m_searchInfo.onRecover();

// re-execute
if (authenticateSources() == true)
{
executeQuery();

}
}
}
Note that the call to Form::onRecover() is a simple check to see whether recovery is
needed.

The SearchInfo implementation persists the query definition as follows:
private String m_strQueryDef=null;

public void setSmartListDefinition(
IDfSmartListDefinition idfSmartListDefinition)

{
.../
m_idfSmartListDefinition = idfSmartListDefinition;
m_strQueryDef = null;
if (m_idfSmartListDefinition != null)
{
IDfQueryDefinition querydef = m_idfSmartListDefinition.
getQueryDefinition();

...
}

SearchInfo then recovers the query in onRecover():
public void onRecover()
{
m_idfSmartListDefinition = null;
if (m_strQueryDef != null)
{
...
this.setSmartListDefinition(SearchUtil.getSmartListDefinition(
m_strQueryDef));

setInstanceId();
...

}

Implementing a component
All content components should provide similar functionality and behavior and well as
similar layout. Your component must implement the following lifecycle methods and
functionality:

onInit() — Should accept appropriate arguments and supply valid defaults for
non-mandatory parameters. Set up controls to valid initial defaults. Set connections on

Web Development Kit and Client Applications Development Guide 445

Customizing Components

databound controls. (Refer to Getting data in the component class, page 391 for an
example.) Read standard and custom component definition settings such as object type
filter values, object types to display, and visible columns.

Example 13-10. Implementing Component.onInit()
Your form or component class should call the onInit() method of the super class:
public void onInit(ArgumentList args)
{
super.onInit(args);
...

}

onRender() — Read and apply standard and custom preferences such as the size
of data lists to display. Read preferences during every onRender(), as they may have
been modified by the user between invocations of the component. Set the data provider
before the page is rendered.

Example 13-11. Setting the data provider in onRender()
If your component needs to get data, you can get a data provider in the onRender()
method. Get the session in your component onInit() function. The following example
from AclWhereUsed sets a data provider:
public void onRender()
{
super.onRender();
Datagrid datagrid = ((Datagrid)getControl(CONTROL_GRID, Datagrid.class));
datagrid.getDataProvider().setDfSession(getDfSession());

}

You can also initialize other controls in the onInit() function, such as a datadropdownlist
or label, read preferences, or perform other component functions that do not require
user input.

Example 13-12. Supporting columns of Attributes
If your component displays a list of docbase objects with various attributes shown in
columns, the component should support the configuration of columns of attributes
for display.

In the following example from the Web Publisher component class ChannelList, the
readConfig() method is called from the component onInit() lifecycle event handler. The
method readConfig() reads the columns definition and processes it:
protected void readConfig ()
{
// read the list of visible column
m_columns = new ComponentColumnDescriptorList(this, "columns");

// hide locale column if global content management turned off.
if (getGlobalContentManagementFlag() == false)
{
m_columns.remove(LANGUAGE_CODE_COL);

446 Web Development Kit and Client Applications Development Guide

Customizing Components

}
...

}

Data refresh — Override the Component API method "onRefreshData()”. The
framework calls this method after the execution of an action that has invalidated the data
being displayed by this component. Call "refresh()” on all Data controls to automatically
re-query the data or rebuild custom ScrollableResultSet objects as required. For an
example, refer to Refreshing data, page 394.

Object type filters — If your component displays a list of Documentum objects, the
component should provide a dropdown control that allows users to change the type of
objects displayed, for example, Folders, files, all objects, or some custom object type (the
latter requires a custom filter).

Clipboard operations — The standard cut, copy and paste clipboard operations
should be supported if appropriate. The component should implement the clipboard
operation handler interfaces IClipboardCutHandler and IClipboardPasteHandler. Refer
to Clipboard APIs, page 596 for more information.

Title — All content components should provide a title to indicate the component name,
for example, Inbox. Additionally, content components that display Documentum objects
should display the current repository and username in the format "MyComponent
(docbase : username)”.

Context — Update the current component Context if your component allows navigation
through the repository or displays a repository location. For example, if the component
is viewing the contents of a folder, then it could set the current folderId in the context.

Using a component listener
IReturnListener can be used to perform operations after a nested component returns to
the calling component. The return listener is called when the nested component returns,
and return results and arguments can be passed back to the listener. You can add
arguments to the nested form with the method addFormNestedArgs(ArgumentList arg).

Example 13-13. Using a listener to force a refresh
In the following example from ObjectGrid, which implements IReturnListener, the
onReturn() implementation forces a refresh on the grid when navigation returns to
the grid:
public void onReturn(Form form, Map map)
{
// force refresh on dataproviders

Web Development Kit and Client Applications Development Guide 447

Customizing Components

m_datagrid.getDataProvider().refresh();
}

To perform some business logic after your component returns from a nested
component, provide your listener class as a parameter to the Container class method
setComponentNested().

Example 13-14. Listening to a nested component
In the following example, the Permissions class declares a listener in the onChangeAcl()
method call to setComponentNested(). The listener gets selections from a locator in
the nested component:
public void onChangeAcl(Link link, ArgumentList args)
{
ArgumentList selectArgs = new ArgumentList();
selectArgs.add("component", "aclobjectlocator");
selectArgs.add("flatlist", "true");
setComponentNested(
"aclobjectlocatorcontainer", selectArgs, getContext(),
new IReturnListener()

{
public void onReturn(Form form, Map map)
{
// Handle return event from select permission set component.
if (map != null)
{
LocatorItemResultSet setLocatorSelections = (
LocatorItemResultSet)map.get(ILocator.LOCATORSELECTIONS);

if(setLocatorSelections != null && setLocatorSelections.first()==
true)

{
String strAclId = (String) setLocatorSelections.getObject(
"r_object_id");

if (strAclId != null && !strAclId.equals(m_strSelectedAclId))
{
updateControls(strAclId);

}
}

}
}

});
}

Example 13-15. Returning values to a listener
You can return values from a nested component to the caller’s listener. The listener
has a single method, onReturn(), which is called when the component returns. Call
Form.setReturnValue to pass a Map of values to the return listener. The onReturn(Form
form, Map map) method has a form parameter that specifies the form or component
that is returning and a map parameter that specifies a Map of values. In the following
example from ChangePassword, the onChangePassword() method passes several
arguments back to the caller:
// pass the login credentials back to the caller

448 Web Development Kit and Client Applications Development Guide

Customizing Components

setReturnValue("docbase", strDocbase);
setReturnValue("username", strUsername);
setReturnValue("password", strNewPassword);
setReturnValue("domain", strDomain);
setComponentReturn();

The Login class implements IReturnListener, and its onReturn() method gets the values
passed from the nested changepassword component:
public void onReturn(Form form, Map map)
{
// authenticate with the new password
boolean bSuccess = false;
if (map != null && map.isEmpty() == false)
{
try
{
String strDocbase = (String)map.get("docbase");
String strUsername = (String)map.get("username");
String strPassword = (String)map.get("password");
String strDomain = (String)map.get("domain");
if (strDocbase != null || strUsername != null || strPassword != null)
{
authenticate(strDocbase, strUsername, strPassword, strDomain);

}
bSuccess = true;

...
}

Accessing an included component
You can include a component in another component using a <dmfx:componentinclude>
tag in a JSP page. This allows you to reuse components within multiple components.
The componentinclude tag has a component attribute that specifies the name of the
component to be included.

You can access and set values in the included component by getting the
componentinclude control in your component class.

Example 13-16. Accessing an included component
In the following example from ReportDetailsContainer, the container JSP page
reportdetailscontainer.jsp includes the reportdetailsheader component as follows:
<dmfx:componentinclude component='reportdetailsheader' name=
'<%=ReportDetailsContainer.HEADER_CONTROL_NAME%>'/>

The container class accesses the contained componentinclude control as follows:
public static final String HEADER_CONTROL_NAME = "__HEADER_CONTROL_NAME";
public void saveReportHeading (StringBuffer csvContent)
{
...

Web Development Kit and Client Applications Development Guide 449

Customizing Components

// Save the rest of the header info.
ReportDetailsHeader headerComponent = (ReportDetailsHeader) getControl(
HEADER_CONTROL_NAME, Component.class);
headerComponent.saveReportHeading(csvContent);

}

Example 13-17. Accessing controls in an included component
After you have obtained a reference to the included component, you can get and set
values on the controls in the included component. In the following example, the test
component includes a changepassword component. The component is included in the
JSP page for the test component as follows:
<dmfx:componentinclude component='changepassword' name=
'changepwd'/>

This code example gets the value of the new password from the named Password control
(controls must be named to be accessed in server-side code):
Component subComp = (ChangePassword) getControl(
"changepwd", ChangePassword.class);

String strNewPassword = ((Password)subComp.getControl("newpassword")).getValue();

Supporting drag and drop
The following drag and drop support for the Internet Explorer browser can be globally
enabled or disabled in /wdk/app.xml:
• Drag and drop between windows and frames in the same user session of IE

Supported by JavaScript, this feature can be globally enabled or disabled in
/wdk/app.xml. Users cannot turn on drag and drop if it is globally disabled in
app.xml.

• Additional support for drag and drop to and from the desktop

Supported by an Active-X plugin that can be globally enabled or disabled in
/wdk/app.xml

• Initial user preference for using the Active-X plugin

If the initial state is set to false (<initial_user_state>), the user must enable the plugin.
User is prompted to do this at Set to true to turn on the plugin out of the box.

To disable drag and drop, copy the <dragdrop> element from /wdk/app.xml to
/custom/app.xml and set the value of <enabled> to false. To disable the drag and drop
plugin, copy the <plugins> element to your custom app.xml file and set the value of
<enabled> to false. (This will also disable the rich text editor spellchecker that is included
in the plugin.)

450 Web Development Kit and Client Applications Development Guide

Customizing Components

Refer to <dragdrop> element, page 79 and <plugins> element, page 80 for more
information on these global drag and drop settings.

Drag and drop is not supported for the following conditions:
• Accessibility mode is turned on by user
• Window is created by launching the browser again and getting a new WDK

application session. (You can drag and drop with a WDK window that is created
with the WDK New Window menu item.)

• XML documents dragged to or from desktop
• Virtual documents dragged to or from desktop
• OLE compound documents
For performance reasons, minimal tests are done to ensure that a user may actually
execute a drag or drop action. As a result, the user may be presented with a valid drop
cursor with one or more actions listed as available although the action will fail when the
user attempts the action.

The following topics describe drag and drop customization:

• Drag and drop support in WDK components, page 451
• Adding drag and drop to a component definition, page 452
• Adding drag and drop to a JSP page, page 454
• Adding drag and drop support to a control, page 455
• Troubleshooting drag and drop, page 456

Drag and drop support in WDK components

Drag and drop is implemented in a component by adding a <dragdrop> element in your
component definition and adding supporting JSP tags in the UI.

The following components support drag and drop:

Table 13-1. Components that support drag and drop

Component Source Targets

Cabinets, Home Cabinet Items Folders, virtual documents,
background

Room Items Folders, virtual documents,
background

Search Items except external
results

Folders, virtual documents

Web Development Kit and Client Applications Development Guide 451

Customizing Components

Component Source Targets

Subscriptions Items Folders, virtual documents,
background

Versions, Locations Items Folders, virtual documents

Clipboard Items Folders, virtual documents

Browser tree Items Folders, virtual documents

Adding drag and drop to a component denition

Any component that inherits from AbstractNavigation or from another component that
supports drag and drop can enable drag and drop in the component XML configuration
file. Components that don’t inherit from AbstractNavigation can make use of the helper
class DragDropSupportBuilder in order to support drag and drop in the component
definition.

To add drag and drop capability to a component that inherits drag and drop support,
add a <dragdrop> element to the component definition. This element contains the
following configuration settings:

Table 13-2. Conguration elements (<dragdrop>

Element Name Description

<sourceactions> Contains zero or more <sourceaction>
classes that support drag actions on
sources in the component. This element
must be declared even if it contains no
<sourceaction> elements, in order to
enable the component as a drag source.

<sourceaction> Contains a fully qualified class name of
class that implements IDragSourceAction

<targetactions> Contains zero or more <targetaction>
classes that support drop actions on drop
targets in the component

452 Web Development Kit and Client Applications Development Guide

Customizing Components

Element Name Description

<targetaction> Contains a fully qualified class
name of class that implements
IDragTargetAction, for example,
com.documentum.web.formext.control.
dragdrop.CopyToFolderTargetAction.
To remove a drop action, remove this
element from definition.

<dataproviders> Contains one or more <dataprovider>
elements. Remove this element and its
contents to prevent the component from
being a usable drag source.

<dataprovider> Contains a <format> element and a
<provider> element.

<dataprovider>.
<format>

Fully qualified class name for class that
provides data for the format. Built-in
formats that implement IDragDropData
(in com.documentum.web.formext.
control.dragdrop): ObjectIdData,
ChildIdData, FileDescriptorData ,
VdmNodeData, FileContentsData,
FileDropData

<dataprovider>.
<provider>

Fully qualified class name for class that
implements IDragDropDataProvider and
provides data for the associated format

To support drag and drop from your component to the desktop, your component
definition must include the format FileDescriptorData, which provides the filename,
size, and modification date of the file to the desktop. Content is then streamed to the
desktop. To support drag and drop from the desktop to your component, the target
must provide the following:
• The component or control needs an IDropTarget implementation
• The UI control must specify an ondrop handler that is implemented in the control

or component class
• At least one action must be available for the UI control.
DocbaseFolderTree and derived controls will support drag and drop if the controls are
located on a component whose XML configuration includes a <dragdrop> element.

Web Development Kit and Client Applications Development Guide 453

Customizing Components

Adding drag and drop to a JSP page

To support drag and/or drop in a component page, you must add a dmfx:dragdrop
control to the page. This control will generate the JavaScript support for drag and drop.
You can then surround a drag or drop region on the page with a dmf:dragdropregion
control. This control will add the HTML markup (approximately 1200 HTML character
for each source) that enables the enclosed elements to be dragged, dropped, or both. To
enable the enclosed element to be dragged as a source, set the dragenabled attribute to
true.

Inline elements such as icons or labels can be enabled as drop targets.

To enable the enclosed element to be a drop target, set a value for the dragdropregion
ondrop attribute. You can use the drop target default implementation by setting the
ondrop attribute value to "onDrop". Set at least one value for the enableddroppositions
attribute.

The datafield attribute should match that of the enclosed tag, in order to display a tooltip.

Dragging — Most objects that a user can add to the clipboard are potential drag
sources. In Webtop classic view, these objects are listed with checkboxes. In streamline
view, they are the objects that can be added to the clipboard with the Add to Clipboard
action link. Examples of sources include objects in a datagrid or object grid; objects
in the navigation tree except repositories, cabinets, or built-in nodes such as Inbox
and Subscriptions; search results; and objects in specialized views such as versions,
relationships, subscriptions, and renditions. The following objects cannot be dragged:
cabinets, inbox objects, and administration objects. If the user drags an object that has
versions or renditions, the default rendition or current version is used as source unless
another specific version or rendition is selected.

Dropping — Potential drop targets include locations to which an object in the clipboard
can be moved or pasted. Examples of drop targets include virtual documents (in
the default rendition) and folders or folder subtypes such as cabinets or rooms. The
following objects cannot serve as targets: non-container objects such as documents,
windows or frames in a different session, repository node in the navigation tree, inbox,
my files, categories, administration, and the root cabinet.

Drop actions supported by the component should be listed in the <dragdrop>.
<targetactions> element of the component definition. The following target action classes
are available in WDK, in the package com.documentum.web.formext.control.dragdrop.

454 Web Development Kit and Client Applications Development Guide

Customizing Components

Table 13-3. WDK target actions

Action class Action displayed

CopyToFolderTargetAction Copy

MoveToFolderTargetAction Move

LinkToFolderTargetAction Link

AddVirtualDocumentNodeTargetAction Add

RepositionVirtualDocumentNodeTarge-
tAction

Reposition

SubscribeAction Subscribe

ImportTargetAction Import (accepts files from desktop)

The dragdropregion tag gets the source formats and target actions by calling
IDragDropDataProvider::getFormats and IDropTarget::getDropTargetActions. Your
component can implement the formats and actions interfaces to do any necessary
business logic.

Performance — Each dragdropregion tag adds approximately 1200 HTML character for
each source. The page load loops through image overlays for each inline dragdropregion
and positions them over the region tag. Expanding a tree node merges additional image
overlays into the tree frame.

You can turn off drag and drop in app.xml to compare the page rendering performance.

Adding drag and drop support to a control

You can integrate drag and drop into a control by the interfaces in the
com.documentum.web.dragdrop package: IDragSource, IDropTarget ,
IDragSourceAction, IDropTargetAction,and IDragDropDataProvider. Controls that
integrate drag and drop identify themselves as a drag source, a drop target, or both.
These controls are interoperable with other controls that support drag and drop.

The source and target are represented as interfaces IDragSource and IDropTarget,
respectively. Each IDragSource and IDropTarget supports a set of programmer-defined
formats (Class objects) along with a set of programmer-defined drag drop actions.
Because the same drag drop motion may correspond to more than one drag drop
action, a menu of actions is presented to the user. The list of available source
actions is created by adding an IDragSourceAction instance for each action to the
IDragSource implementation. The list of available target actions is created by adding
an IDragTargetAction instance for each action to the IDragTarget implementation. If a

Web Development Kit and Client Applications Development Guide 455

Customizing Components

source action is specified with the same name as the target action invoked, then it will be
run after successful target action invocation.

A component can override the event handler for all of the component’s contained
controls by implementing the Form class event handler onDrop().

Troubleshooting drag and drop

You can look at the following sources for an error in which an object cannot be dragged
or dropped:

1. Uncomment the lines in the .0dnd style in /wdk/theme/documentum/css/dragdrop.
css and refresh the page. If an item is enabled for drag and drop, it will be
highlighted in purple. If it is not highlighted, check the JSP page to make sure there
is a dmf:dragdropregion tag and one or more dmf:dragdropregion tags on the page.

2. If the object is enabled but does not accept a dragged item, view the source in the
browser. Look for the JavaScript initDragDrop with drop actions such as Move
Here, as in the following example
<script type='text/javascript'>
initDragDrop('HomeCabinetClassicView_0', '
1114551362046', 'HomeCabinetClassicView_0', '
HomeCabinetClassicView_DragDropRegion_0', '
objectId~0b000001803097ff|parentObjectId~0c000001801de8bc',
true, true, 'com.documentum.web.formext.control.dragdrop.
ObjectIdData,com.documentum.web.formext.control.dragdrop.
FileContentsData,com.documentum.web.formext.control.dragdrop.
ChildIdData,com.documentum.web.formext.control.dragdrop.
FileDescriptorData', 'Move here\tmove\t\tover\t\tcom.
documentum.web.formext.control.dragdrop.ChildIdData\ttrue\
nImport\timport\t\tover\t\tcom.documentum.web.formext.control.
dragdrop.FileDropData\ttrue\nLink here\tlink\t\tover\t\tcom.
documentum.web.formext.control.dragdrop.ObjectIdData\tfalse\
nCopy here\tcopy\t\tover\t\tcom.documentum.web.formext.
control.dragdrop.ObjectIdData\tfalse', 'onDrop');

</script>

3. If you do not see actions listed, check the component configuration file to see
whether the component is enabled for drag and drop and that target actions are
defined. The above example from the home cabinet classic view inherits drag and
drop configuration from the homecabinet_list component, with the following target
actions defined (class name shortened for display purposes):
<targetactions>
<targetaction>
com.documentum.web...dragdrop.CopyToFolderTargetAction

</targetaction>
<targetaction>
com.documentum.webweb...dragdrop.MoveToFolderTargetAction

</targetaction>

456 Web Development Kit and Client Applications Development Guide

Customizing Components

<targetaction>
com.documentum.web...dragdrop.LinkToFolderTargetAction

</targetaction>
<targetaction>
com.documentum.web.web...dragdropImportTargetAction

</targetaction>
</targetactions>

Customizing containers
The Container class extends the Component class and provides additional
container-specific support for components within the container:
• Notifiers are called on the contained components to determine whether changes can

be committed or canceled when the user selects OK, Cancel, or Close. (Refer to
Implementing container notifications, page 458.)

• Helpers are called on the contained components to determine when the next and
previous buttons should be shown and enabled. The helpers are called when
the user selects Next or Previous to determine which page to display. (Refer to
Accessing components within containers, page 460.)

• You can call a container programmatically. (Refer to Passing arguments in a
container, page 462.)

For information on calling a container by an action or URL, refer to Calling containers,
page 247.

Calling a container from a server class

Contained components can be invoked from server-side code by component
navigation methods. You can invoke a contained component through the
Component.setComponentJump() and setComponentNested() methods. These methods
take the following arguments:
• strComponentName: The component to jump to
• strStartPage: The component Start Page (optional)
• arg: The component arguments (optional)
• context: The context within which to call the component (refer to Context, page 487

for more information on context)
• returnListener: An implementation of IReturnListener, with setComponentNested()

only. Refer to Using a component listener, page 447 for more information.

Web Development Kit and Client Applications Development Guide 457

Customizing Components

Example 13-18. Jumping to a container
In the following example from NodeManagement, , the onClickBreadcrumb() method
jumps to the administration container:
public void onClickBreadcrumb(Breadcrumb breadcrumb, ArgumentList args)
{
Breadcrumb breadCrumbControl = (Breadcrumb)getControl(
CONTROL_BREADCRUMB, Breadcrumb.class);

String strPath = breadCrumbControl.getValue();

int index = strPath.lastIndexOf('/');
if(index != -1)
{
String componentNLSName = strPath.substring(index+1);
if(componentNLSName.equals(getString("MSG_ADMINISTRATION_LINK")))
{
setComponentJump("administration",getContext());

}
}

}

Implementing container notications

Components that update data can use the change notification methods of the container
class. The query will inform the container whether the contained component’s changes
can be committed, cancelled, or reverted and report the changes that are being
committed, cancelled, or reversed. The following change notification methods are
available:

canCommitChanges() — Called by the container to determine whether changes can
be committed. Returns true unless you override this implementation to invoke your
business logic. The OK button on the dialog and wizard containers is disabled if this
method returns false.

Example 13-19. Testing whether component can commit changes
In the following example, the Checkin class overrides canCommitChanges() to determine
whether to proceed with checkin:
public boolean canCommitChanges()
{
if (getDoNotCheckin() == true)
{
return true;

}
else
{
return ((m_strCheckoutPath != null) &&
(m_strCheckoutPath.length() > 0));

}
}

458 Web Development Kit and Client Applications Development Guide

Customizing Components

onCommitChanges() — Called by the container when changes are to be committed
(when the user selects OK).

Example 13-20. Committing component changes
In the following example from AdminDelete, the onCommitChanges() method performs
the commit:
public boolean onCommitChanges ()
{
destroyObject(m_objectId);
return true;

}

boolean canCancelChanges() — Called by the container to determine whether changes
can be cancelled. In the Component class, this method returns true. The Cancel button
on the dialog and wizard containers is disabled if this method returns false.

Note: If both canCommitChanges() and canCancelChanges() return false, a Close button
is displayed in place of the OK and Cancel buttons.

Example 13-21. Setting component cancel changes conditions
You can override canCancelChanges(), which returns true for the Component class.
In the JobStatus class, the canCancelChanges() implementation returns false, because
the component is a viewer, not an editor:
public boolean canCancelChanges()
{
return false;

}

onCancelChanges() — Called by the container when changes are to be cancelled,
that is, when the user selects Cancel or Close. Returns whether the changes where
successfully canceled. In the Component class, this method returns true.

Example 13-22. Implementing onCancelChanges()
In the following example from NewCabinet, the Cancel button has the following event
handler (onCancelChanges() is called by the container’s parent onCancel() event handler):
public boolean onCancelChanges()
{
if (m_strNewObjectId != null)
{
deleteCabinet(m_strNewObjectId, getDfSession(), false);
m_strNewObjectId = null;

}
return true;

}

requiresVisitForCommit() — This method is available in the propertysheetcontainer
class. It is called by the container on an uninitialized component to determine whether
the component must be committed for its container to commit. This method looks up a

Web Development Kit and Client Applications Development Guide 459

Customizing Components

requiresVisitForCommit configuration attribute value in the container definition. Refer
to Require visit, page 249 for more information.

canRevertChanges(), onRevertChanges() — These methods return true in the
Component class. You should implement onRevertChanges() to return false if changes
cannot be reverted.

Accessing components within containers

Switch between components in the container in your container class by calling
setCurrentComponent() or getContainedComponent(), generally in an event handler
method. Contained components are not initialized in the container’s onInit() method
unless you explicitly initialize them. You can initialize all your contained components
using setCurrentComponent().

Call getContainedComponent() to get the current component in a container. If you need
to access a non-current component or multiple components in the container, you can
iterate through the array that is returned by getContainedComponents.

Example 13-23. Initializing contained components
You can initialize all of the contained components using setCurrentComponent() and
initContainedComponent(). The following example from TaskMgrContainer does
initializes the contained component and returns to the previously selected component:
protected void initAllVisibleComponents(Tabbar tabs)
{
String currentCompId = getContainedComponent().getComponentId();

// iterate throught the tabs and initialize the components
for (Iterator iter = tabs.getTabs(); iter.hasNext() == true;)
{
Tab tab = (Tab)iter.next();
if (tab != null && tab.isVisible() == true)
{
// set it as current to allow initialization
setCurrentComponent(tab.getName());
initContainedComponent();

}
}

// restore the original current component
setCurrentComponent(currentCompId);

}

Example 13-24. Getting the current component
If you need to get a single component, call Container.getContainedComponent(). In
the following example from LocatorContainer, getContainedComponent() returns the
current component:

460 Web Development Kit and Client Applications Development Guide

Customizing Components

public void onInit(ArgumentList args)
{
// remember initial selection
String strSelectedIds = args.get("selectedobjectids");
args.remove("selectedobjectids");

super.onInit(args);

// transfer initial selections to the current component
Component compCur = getContainedComponent();
if (compCur != null && compCur instanceof ILocator)
{
((ILocator)compCur).setSelections(strSelectedIds);

}
}

Example 13-25. Accessing cpecic components in a container
Use getContainedComponents() to access all of the components in the container. In the
following example from SaveReportLocator, a specific component is accessed:
ArrayList componentList = getContainedComponents();
int count = componentList.size();
for (int index = 0; index < count; index++)
{
Object obj = componentList.get(index);
if (obj instanceof SysObjectLocator)
{
//do what needs to be done

}
}

requiresVisit attribute — The requiresVisit attribute on the component element in
a container definition requires the component to be visited before an OK button is
displayed. Refer to Require visit, page 249 for more information.

The Container class provides the following methods that support page navigation in
wizards:

hasPrevPage() — Called by the container to determine whether there is a previous
page. The Previous button on wizard containers is disabled if this method returns false.

Note: The Next and Previous buttons are hidden if both hasNextPage() and
hasPrevPage() return false.

Example 13-26. Testing whether the container has a previous or next Page
In the following example from the Web Publisher publish component class, the
hasPreviousPage() and hasNextPage() methods are called by the container class to
determine whether to display Previous orNext buttons. The call to getComponentPage()
returns the current page. The page "selectcabinets” is named in the publish component
definition as <pages>.<selectcabinets>.
public boolean hasPrevPage()
{

Web Development Kit and Client Applications Development Guide 461

Customizing Components

String thisPage = getComponentPage();
if (thisPage.equals("selectcabinets"))
return true;

else
return false;

}

onNextPage() — Called by the container when the user selects Next. The method
returns true if the page was successfully switched.

onPrevPage() — Called by the container when the user selects Previous. The method
returns true if the page was successfully switched.

hasNextPage() — Called by the container to determine whether there is a next page.
The Next button on wizard containers is disabled if this method returns false. Multi-page
components override hasNextPage() and hasPrevPage() to add paging, typically using
setComponentPage().

Passing arguments in a container

The Container class adds the contained component arguments to its own arguments.
Control values are propagated within the container only if the control implements the
getValue() and setValue() methods. Documentum attribute controls do not implement
these methods and do not propagate changed values within the container.

Some of the most commonly used methods of the Container class to get or set contained
components or their attributes are described below:

get|setContainedComponentArgs() — The method setComponentArgs()
passes arguments from the container to contained components. The method
getContainedComponentArgs() gets arguments from the container, within the contained
component.

Example 13-27. Passing arguments from a container to components
The following example from NewFolderContainer gets the arguments from the
contained components and replaces them with other arguments:
private void updateComponentArgs()
{
// set up arguments with type and objectid of new object
ArgumentList args = getContainedComponentArgs();
ArrayList components = getContainedComponents();
NewFolder component = (NewFolder)components.get(0);
String strNewObjectId = component.getNewObjectId();
String strType = component.getNewType();
args.replace("objectId", strNewObjectId);
args.replace("type", strType);
setContainedComponentArgs(args);

462 Web Development Kit and Client Applications Development Guide

Customizing Components

Context context = getContext();
context.set("objectId", strNewObjectId);
context.set("type", strType);

}

Example 13-28. Getting container arguments in the contained component
The following example from AclComponent gets the container instance and gets its
arguments by calling getContainedComponentArgs():
Form topForm = getTopForm();
if(topForm instanceof Container)
{
Container topContainer = (Container) topForm;
String objectId = topContainer.getContainedComponentArgs().get("objectId");
if(objectId != null && !objectId.equals("") && !objectId.equals("newobject"))
{
//Do business logic

}
}

Multi-repository support
The following multi-repository support is provided in WDK:
• Objects can be copied or linked across repositories

Copy creates a new object that is a copy (replica or mirror object) of the selected
version of the source object. Deep folder copy is supported. Link creates a reference
object (shortcut). Move is not supported.

• Content transfer actions on replica and reference objects can be performed
• Inbox and workflow can include objects in other repositories

Only the current repository is queried. Users can select attachments from multiple
repositories to attach to a workflow. These distributed attachments are treated as
foreign objects.

• Search can operate on multiple repositories
• My Files lists the user’s recently used replica objects and checked out replica,

reference, or foreign objects in other repositories.

Only the current repository is queried for My Files. When the user checks out an
object in another repository, a reference object is created in the user’s home cabinet.

For information on creating federations and managing replication, refer to Distributed
Configuration Guide for Content Server.

Note: Subscriptions are not supported on reference, or foreign objects. You must log in
to the source repository in order to subscribe to an object.

Web Development Kit and Client Applications Development Guide 463

Customizing Components

To see multi-repository objects in the inbox or workflow, the remote repositories must
configure a dm_DistOperations job. Refer to Distributed Configuration Guide for details.

The following topics describe multi-repository support:
• Replica (mirror), reference, and foreign Objects, page 464
• Adding multi-repository support to a component, page 465
• Scoping and preconditioning actions on remote objects, page 466
• Session management with multiple repositories, page 466

Replica (mirror), reference, and foreign Objects

The WDK application will attempt to get a session in the source repository using the
current username and credentials in order to perform actions on replica, reference, or
foreign objects. The action will fail if the user credentials are not the same for the current
and source repositories.

A replica object is a mirror of the object in the source repository. Replication objects
are created by a replication job on the Content Server. Replica objects are displayed
in drilldown and list views of objects, and write operations on replica objects can be
performed on the source object. Apply lifecycle on a replica object is not supported.

A reference object consists of a shortcut to an object in another repository. The reference
object mirrors the attributes of the remote object. Reference objects can be created by
the user with Paste as Link action across repositories. The Content Server also creates
reference objects for distributed checkout, distributed workflow, and distributed virtual
documents.

A foreign object is an object ID that is the same as a the object ID of an object in a remote
repository. Foreign objects are available in distributed workflows and multi-repository
search:
• Workflow tasks do not perform a query, so that attributes on the foreign object are

not accessible.
• Search queries the object in the remote repository for text or attributes that meet the

search criteria. When the user performs an operation on a foreign object in search
results, the operation is performed after login to the repository in which the object is
located.

Many actions can be performed on reference objects and on foreign objects, for example:
checkin, checkout, cancel checkout, edit, view properties (local properties), comment,
and find target action (jump to the source to perform other actions). To determined
whether an action on a reference or foreign object is supported, check the lists of
unsupported actions in mirror_undefined_actions and foreign_undefined_actions. For
more information, refer to Scoping and preconditioning actions on remote objects,
page 466.

464 Web Development Kit and Client Applications Development Guide

Customizing Components

Adding multi-repository support to a component

Objects from multiple repositories will be exposed in your custom components if you
display the contents of a cabinet or folder, objects that have been modified by a user, or
inbox/workflows. In the JSP page, include a <dmf:argument> tag for i_is_replica and
i_is_reference so that icons will display properly for all reference or replica objects.
For example, the relationships_classic.jsp page adds these arguments to the action
multiselect checkbox:
<dmfx:actionmultiselectcheckbox name="check" value="false">
<dmf:argument name="objectId" datafield="r_object_id"/>
...
<dmf:argument name="isReference" datafield="i_is_reference"/>
<dmf:argument name="isReplica" datafield="i_is_replica"/>

</dmfx:actionmultiselectcheckbox>

These attributes must also be added to the query. In the same example class,
Relationships, the attributes are added to the query parameter:
private static final String INTERNAL_ATTRS = "
sysobj.r_object_id,...i_is_reference,i_is_replica ";

If you are adding an icon that represents the object type, add the isreplicadatafield
and isreferencedatafield attributes to the control, similar to the following from
relationships_classic.jsp:
<dmfx:docbaseicon ...isreplicadatafield='i_is_replica'
isreferencedatafield='i_is_reference' size='16'/>

If your component needs to perform an operation on the object in the remote repository,
such as running a query, add the <setrepositoryfromobjectid> element to true. By default,
all actions in the context of the component are performed on the local replica object,
reference object, or foreign object ID. This element should be set on the container rather
than on the component, if your component exists within a container.

Note: Containers and components must have the same repository session.

The following utility classes can provide information to your component:
• DocbaseUtils::isForeign(String strObjectId)

Returns true if the object ID is a foreign object
• DocbaseUtils::isReference(String strObjectId)

Returns true if the object ID is a reference object
• DocbaseUtils:getDocbaseNameFromId(IDfId objectId)

Returns the repository name in which the source object exists

Web Development Kit and Client Applications Development Guide 465

Customizing Components

Scoping and preconditioning actions on remote objects

Two pseudo-types have been created to support scoping of actions or components
for mirror or foreign objects: mirror_dm_sysobject and foreign_dm_sysobject. The
DocbaseTypeQualifier method getParentScope() returns the r_object_type for the source
of the mirror or foreign object.

The WDK configuration files that scope actions by the remote object
pseudotypes are in /wbcomponent/config/actions: mirror_undefined_actions and
foreign_undefined_actions. You can add actions to these files to prevent an action from
operating on a replica or foreign object. You cannot remove an action from these files
unless you create a custom action that effects the action in the remote repository.

You can add preconditions to an action that allow the action to execute only if the object
is a reference or foreign object. RemoteObjectPrecondition::queryExecute returns true if
the object is a replica or foreign object. ReplicaObjectPrecondition::queryExecute returns
true if the object is a replica.

Session management with multiple repositories

DMCL manages multiple connections for a single session. The user logs in once, and
then the username and password are saved and used for remote connections. The
username and password must be the same for the remote repository when the user
attempts an action on a replica, reference, or foreign object.

Some actions on foreign IDs, replicas, or references are directed to the source object:
checkout, checkin, and cancel checkout. Remote queries or transactions are not
performed except in search, which queries all selected sources.

To query a remote repository, don’t use Component::getDfSession(). Instead, use the
following:
IDfSessionManager sessionManager = SessionManagerHttpBinding.
getSessionManager();

IDfSession session = null;
try
{
session = sessionManager.getSession(remote_repository”);
// code to construct query against foreign repository
…
query.execute(session, IDfQuery.DF_CACHE_QUERY);
…

}
catch
{
ErrorMessageService.getService().setNonFatalError(…);

}
finally

466 Web Development Kit and Client Applications Development Guide

Customizing Components

{
if (session != null)
sessionManager.release(session);

}

Component dispatching
The component dispatcher servlet allows a container to call or include a component.
The dispatcher maps the component URL to the appropriate implementation URL and
dispatches the component. The dispatch process is described in How components are
dispatched, page 467.

Component dispatcher servlet

The component dispatcher maps the component URL to the appropriate page URL. The
component dispatcher is implemented as a Java servlet. The servlet is registered in the
J2EE web server web.xml file, so that URLs that begin "root_context/component” are
routed to the dispatcher:
<servlet>
<servlet-name>ComponentDispatcher</servlet-name>
<servlet-class>com.documentum....Component.ComponentDispatcher
</servlet-class>

</servlet>

<servlet-mapping>
<servlet-name>ComponentDispatcher></servlet-name>
<url-pattern>/component/*</url-pattern>

</servlet-mapping>

How components are dispatched

The component dispatcher performs five steps:

1. Resolves the component name

The dispatcher extracts the component name from the URL. The dispatcher also
retrieves the start page name from the URL, if specified.

2. Creates a dispatch context

The context is a list of name/value pairs that are recognized by the configuration
service. The dispatcher creates the context based on component parameters

Web Development Kit and Client Applications Development Guide 467

Customizing Components

and configuration service scope qualifiers. Each qualifier registered with the
configuration service maps a scope name to one or more context names. When the
dispatcher finds a match between a component parameter name and a qualifier
context name, the parameter value is used to construct the dispatch context.

The dispatcher does not test all URL arguments. It tests only the arguments whose
parameter names are defined in the component definition.

3. Finds the component definition

The dispatcher converts component parameters in the dispatch context into scope
values and then compares these values with the scopes that are specified in the
in-memory component definitions. For example, the deletedocument component
definition has a scope of type and required parameter names objectId and folderId.
The configuration service checks the registered context names and finds that the
DocbaseTypeQualifier class has registered OBJECTID as a context name for the type
qualifier (scope). The dispatch bridge creates a context that contains the name/value
pair objectId/aaaabbbbccccdddd and forwards this context to the component class.

4. Creates the dispatch bridge

Each page implementation type has a designated dispatch bridge to handle that
type of page. The component dispatcher will use the behavior class specified in the
component configuration file to determine which dispatch bridge must be called.
The dispatch bridge ensures that context, state, or other component behavior is set
up before forwarding to the start page.

Two dispatch bridges are provided in the WDK framework:

• WDK 5 component dispatch bridge: Dispatches WDK 5 pages.

• Default dispatch bridge: Dispatches HTML or raw JSP pages.

5. Dispatches the component

WDK 5 component bridge

The WDK 5 component bridge calls components that contain WDK JSP pages. The
dispatch bridge sets the dispatch context and determines the appropriate component
definition whose scope matches the context. The bridge navigates to the start page for
the scoped component. The WDK Form processor takes over and processes the JSP page.

When components are scoped, the component behavior class is determined at run
time. The dispatcher maps the URL context to configuration service qualifiers, and the
scope that most closely matches the context is used to look up the scoped component
definition. The behavior class and NLS bundle are read from the scoped component
definition and added to the request before it calls the start page.

468 Web Development Kit and Client Applications Development Guide

Customizing Components

URL bridge (default)

The default bridge is called when the component behavior class element is missing in
the component definition. This bridge will forward to the URL specified as the start
page element value of the component definition. The URL may point to an HTML,
ASP, or JSP page. The features of the Component class will not be available to the page
that is dispatched.

Component lifecycle
Components are dispatched by the component dispatcher, which evaluates the user
context and returns the appropriate component definition. The Form processor processes
the component JSP pages and generates lifecycle events.

The processor handles multiple requests of the same page or component in the following
way:
• The first request initializes and renders without validation
• Subsequent requests fire change events, action events, and re-rendering
• The final request fires change events and form exit
Component instances are destroyed by the WDK history mechanism: The last ten
components are held on a stack to support the browser back button. When the next
component is launched, the last one drops off the stack and is garbage-collected. All
component instances are destroyed when the Web session times out. Refer to Browser
history, page 98 for more information.

The lifecycle methods are called by the form processor in the following order:
• onInit()

Called when the JSP page or component is first requested.
• onRender()

Called every time a form is requested by URL, after the event handlers are called
but before the JSP processing takes place. Do not call a navigation method after
onRender() has been called within a request, because the response may already
have been written.

• onRefreshData(): Called when the form data is changed. Your component should
override onRefreshData(), call super(), and then add code to refresh datagrids
or other controls.

• onRenderEnd(): Fired for every request, after all JSP form processing has completed
(after the </dmf:form> tag). Ensures that resources are cleaned up. For example,
if you acquire a pooled connection in onRender(), you need to release it in
onRenderEnd().

Web Development Kit and Client Applications Development Guide 469

Customizing Components

• onExit()

Called when the application navigates to another form or component.

Note: A lifecycle event handler method on a JSP page takes precedence over a handler
method in a server-side class.

JSP page processing (form processor)
Component JSP pages are processed and validated by the form processor. The following
topics describe the functions of the form processor:
• What the form processor does, page 470
• Form processing sequence, page 471
• Processing browser navigation, page 473
• Form navigation operations, page 473
For information on configuring form processor properties, refer to Navigation defaults,
page 97.

For information on control validation, which is performed by the form processor, refer
to Validating a control value, page 428.

What the form processor does

The form processor interprets HTTP requests and translates them into WDK method
calls and events. The form processor performs the following functions:

• Fires events during a form’s lifecycle:

Change events are fired by controls that accept user input. When a form is reloaded,
it requests each control to look for updated state in the HTTP request. If it finds
updated state, the control overwrites its state. The form then interrogates each
control for state changes and for a defined change event handler. If there is a change
event handler, the form fires the change event and passes to the handler the control
that changed. The handler has access to the old and new values.

Action events are fired when a form reloads. When a form is reloaded, the HTTP
request will specify any action event handler that is specified for controls on the
form, along with the ID of the control that will handle the event and, optionally, the
ID of the control that raised the event. The form processor fires the action event.

• Performs validation of controls within the form
• Maintains a configurable history trail that models the history in the browser (refer to

Navigating using browser history, page 241)

470 Web Development Kit and Client Applications Development Guide

Customizing Components

• Registers form processor hooks
• Registers lifecycle listeners.
• The form processor executes the form navigation operations. Most of the operations

request a jump to another form or page in the operation execute() method.

If a jump is requested, the processor performs a JSP include to the requested page
and closes browser history around nested forms. If no jump is requested, the
processor performs a JSP include to the operation’s redirect page.

Form processing sequence

The sequence of processing that occurs when a component is called via URL is
diagrammed below.

Figure 13-2. Component Processing Sequence Diagram

In the above diagram, a typical component is processed in the following sequence:

1. An HTTP request goes to the Web server. The component is called by URL, which
must include parameters that are defined as required in the component definition.
The URL can also contain optional parameters.

2. The component dispatcher calls the configuration service to look up the component
definition.

Web Development Kit and Client Applications Development Guide 471

Customizing Components

3. The configuration service finds the component that is named in the URL and reads
its definition.

4. The configuration service returns the component definition for the scoped HTTP
request. In the example, the context is provided in the object ID. The configuration
service matches this context to the closest component definition. In the example,
the match is to the object type.

5. The component dispatcher dispatches the component start page for the context. The
implementation can be either a a WDK 5 component or a URL.

6. The JSP engine renders the HTTP response (in HTML and JavaScript). This last step
is composed of many processes, which are outline in the following paragraphs.

The interaction between a component JSP page, user, and UI controls is diagrammed
below:

Figure 13-3. JSP page, control, and user interaction diagram

In the above diagram and example, user entries in a JSP page are processed in the
following sequence:

1. The start page for the DQL editor component is processed by the JSP engine.

472 Web Development Kit and Client Applications Development Guide

Customizing Components

2. The <dmf:webform> tag class tells the form processor that the JSP page is a WDK 5
page and should be processed by the form processor. If the webform tag arguments
for behavior class and NLS properties are not provided in the JSP page, the form
processor looks for them in the context. The component dispatcher sets these in the
context from the component definition.

3. The form processor calls onInit() on the component class and adds JavaScript and
CSS includes to the output. (Components that are included in a container using
the <dmf:containerinclude> tag are initialized when the containerinclude tag is
processed, unless the container initializes its contained components in its onInit()
method.)

4. The JSP engine renders the HTML output. The output for one control, the Execute
button, is shown in the diagram.

5. The user clicks Execute in the UI.

6. The URL is resubmitted, and the onClickExecute server event is posted.

7. The onClickExecute() event handler method in DQLEditor is called. Among other
functions, this method executes the query that the user has entered in the UI.

8. The DQLEditor object executes the query using an IDfQuery object (execute()
method). The query results are returned as an IDfCollection object.

9. The DQLEditor object iterates through the IDfCollection of query results and formats
them as a Label object. The editor writes the results to the UI using Label.setLabel().

Processing browser navigation

The default behavior when the users selects the browser Back button is that the form
processor returns to the URL (component or Web page) from which the user’s current
component was called.

If a user hits the browser button in a component JSP page that was not called from within
the application, the form processor will find no return page. The form processor and
form return operation redirect to a no return page. The no return page displayed can
be configured in the FormProcessorProp properties file by setting the noReturnURL
entry. The default page is /wdk/blank.htm.

Form navigation operations

The Form operations are executed by the form processor in response to navigation
requests in the URL. The table below describes the types of form navigation operations.
Each operation is represented by an operation class with the same name, in the package

Web Development Kit and Client Applications Development Guide 473

Customizing Components

com.documentum.web.form. The form operations classes extend FormOperation, the
base class.

Table 13-4. Form navigation operations

Operation Description

HistoryReleasedOperation() Handles a request for a history snapshot
that has been released and requests a
forward to /wdk/historyReleased.jsp

IncludeOperation() Handles a request for an included form.

JumpOperation() When the URL contains a JUMP_TYPE
parameter with a value of JUMP, the
operation requests a forward to the target
form and closes the old form

PageJumpOperation() When the URL contains a JUMP_TYPE
parameter with a value of PAGE, the
operation requests a forward to the
specified page in the specified target form
and closes the old form.

NestOperation() When the URL contains a JUMP_TYPE
parameter with a value of NESTED,
the operation requests a forward to the
specified page in the specified target form.
The old form remains open.

RecallOperation() When the URL does not contain an action
argument, the recall operation requests
the processor to call the current form
again.

ReturnOperation() When the URL contains a JUMP_TYPE
parameter with value of RETURN,
the operation requests a forward to
/wdk/return.jsp, returns to the parent
form, and removes the nested form history

TimeoutOperation() The operation requests a forward to
/wdk/timeout.jsp

474 Web Development Kit and Client Applications Development Guide

Customizing Components

Form classes
Although the framework supports custom forms, you should customize components
rather than forms. The component model allows you to easily configure and customize
components and to reuse them elsewhere in your application.

The com.documentum.web.form package includes several classes that are used to
create a form.

Form Class — The Form class extends the Control class. The Form class shares the
user’s session state between JSP pages. For example, three JSP pages that reference the
same form class will share state.

Note: Form class objects defined in a JSP page cannot use member variables to hold
state across requests.

FormTag — The FormTag class generates the HTML for a form. The FormTag class
generates HTML that performs the following functions:
• Generates a JavaScript function that calls setServerForm() in events.js
• Generates hidden input fields such as request ID, scrolling coordinates, action, event

handler and arguments, and control.
• Generates JavaScript that sets the scrolling position
• Generates calls to beginModal() and endModal() that set modality on a window
• Reloads the URL upon user navigation with the Back or Forward button if the

keepfresh attribute is set to true

WebformTag — The WebformTag class constructs and calls a form processor
instance every time a form JSP page is processed by the JSP engine. The webform
tag renders a list of script and style sheet inclusions whose content is driven
from the resource bundles com.documentum.web.form.WebformScripts and
com.documentum.web.form.WebformIncludes.

WebformIncludes class

The WebformIncludes class generates included JavaScript files. The WebformIncludes
methods are called by the WebformTag class.

FormIncludeTag — Forms can be included in other forms if the included form does
not contain HTML head and body tags. Use the forminclude tag to include a form.
For example:
<dmf:forminclude name="sub" src="fireEventFormlet.jsp"
formclass="com.documentum.web.samples.FireEventFormlet"

Web Development Kit and Client Applications Development Guide 475

Customizing Components

nlsclass="com.documentum.web.samples.DemoNls"/>

If you set the visible attribute of the forminclude tag to false, the included form is not
rendered.

IParams — The IParams interface defines a set of constants that are used in HTTP
requests to JSP pages or components. The constants are declared as public static final
data members. You can use a parameter in a tag class to reference a variable by its
IParams key.

Example 13-29. Using IParams Constants
Variables declared in IParams can be used in your class to output HTML. In the following
example from the Web Publisher class ICEEditComponent, IParams constants are
appended to the URL:
StringBuffer bufUrl = new StringBuffer(lookupString("pages.parsedPage"));

// Append the request Id
bufUrl.append("?");
bufUrl.append(IParams.REQUEST_ID);
bufUrl.append("=");
bufUrl.append(strRequestId);

//Append class name
bufUrl.append("&");
bufUrl.append(IParams.FORM_CLASS);
bufUrl.append("=");
bufUrl.append(this.getClass().getName());
...
bufUrl.append("=");
return makeUrl(getPageContext().getRequest(), bufUrl.toString());

The following table describes the constants that are defined in IParams.

Table 13-5. URL parameters

Parameter Description

ACTION Identifies the event raised by a control.
Resolves theURLparameter __dmfAction.

CONTROL Identifies the control that raised an
event. Resolves the URL parameter
__dmfControl.

DO_VALIDATION Validation flag for the webform
tag. Resolves the URL parameter
__dmfDoValidation

476 Web Development Kit and Client Applications Development Guide

Customizing Components

Parameter Description

FORM Stores the current form instance in the
page context (for example, for use in
in-line JSP code). Resolves the URL
parameter __dmfForm.

FORM_CLASS Stores the current form class in the page
context. Resolves the URL parameter
__dmfFormClass.

FORM_HISTORY Stores the form history setting in the page
context. Resolves the URL parameter
__dmfFormHistory.

FORM_REQUEST Stores the form request in the page
context. Resolves the URL parameter
__dmfFormRequest

FORM_RESPONSE Stores the form response in the page
context. Resolves the URL parameter
__dmfFormResponse.

HANDLER Resolves the URL parameter
__dmfHandler

HANDLER_ARGS Resolves the URL parameter
__dmfHandlerArgs

HISTORY_RELEASED Stores the form history setting in the page
context. Resolves the URL parameter
__dmfHistoryReleased.

HOST Stores the external (to the firewall or Web
farm) host name used to access the form.
Resolves the URL parameter __dmfHost.

HOST_PAGE_URL Modifies the behavior for a portlet
form. Resolves the URL parameter
__dmfHostPageUrl.

JUMP_TYPE Identifies whether to jump, nest or
return. Resolves the URL parameter
__dmfJumpType.Values: JUMP (exit
previous form), NESTED (nest to a form),
NOT_SET (jump type not specified),
PAGE (sets a page), or RETURN (returns
to the parent form).

Web Development Kit and Client Applications Development Guide 477

Customizing Components

Parameter Description

NLS_CLASS Stores the current NLS class or resource
bundle in the page context. Resolves the
URL parameter __dmfNlsClass.

REQUEST_ID ID of the request, used to track form
history. Resolves the URL parameter
__dmfRequestId.

RES_FOLDER_SESSION_VAR Identifies the user’s selected resource
directory for branding. Resolves the URL
parameter __dmfResourceFolder.

SERVLET_URL Identifies the URL of the current
servlet. Resolves the URL parameter
__dmfServletUrl.

TIMED_OUT Flag that indicates a session timed out
in the request scope. Resolves the URL
parameter __dmfTimedOut.

URL Stores the current page URL in the page
context. Resolves the URL parameter
__dmfUrl.

478 Web Development Kit and Client Applications Development Guide

Chapter 14
Using the Conguration Service

The configuration service reads configuration settings from XML files at application startup. The
contents of configuration files are cached in memory as a DOM for efficient lookup. The application
definition DOM is updated if all configuration files contain valid XML, all NLS IDs are located, and
there are no duplicate definitions. Runtime errors due to incorrect XML values in component and
action definitions report the invalid tag and the name of its configuration file.

The lookup mechanism resolves action, component, and application definitions as well as
user-defined definitions.

Caution: Changes to XML files are not recognized by J2EE servers. You must restart the server for
your changes to take effect. You can refresh component definitions by navigating to the utility page
refresh.jsp, which is located in the /wdk directory.

The following topics describe the configuration service:
Configuration service classes, page 479
Scope and qualifiers, page 484
Context, page 487
Configuration service process, page 488
Lookup algorithm, page 489

Conguration service classes
The configuration service is supported by the following classes:
• ConfigService (ConfigService, page 480)

Provides access to config file settings
• IConfigLookup (Configuration lookup, page 481)

Retrieves configuration settings based on context
• IConfigElement

Web Development Kit and Client Applications Development Guide 479

Using the Conguration Service

Gets and sets the parent element, the element value, the element attribute values,
and gets and adds child elements to an element within an individual configuration
file. Inheritance is not implemented for this interface.

• IConfigContext (IConfigContext, page 480)

Instance of the configuration service that can be used to determine whether a
specified context name matches a defined qualifier name

• IConfigReader (Configuration reader, page 483)

Loads and reads configuration files
• IConfigLookupHook Configuration lookup hooks, page 482

Allows configuration lookup calls to be interrupted and overridden
• IQualifier (Scope and qualifiers, page 484

Maps the component context for the user to scope that is defined within the
qualifier class. Every scope that is used in an XML configuration file must have a
corresponding qualifier class that implements IQualifier.

CongService

At application startup, the configuration service creates a scope rule dictionary.
Each entry corresponds to a primary element in the set of configuration files for the
application. At runtime, the qualifier class converts component dispatch context and user
runtime information into scope values and maps to entries in the scope rule dictionary.
The dictionary is continually updated when lookups are performed. For example, when
a user requests attributes for an object, the DocbaseTypeQualifier class takes athe object
ID and converts it to type "my_sop.” The configuration services finds the properties
component definition containing scope type=”my_sop”.

ICongContext

The IConfigContext interface provides an instance of the configuration service for
lookup of qualifiers. The getConfigContext() method of ConfigService returns the
IConfigContext interface. You can then query whether a context name matches a qualifer
by calling isContextName().

Example 14-1. Matching arguments to qualiers
In the following example from JobExecutionService, the component execution arguments
are passed to the method getUpdatedContext() to determine whether they match a
defined qualifier:

480 Web Development Kit and Client Applications Development Guide

Using the Conguration Service

private Context getUpdatedContext(Context context, ArgumentList args)
{
// add any args to the context that match a config qualifier context name
IConfigContext configContext = ConfigService.getConfigContext();

if(context == null)
{
context = new Context();

}

Iterator iterNames = args.nameIterator();
while (iterNames.hasNext() == true)
{
String strArgName = (String)iterNames.next();
if (configContext.isContextName(strArgName))
{
// add/update to context
String strArgValue = args.get(strArgName);
context.set(strArgName, strArgValue);

}
}
return context;

}

Conguration lookup

The IConfigLookup interface retrieves configuration elements and values based on
context. This lookup implements inherited configuration. This interface provides four
methods that look up various types of element values and return the appropriate type or
the element itself. You do not need to explicitly import IConfigLookup into a component
class, because Component implements wraps these same methods.

Each method of IConfigLookup takes two parameters:
• String element path: A period-delimited (.) list of patterns, where each pattern is

an element name with an optional attribute name and value pair appended within
square brackets. Three examples:
component[id=checkin]
component[id=checkin].pages.start
component[id=properties].contains.component

• (Optional) Context: A Context object can be passed in.
Many components look up values from their XML configuration files using
IConfigLookup methods. Use these methods to look up String, Boolean, and Integer
values from configuration files. The getContext() method returns the component’s
current context.

Example 14-2. Looking up a conguration string value
The Doclist component definition specifies the default object for display as the value of
the <objecttype> element:

Web Development Kit and Client Applications Development Guide 481

Using the Conguration Service

<columns>
<!-- default displayed object type(e.g. dm_sysobject) -->
<objecttype>dm_document</objecttype></columns>

This value is obtained by the component class in the following way:
String strObjectType = lookupString("columns.objecttype");

Example 14-3. Looking up a conguration boolean value
The MyObjects class reads its config setting to find out whether or not to display folders:
Boolean bShowFolders = lookupBoolean("showfolders");
if (bShowFolders != null)
{
m_fIncludedFolders = bShowFolders.booleanValue();

}

The configuration service resolves a lookup to the most appropriate component
definition using qualifiers. For example, <component id=’checkin’> resolves to the
checkin component. If there are two definitions for checkin qualified by type, for
example, <scope type=’dm_sysobject’> and <scope type=’mytype’>, the service looks up
the definition for the selected object’s type. The service then looks for the sub-element
<class>. If it is not defined in the component definition, the service looks for the
sub-element in the definition that was extended, until the value is found. Null is returned
if the value is not found or if multiple values exist in the same definition.

Conguration lookup hooks

You can register lookup hooks for your custom application. A lookup hook interrupts
lookup calls. Your lookup hook can override lookup calls or perform some other pre- or
post-lookup processing. Each hook must implement IConfigLookupHook.

Register the hook class and path in the com.documentum.web.formext.Environment.
properties file. The properties file has the following settings related to configuration
lookup classes:

LookupHookClass# — Fully qualified class name that implements
IConfigLookupHook. Replace the "#” with an integer starting from 1. The
LookupHookClass, Path, and Argument integer should match for each lookup hook
class.

LookupHookPath# — Scope attribute value. The wild card symbol "*” specifies all
scopes. In the example below, the preferences hook is used whenever a configuration
element path starts with component.preferences. If you omit the wild card, the
configuration element path must match exactly the specified scope.

482 Web Development Kit and Client Applications Development Guide

Using the Conguration Service

LookupHookArgument — Specifies whether a path that is passed to the hook methods
is absolute or relative to the specified hook path.

Example 14-4. Registering a lookup hook
The following example registers a lookup hook for preferences:
LookupHookClass.1=com.acme.config.PreferenceLookupHook
LookupHookPath.1=component.preferences.*
LookupHookArgument.1=relative

An element path of "component[id=properties].preferences.showAll” is treated as
showAll, because the path is relative. The parameters within square brackets are ignored.

Multiple hooks — Multiple hooks are supported. If more than one hook matches
an element path that is passed in, the configuration service calls each hook until a
configuration value is found. The order of the hook entries in the properties file
determines the calling order.

The IConfigLookupHook interface specifies three methods, each of which take a
configuration element path String parameter and a Context parameter:

onLookupString(String, Context) — This method is called when IConfigLookup.
lookupString() is called. The method should return a string value, or return null to
continue processing.

onLookupBoolean(String, Context) — This method is called when
IConfigLookup.lookupBoolean() is called. The method should return a boolean value, or
return null to continue processing.

onLookupInteger(String, Context) — This method is called when IConfigLookup.
lookupInteger() is called. The method should return an integer value, or return null
to continue processing.

Conguration reader

The IConfigReader interfaces provides methods to load and read configuration files. The
default implementation of this interface is HttpConfigReader, which loads and reads
configuration settings from the application root directory on the J2EE server file system.

You can substitute an alternate configuration reader. Specify the reader class in
Environment.properties, which is located in /WEB-INF/classes/com/documentum/web/
formext. For the value of ConfigReaderClass, provide the fully qualified class name, for
example:
ConfigReaderClass=com.acme.CustomConfigReader

The IConfigReader class specifies the following methods:

Web Development Kit and Client Applications Development Guide 483

Using the Conguration Service

getAppName() — Returns the name of the application’s primary directory as specified
in the J2EE deployment descriptor file (web.xml). Specifically, the method returns the
value of the element AppFolderName.

getRootFolderPath() — Returns the full file system path to the web application root
directory.

loadAppConfigFile(String) — When passed an application name as a parameter, this
method returns a ConfigFile instance. The XML file is loaded from the following path,
where strAppName is the name of the application:
getRootFolderPath()/strAppName/app.xml

loadConfigFiles(String) — When passed an application name as a parameter, this
method returns an Iterator object of ConfigFile instances within the specified application.
The XML files are located from the following path:
getRootFolderPath()/strAppName/config

Scope and qualiers
The configuration service uses the user’s context to resolve the appropriate scoped
definition and deliver the application, action, or component that is defined for the scope.
Scope is defined by a qualifier class that implements the IQualifier interface.

You can use the Context object (refer to Context, page 487) to hold component context
data and pass it in to the configuration service. The configuration service will then match
the context with a defined qualifier value to find the appropriate action or component
definition.

WDK includes the following qualifiers in /wdk/app.xml: repository (docbase),
Documentum type, privilege, role, clientenv, application, and version. Webtop adds
qualifiers for repository name and user’s location in the browser tree. Scope is resolved
in the order that qualifiers are specified in app.xml.
• DocbaseNameQualifier

Matches the context value "docbase” to the current repository. You can use this
qualifier to define a different component UI for each repository. Components that
apply to more than one repository, such as Webtop’s browsertree or menubar
components, cannot be scoped by repository.

• DocbaseTypeQualifier

Matches the context values "id” or "type” to the scope "type”. For example, the
definition, UI, and behavior for attributes defined by type=’dm_sysobject’ can be
different from the definition, UI, and behavior defined by type=’dm_user’. This

484 Web Development Kit and Client Applications Development Guide

Using the Conguration Service

qualifier class also evaluates the object ID to find out whether the object is a reference
object and, if so, returns the scope type=”foreign”.

• PrivilegeQualifier

Matches the user’s privilege (user_privilege attribute for dm_user) to the scope
"privilege”. For example, users who can create a new group have the creategroup
privilege. The newgroup action is scoped to privilege=’creategroup’. The list of
actions available to all users who do not have the creategroup privilege does not
include the newgroup action

• RoleQualifier

Matches the context value "role” to the scope "role”. Roles must be defined in the
repository. For example, the import UI presented to the consumer, defined by
role=’consumer’, can be different from the import UI presented to the administrator,
defined by role=’administrator’.

• ClientEnvQualifier

Matches the context value "webbrowser”, ”portal”, appintg”, or "not appintg” to the
scope "clientenv”. For example, the login component definition uses the value of
appintg and not appintg to present different login pages depending on whether the
user is in an Application Connectors environment. The default value is specified as
"webbrowser” in app.xml as the value of <application>.<environment>. <clientenv>.
For more information on the clientenv qualifier and its use as a filter, refer to Client
environment qualifier, page 53.

• AppQualifier

Gives all configuration settings an implicit scope of the application in which they
reside. The application name is automatically applied to all configuration elements
within the application directory. Do not remove this qualifier from your custom list
of qualifiers.

• VersionQualifier

Specifies a component or action version. Only one version value in a scope is
allowed, and the version scope cannot start with "not”. Values of the version qualifier
are defined in /wdk/app.xml as the value of <supported_versions>.<version>. The
latest version (no version scope value) is implicitly included as a supported version.

A component can extend a non-current version component of the same name, and
it will inherit the non-current version’s definition. If the custom component or
container has a different name from the non-current component that it extends, it
must satisfy one of the following requirements:

— Set the scope version explicitly to the same version as the component it extends,
for example, <scope version=”5.2.5”>.

— Set the container <bindingcomponentversion> to the same version as the
scope on the component. For example, <bindingcomponentversion>5.2.5</

Web Development Kit and Client Applications Development Guide 485

Using the Conguration Service

bindingcomponentversion> on your custom export container means that the
component will contain an export component whose scope is version=”5.2.5”.

• EntitlementQualifier

Evaluates whether Collaborative Edition is enabled for the current repository. If so,
the CollaborationService class provides the value "collaboration” for the entitlement
scope. Requires a global registry. Refer to Content Server Installation Guide for
information on global registries.

Qualifier classes define scope values. The map of qualifier values is read into memory
when the application first start up.

When a component definition is required during run time, the configuration service
converts the user’s dispatch context and other runtime information to a scope value.
This value is matched to the closest scope that is defined within a configuration file.
For example, the user selects of object of a custom type in a list component and selects
an action to be performed on the object. The DocbaseTypeQualifier class matches the
context value of "objectId” or "type” to scope elements that have a "type” attribute. The
action definition for the custom type, if there is one, is dispatched.

Qualifiers have the following features:

• An action or component definition can inherit or override scope

The definition for type=dm_document inherits the defined parameters and
configurable elements for dm_sysobject unless they are specifically overridden.
To override an element, you must provide different content for the element. For
example, to require a different set of parameters for the child type, define the
<params> element with different <param> elements. If your extended definition has
no <params> element, all parameters are inherited.

• An action or component definition can have more than one qualifier value

The list of valid values is comma-separated. For example, <scope
type=’dm_document, dm_folder’> applies to both types of objects and types
descended from these types.

• An action or component definition can have more than one qualifier

For example, the newgroup action is scoped to type=’dm_group’ and
privilege=’creategroup’.

• An action or component definition can exclude qualifier values by using the NOT
operator

For example, if the definition were scoped to type=’dm_group’ privilege=’not
createtype’, any user could create a new group unless they had the privilege
createtype.

An application can add a new qualifier element in the application layer app.xml file.
In this case, you must specify all WDK qualifiers as well as those of the WDK client

486 Web Development Kit and Client Applications Development Guide

Using the Conguration Service

application such as Webtop or Web Publisher, because the qualifiers listed in the top-level
application layer override the sets of qualifiers defined in other application layers.

For information on how to configure scope in WDK and client applications, refer to
Scope, page 52.

Context
The Context object can hold data that is specific to the current application context, and
that context can be compared with qualifier values or can be used for some other kind of
component processing. Some of the uses of the Context object are to hold type, object
ID, role, user ID, or configuration settings.

Context information can be passed in a Context object or serialized so that it can be
passed as a URL argument or string. To serialize the context, use Context.serialize().

Example 14-5. Serializing context to a URL
The following example serializes the Context object and encodes it for passing in a URL:
Component comp = (Component) getForm().getTopForm();
Context jumpContext = new Context(comp.getContext());
String strContext = context.serialize(jumpContext);
strURLContext = URLEncoder.encode(StringUtil.unicodeEscape(strContext));

To decode and deserialize a context that is passed in a URL, use the following syntax:
strContext = StringUtil.unicodeUnescape(strURLContext));
Context newContext = Context.deserialize(strContext));

Example 14-6. Saving an object ID in context
The DrillDown component class saves the object ID and object type in a Context object::
context.set("objectId", strFolderId);
context.set("type", strType);

When the user selects a document in the drill-down view for viewing, the
onClickDocument() method of the DrillDown class calls:
ActionService.execute("view", args, getContext(), this);
The view action is scoped by type. For example, see the scoped actions for the type
dm_router task in dm_router_task_actions.xml in /webcomponent/config/actions.
The object ID and type are passed in, and the action service verifies that the action
is permitted for the given type.

Example 14-7. Setting a context value
You can set or change the context of a component or control. To change the context
within a Java class, use Context.set(). In the following example from DocList, the method
updateContextFromPath updates the Context object based on the user’s navigation:
Context context = getContext();

Web Development Kit and Client Applications Development Guide 487

Using the Conguration Service

...
if (strFolderId == null || strFolderId.length() == 0)
{
// viewing a docbase
context.set("objectId", DfId.DF_NULLID_STR);
context.set("type", "dm_docbase");

}
else
{
// viewing probably a folder
IDfSysObject sysobj = (
IDfSysObject)dfSession.getObject(new DfId(strFolderId));

String strType = sysobj.getType().getName();
context.set("objectId", strFolderId);
context.set("type", strType);

}

To set the context within a JSP page, you must override the context that is set when a
control is initialized. The following example sets the context for a datafield to r_object_id.
This would display the appropriate action button for checkin based on document type,
assuming you have scoped the checkin component for more than one document type:
<dmfx:actionbutton name="Checkin" action="Checkin">
<dmf:argument name="objectId" datafield="r_object_id"/>

</dmfx:actionbutton>

Conguration service process
The configuration service follows these steps upon initialization:

1. Gets the application name from the deployment descriptor file (web.xml).

2. Loads the application definition from app.xml and any inherited application
definitions that are extended in app.xml.

3. Creates qualifiers by enumerating application.qualifiers child elements within the
application definition. The qualifier resolves context to a scope element.

4. Loads into document object models (DOMs) the configuration files located within
the applications /config directories, implicitly adding the application name to each
scope element.

5. Builds a lookup dictionary, which is used to look up primary elements based on
dynamic context (refer to Lookup algorithm, page 489)

488 Web Development Kit and Client Applications Development Guide

Using the Conguration Service

Lookup algorithm
The configuration service performs lookups in two phases:

1. Locates the most appropriate primary element

2. Traverses down from the resolved primary element to the requested setting. If the
setting is not found, extended primary elements are traversed.

Resolving the primary element — When the configuration files are loaded, the
configuration service creates an index that contains all primary elements keyed by
descriptor and scope. For example, the descriptor could be:
component[id=checkin]
and the scope could be:
type=dm_user,role=*,application=wdk

Each scope is listed in order of precedence. The "*” symbol indicates that the scope value
was not defined in the configuration file. If a match is not found, the configuration
service key generalizes the key by changing the scope to the parent scope value. The
configuration service walks up the parent scope hierarchy until a match is found, or the
generic key is used. The generic key matches all scopes defined for the primary element.
For example:
component[id=checkin]:type=*,role=*,application=*

Future lookups are optimized by an update to the index when a match is found.

Retrieving a configuration setting — The configuration service starts with the element
path that is passed to the lookup method and the primary element that was resolved in
the first phase of lookup. The context is not used.

The configuration services walks down the child elements of the primary element to
locate the requested value. Filters that surround an element are evaluated to determine
whether the element is visible. If the value is not located, the configuration service looks
in the parent primary element, specified by the value of the primary element "extends”
attribute.

Web Development Kit and Client Applications Development Guide 489

Using the Conguration Service

490 Web Development Kit and Client Applications Development Guide

Chapter 15
Customizing actions

The action service implements dynamic filtering of actions based on context.

The action service is described in the following topics:
• Preconditions, page 491
• Execution, page 493
• LaunchComponent execution classes, page 496
• Providing action NLS strings, page 497
• Dynamic component launching, page 498
• Action listeners, page 500
• Nesting actions, page 503
Refer to Chapter 4, Configuring Actions for information on configuring actions. For information
on the parameters and configurable elements for individual actions, refer toWeb Development Kit
Reference Guide.

Preconditions
Action precondition classes are called to determine whether an action can be performed.
The precondition class determines whether to render an action control as enabled or
disabled.

Preconditions are optional in the action definition. If no preconditions are defined,
the action will always execute. The precondition class must implement the
IActionPrecondition interface and the precondition logic for your action. For example,
the CancelCheckoutAction class, which implements IActionPrecondition, gets the object
ID and lock owner from the argument list and gets the user name from the session. The
precondition class compares the two, and if they are the same, returns true. If the user
is not the lock owner, the queryExecute() method returns false and the user cannot
cancel the checkout.

Web Development Kit and Client Applications Development Guide 491

Customizing actions

Caution: Make sure that no state (instance variables) is associated with your precondition
class. The instance is used as a singleton.

To disable an action, specify ActionDisablerPrecondition as the precondition class for
the action. Alternatively, you can set the notdefined attribute on the action to true. For
example, for dm_folder scope the versions action is disabled:
<action id="versions" notdefined="true"></action>

Some precondition classes are used by multiple actions in WDK components:

• Role

The RolePrecondition class enables the action for the roles that are specified in a
<precondition>.<role> element in the action definition.

• Required argument

The existence of a required argument can be assured by the
ArgumentExistsPrecondition class. Check that the argument has a value
using the ArgumentNotEmptyPrecondition class.

• Environment

Launch the action in the supported environment using the EnvironmentPrecondition
class. This precondition is used by WDK for Portlets. For example, the Web
workflow manager will not be launched in a portal environment.

Preconditions can affect application performance. For example, preconditions are called
for each item in a list component. If there are 10 items and 20 applicable actions, 200
preconditions will be executed before the list is rendered.

Note: Do not put error-handling code in preconditions, because preconditions are called
to update the UI. Use the precondition to disable the behavior in the UI, or put error
handling code in the action execution class.

The precondition class must implement queryExecute() to determine whether the
precondition has been met. The queryExecute method passes in the precondition values
in the action definition as IConfigElement parameters. The signature for queryExecute is:
queryExecute(String strAction, IConfigElement config,
ArgumentList arg, Context context, Component component)

where:
• String: Action name
• IConfigElement: Represents the associated <precondition> element and subelements.

Use this if configuration information is passed to the precondition.
• ArgumentList: List of arguments passed to the action
• Context: The user’s current context as defined by the component
• Component: (optional) Caller component. Allows action precondition methods to

access the container component instance if necessary.

492 Web Development Kit and Client Applications Development Guide

Customizing actions

Example 15-1. Implementing the action queryExecute() method
In the following example from SuspendLifecycleAction, a class that implements both
IActionPrecondition and IActionExecution, the queryExecute() method tests whether the
action can be performed:
public boolean queryExecute(
String strAction, IConfigElement config, ArgumentList arg,
Context context, Component component)

{
// determine whether the object is locked
boolean bExecute = false;
try
{
// get lock owner
String strLockOwner = arg.get("lockOwner");

// compare
if (strLockOwner == null || strLockOwner.length() == 0)
{
bExecute = true;

}
}
...
return bExecute;

}

Note: Avoid calling IDfSession.getObject() or perform queries inside queryExecute().
These calls can seriously degrade performance. Most attribute arguments can be
retrieved, as they are cached by the initial query on the page rather than from a
getObject() call. For example, if the page has a databound control to r_lock_owner,
that attribute value is cached. Your component can check for the existence of the
argument value and query only if the argument was not passed. You can also write trace
statements that signal when precondition arguments are not passed. This will allow you
to determine which custom components are not passing the appropriate arguments.

The precondition class must also implement getRequiredParams(), which is called by the
action service when the action definition is first loaded. This interface returns an array of
parameters that are required by the precondition. For example, the Checkout action class
CancelCheckoutAction returns objectId as the required parameter. The same parameters
must be defined as required in the XML action definition.

Execution
The execution class is called by the action service to execute the action when the action
preconditions have been met. An execution class must implement IActionExecution or
extend a base execution class such as LaunchComponent (refer to LaunchComponent
execution classes, page 496). Action classes in WDK often implement both the
precondition and execution interfaces in the same class.

Web Development Kit and Client Applications Development Guide 493

Customizing actions

Caution: Make sure that no state (instance variables) is associated with your action
execution class. The instance is used as a singleton.

The IActionExecution interface has two methods:

execute() — Returns true if the action has successfully executed. This method is called
by the action service after preconditions have been met. For example, the checkout
action class returns true for a successful checkout. The parameters are the same as for
IActionPrecondition.queryExecute() with the addition of a completion arguments Map
parameter. The config parameter represents the <execution> elements and its contents.

Example 15-2. Implementing action execute() method
In the following example from SuspendLifecycleAction, a class that implements both
IActionPrecondition and IActionExecution, the execute() method performs the action:
public boolean execute(
String strAction, IConfigElement config, ArgumentList args,
Context context, Component component, Map completionArgs)

{
boolean bExecutionSucceeded = false;

// get the nls bundle for this action
String nlsprop = config.getChildValue("nlsbundle");

NlsResourceBundle nlsResBndl = new NlsResourceBundle(nlsprop);
MessageService msgService = new MessageService();

try
{
String strId = args.get("objectId");
LifecycleService lifecycleSrvc = LifecycleService.getInstance();

if (lifecycleSrvc.canSuspend(strId) == true)
{
lifecycleSrvc.suspend(strId, null, false, false);
String strSuccessMessage = nlsResBndl.getString(
"MSG_SUSPEND_SUCCESS", LocaleService.getLocale());

msgService.addMessage(
nlsResBndl, "MSG_SUSPEND_SUCCESS", component, null);
bExecutionSucceded = true;

}
else
//error handling, catch block

}
return bExecutionSucceded;

}

Tip: Do not throw exceptions from execute(). Raise non-fatal errors
when execute() fails, and the errors will display in the message bar.
For an example of raising non-fatal errors in a catch block, refer to
com.documentum.webcomponent.library.action.SuspendLifecycleAction:
catch (Exception e)

494 Web Development Kit and Client Applications Development Guide

Customizing actions

{
ActionExecutionUtil.setCompletionError(completionArgs,
nlsResBndl, "MSG_SUSPEND_ERROR", component, null, e);

WebComponentErrorService.getService().setNonFatalError(
nlsResBndl, "MSG_SUSPEND_ERROR", component, null, e);

}

The action can set completion arguments by setting values in the passed completionArgs
map. This map is then passed to an action complete listener that is passed in to the action
service’s execute(…) method. The completion map holds the complete listener (keyed by
ActionService.COMPLETE_LISTENER), allowing the implementation to have access to it
if needed. For information on action listeners, refer to Action listeners, page 500.

getRequiredParams() — This method returns the parameters required for execution.
The same parameters must be defined as required in the XML action definition. The
action configuration file must contain at least one required parameter, or the precondition
will be ignored. For example, the Checkout action class CancelCheckoutAction returns
objectId as the required parameter.

Example 15-3. Implementing getRequiredParams()
Your implementation of getRequiredParams() should declare the parameters that are
required for the action. In the definition for the suspendlifecycle action, the parameters
are declared as follows:
<params>
<param name="objectId" required="true"></param>
<param name="lockOwner" required="false"></param>
</params>

The required parameter is returned by getRequiredParams() in the action definition
class as follows:
public String [] getRequiredParams()
{
return new String[] {"objectId"};

}

Multiple required parameters are declared in the action class CommentAction as follows:
final private static String m_strRequiredParams[] = new String[] {
"objectId", "contentType"};

public String [] getRequiredParams()
{
return m_strRequiredParams;

}

Example 15-4. Passing an action argument value to a component
Actions can pass argument values to a container. The value can be provided in the
argument tag or by a datafield. In the following example from the Web Publisher
startwpworkflownotemplatecs action definition, an argument and its value are passed to
the startwpwftemplatelocatorcontainerclassic container:

Web Development Kit and Client Applications Development Guide 495

Customizing actions

<execution class="
com.documentum...LaunchStartWpWfWithChangeSet">
<container>startwpwftemplatelocatorcontainerclassic
</container>
<arguments>
<argument name='attachmentMode' value='existingchangeset'/>

</arguments>
</execution>

The container class StartWpWorkflowTemplateLocatorContainer then gets the argument
value in the onInit() function:
m_sAttachmentMode = args.get("attachmentMode");

LaunchComponent execution classes
The LaunchComponent class can be used by an action to launch a component that will
perform the action after preconditions are met. The <component> element in the action
definition specifies the component that will be launched. If there is no <component>
element, the component is assumed to have the same name as the action ID.

The selected object ID, if any, is always passed by the LaunchComponent execution class,
so you do not need to explicitly pass this argument.

The LaunchComponent class is specified as the execution class for an action definition,
as follows:
<execution class="com.documentum.web.formext.action.LaunchComponent">
1<arguments>
<argument name="arg_name" value="arg_value"></argument>
</arguments>
2<component>component_name</component>
3<container>container_name</container>
4<navigation>jump</navigation>
</execution>

1 You can pass arguments other than the object ID from the action to
the component or container class using the <argument> element in the
<execution>.<arguments>.<argument> element. In this example, the view action for
dm_wp_task objects in Web Publisher passes an argument for the container tab ID. The
<argument> element can contain an alias attribute. This allows an action argument
named with the alias name to be passed on to the component.

2 An optional <component> element specifies the component that will be launched. If
a container but no component is specified, the container launches the first component
named in the container definition.

496 Web Development Kit and Client Applications Development Guide

Customizing actions

3 An optional <container> element specifies the container that will launch the
component. If no container or component is specified, LaunchComponent attempts to
launch a component with the same name as the action.

4 An optional <navigation> element specifies the type of navigation to the component
that is launched by the action. Valid values are jump, returnjump, and nested. The
default is nested, which means that the component will be nested within the component
from which the action was called.

The LaunchComponent execution class has special handling when it is used with the
ComboContainer or derived container class. Multiple calls to the LaunchComponent
execution class in the same request, such as when an action is performed on a multiple
selection, results in the combo container being launched once with all of the component
instances associated with each call. The LaunchComponent class prepares and passes
the parameters that are required by the ComboContainer or derived container class.

If a LaunchComponent action nests a component, the action complete listener is
called when the nested component returns. For information on action lisetners, refer
to Action listeners, page 500. For all other cases, the action completes just before
IActionExecution.execute() returns.

For faster performance, the LaunchComponent class does not check object permissions.
If your component requires object permissions, such as a custom checkin or import
component, use LaunchComponentWithPermitCheck and specify a minimum object
permission level. Valid values, from highest to lowest, are delete_permit, write_permit,
version_permit, relate_permit, read_permit, browse_permit, and none.

Providing action NLS strings
To add NLS strings for your custom action, add an <nlsbundle> element to your action
definition that points to your custom *NLSProp.properties file, similar to the following
example from the delete action definition:
<execution class="
com.documentum.webcomponent.library.actions.DeleteRenditionAction">
<nlsbundle>com.documentum.webcomponent.library.delete.DeleteNlsProp
</nlsbundle>
...
</execution>

Web Development Kit and Client Applications Development Guide 497

Customizing actions

Dynamic component launching
You can specify which component is launched at runtime based on a dynamic filter in the
action definition. Use the <execution>.<dynamicfilter> element in the action definition to
specify a class that extends LaunchComponentFilter and implements the filter. The filter
uses an evaluation class that implements ILaunchComponentEvaluator. The evaluator
class evaluates which component to launch from among the options listed in the filter
definition by matching the current context to criteria values in the configuration. For
example, the class ContentTransferLaunchComponentEvaluator evaluate() method
returns the appropriate type of content transfer component based on the application
environment: An HTTP component is launched for portal environments, and an applet
is launched for standalone Web applications.

The contents of the filter element are similar to the following:
1<dynamicfilter class=com.mycompany.MyFilter>
2<option>
3<criteria>
4<criterion name="contenttransfer" value="applet"
evaluatorclass="com.mycompany.ContentTransferLaunchComponentEvaluator"/>

</criteria>
5<selection>
6<component>import</component>
7<container>importcontainer</container>

</selection>
</option>*

</dynamicfilter>

1 Specifies the filter class and contains two or more options for launching different
components from the same action

2 Defines an option that will be launched when criteria are met. You must provide at
least two options for the filter. Your evaluator class must return a value to the filter class
that matches one of the criterion names in your filter definition.

3 Contains zero or more <criterion> elements whose values must match conditions as
implemented by the filter class in order for the component specified in the <selection>
element to be launched. If this element is empty, the selection is the default selection.

4 Defines a criterion that must be matched. The criterion name and value are evaluated
by the dynamicfilterclass and the corresponding evaluator class is called. The criterion
value is evaluated by the criterion evaluator class, which matches the criterion value
against its business logic and determines which component selection should be launched.

5 Specifies the component and container that will be launched when the criterion is
matched

498 Web Development Kit and Client Applications Development Guide

Customizing actions

6 Specifies the component that will be launched

7 Specifies the container that will be launched

Example 15-5. Implementing a dynamic lter
An example of the dynamic component filter is the ReferenceEvaluator filter. This
filter class determines whether the object is a reference object, referring to an object in
another Docbase. If the filter returns a value of true for the isreference criterion, the
informinvalidactionforreference is launched, which informs the user that the action is not
valid for the reference object. If the object is not a reference object, another component is
launched to perform the action.

The action framework calls evaluate() on the filter class, passing in the following
arguments:
• String strName

Name of the criterion
• String strAction

Action ID
• IConfigElement config
• ArgumentList arg

Arguments passed by the action
• Context context
• Component component

Component to launch
In the following example from the ReferenceEvaluator class, the evaluate() method uses
the objectId argument to determine whether the object is a reference object and returns
either true or false for the isreference criterion (error-handling code removed):
public String evaluate(String strName, String strAction, IConfigElement config,
ArgumentList arg, Context context, Component component)
{
String strValue = "false";
if (strName != null && strName.equalsIgnoreCase(CRITERION))
{

String strObjectId = arg.get("objectId");
IDfSession session = component.getDfSession();
IDfPersistentObject persObj = (IDfPersistentObject) session.getObject
(new DfId(strObjectId));

if (persObj.hasAttr("i_is_reference") && persObj.getBoolean("i_is_reference"))
{
strValue = "true";

}
}

return strValue;
}

Web Development Kit and Client Applications Development Guide 499

Customizing actions

public static String CRITERION = "isreference";

Action listeners
Actions can have several kinds of listeners:

• Use an action control

All action controls have an oncomplete attribute that will call an event handler
when the action has completed. Your component class can implement an event
handler for the control oncomplete event.. The Component class instantiates
IActionCompleteListener (refer to below) when an event handler is specified for the
oncomplete attribute of the action control.

• Use CallbackDoneListener

Use this listener if your component class launches the action that you are listening to.
CallbackDoneListener returns the completion arguments to your component.

• Implement IActionCompleteListener

Implement this listener if the action you are listening to does not have an associated
action control and it is not launched by your component class.

• Implement IActionListener (Pre- and post-action listener)

Your component must implement IActionListener and two methods: onPreAction()
and onPostAction(). These event handlers will be called by the action service before
and after the action is processed, respectively.

The action listener interface IActionCompleteListener is called by the action service
when an action is completed. This interface exposes one method, onComplete(String
strAction, boolean bSuccess, Map completionArgs). The action parameter is the ID of the
completed action, the boolean flag is returned by the IActionExecution.execute(), and the
Map is the set of completion arguments that are passed from IActionExecution.execute().
Multiselect actions are supported by this listener.

If a LaunchComponent action nests a component, the action completes when the
nested component returns. For all other action classes, the action completes before
IActionExecution.execute() returns.

Example 15-6. Implementing an onComplete() event handler
The Component class implements the action listener interface IActionCompleteListener,
which is called by the action service when an action is completed. This interface exposes
one method, onComplete(String strAction, boolean bSuccess, Map completionArgs).
The action parameter is the ID of the completed action, the boolean flag is returned
by the IActionExecution.execute(), and the Map is the set of completion arguments
that are passed from IActionExecution.execute(). Multiselect actions are supported
by this listener.

500 Web Development Kit and Client Applications Development Guide

Customizing actions

Specify the oncomplete event handler in your JSP page. For example:
<dmfx:actionbutton ... oncomplete='onMyActionComplete' />

Your component class must implement the event handler for the oncomplete event. The
event handler must have the following signature. The method name must match the
value of the action control’s oncomplete attribute. For example:
public void onMyActionComplete(String strAction, boolean bSuccess,
Map completionArgs)

{
//code here will be executed when action is complete}

}

In your custom component JSP page, pass parameters to your action listener in the form
of <dmf:argument> or <dmfx:argument> tags within the action tag. For example:
<dmfx:actionimage ...>
<dmf:argument name='objectId' datafield='r_object_id'/>

</dmfx:actionimage>
You can then retrieve the arguments in your component or action class:
public void onMyActionComplete(String strAction, boolean bSuccess,
Map completionArgs)

{
String newObjectId = (String)completionArgs.get("objectId");
//code here will be executed when action is complete

}

Example 15-7. Using CallbackDoneListener
To register your listener class, you must extend the action execution class and override
the execute() and getRequiredParams() methods.

Alternatively, you can use the CallbackDoneListener class when you launch your action.
In the following example from Web Publisher WpCopy class method onCopy(), the
CallbackDoneListener is registered when the copynonwcm action is called:
ArgumentList compArgs = new ArgumentList();
compArgs.add("objectId", token);
compArgs.add("folderId", token);
ActionService.execute(
"copynonwcm", compArgs, getContext(), this, new CallbackDoneListener(
this, "onReturnFromNonWcmInfoForCopy"));

The WpCopy class implements the method whose name is passed to the
CallbackDoneListener to handle the action completion. This custom handler must
have the same signature as a listener onComplete() method to handle the completion
arguments passed by CallbackDoneListener. This example gets the completion
arguments in the Map:
public void onReturnFromNonWcmInfoForCopy(
String strAction, boolean bSuccess, Map map)

{
// if we have return values
if (map != null)
{

Web Development Kit and Client Applications Development Guide 501

Customizing actions

try
{
...
String strNumObjects = (String) map.get(
WpClipboardContainer.KEY_NUM_OBJECTS);
if (strNumObjects != null)
{
for (int i = 0; i < Integer.parseInt(strNumObjects); i++)
{
String fileName = null;
try
{
Map retMap = (Map) map.get(
WpClipboardContainer.KEY_RETURN_VAL + (i + 1));

...

Example 15-8. Implementing IActionCompleteListener
If you need to trap an action that is not launched by your component class or by an action
control, you must implement IActionCompleteListener.

The following example adds an action listener. The listener is registered by overriding
the action execution class. First, create a custom listener class that implements
IActionCompleteListener and its required methods:
import com.mycompany.MyListener;
...
public void onComplete(java.util.Map map)
{
...
m_settingParam = (String) map.get(MyComponent.PARAM);
...

}

Next, register your listener by extending the action execution class and overriding the
execute method(), for example:
public boolean execute(
String strAction,IConfigElement config,ArgumentList args,
Context context, Component component,
IActionCompleteListener completeListener)

{
return (super.execute(strAction,args,context,component,
new MyListener(completeListener,config,args,context,component)));

}

Example 15-9. Implementing IActionListener
The following example from the Webtop message bar component adds the MessageBar
component as a listener to the session. The component implements IActionListener:
public void onInit(ArgumentList args)
{
super.onInit(args);
if (SessionState.getAttribute(MESSAGEBAR_ACTION_LISTENER) == null)
{
ActionService.addActionListener(this, ActionService.SESSION_SCOPE);
SessionState.setAttribute(MESSAGEBAR_ACTION_LISTENER, new Boolean(true));

502 Web Development Kit and Client Applications Development Guide

Customizing actions

}
}

The MessageBar class in Webtop clears the message bar before a new action completes:
public void onPreAction(
String strActionId, ArgumentList args, Context context, Form form)

{
MessageService.clear(form);

}

Nesting actions
If you need to nest actions, so that the first action calls another action before the action
takes place, you can call the second action from the first action’s precondition or
execution class. You would do this only if the two actions can also be used separately.
Alternatively, you can make the second action a listener for the first action or combine
the actions into a single action class.

If you need more information from the called action than a simple Boolean return,
register your precondition or execution class as an action listener, so that you can get
returned completion arguments (refer to Action listeners, page 500) .

Example 15-10. Nesting actions
In the following example from a DemoteAction class, which is called from an action
button in a business policy UI, the queryExecute() method for the demote action first
calls an audit action:
public boolean queryExecute(String strAction, IConfigElement config,
ArgumentList arg, Context context, Component component)

{
// determine whether the object is locked
boolean bExecute = false;

try
{
ActionService.execute("audit", args, getContext(), this, null);
// Do the demote action

}
...

}

Web Development Kit and Client Applications Development Guide 503

Customizing actions

504 Web Development Kit and Client Applications Development Guide

Chapter 16
Customizing Roles

WDK provides two alternative role model plugins to support user roles:
Client capability role model
Repository role plugin

For information on how to use and configure these plugins, refer to Chapter 8, Configuring Roles
and Client Capability.

The following topics describe role-based customization in the application:
• Role service APIs, page 505
• Custom role plugin, page 506
• Role-based menus, page 507

Role service APIs
The RoleService evaluates roles for the action and configuration services:
• The action service queries the role service to determine whether an action can be

executed based on roles. The role precondition works together with the object’s
permissions, so that a user can perform actions on the object without having the
required role if the user owns the object or is a repository superuser.

• The configuration service queries the role service via the role qualifier to determine
which component definition to presert to the current user.

The RoleService class has the following methods:

• getParentRole()

Returns the parent role name for the role that is passed as a parameter. This method
is used by the configuration service to evaluate scope based on role inheritance. For
roles defined as groups, this call returns the parent group. For client capability
roles, this returns the super role.

• isUserAssignedRole()

Web Development Kit and Client Applications Development Guide 505

Customizing Roles

Returns true if the user is assigned the role (named in the role parameter) or a
base role for the named role. Parameters: String user name, String role name,
ArgumentList (object properties used by the action precondition class), Context

• getUserRole()

Returns the role of a user. This method is called by the configuration service to
resolve the scope of the role qualifier.

• refresh()

Clears all role caches

Custom role plugin
If your application needs a different role framework from the client capability model, the
Docbase role model, or from a set of roles that include the client capability roles, you
can define roles behavior in a custom role plugin. Your plugin will be used instead of
the default Docbase role plugin .

To implement a custom role model , use the role model adaptor. Your role model class
must implement IRoleModelAdaptor. The default implementation of this adaptor is
com.documentum.web.formext.role.DocbaseRoleModel. Your custom role model should
be specified as the value of the <rolemodel>.<class> element in your application layer
app.xml. For example:
<config>
<scope>
<application>
<rolemodel>
<class>com.acme.role.LabRoleModel</class>

</rolemodel>
</application>

</scope>
</config>

The IRoleModelAdaptor interface defines the same methods as the RoleService class.
Your implementation of the method isUserAssignedRole() must determine which role a
user should have based on the action argument or component context.

Note: Client applications must query the repository for the user’s roles. WDK queries
the repository for roles and a list of each connected user’s roles every 10 minutes.

506 Web Development Kit and Client Applications Development Guide

Customizing Roles

Role-based menus
One common customization is role-based menus in which each role is presented with a
different menu. The following customization includes all the possible menus in a single
custom JSP page and makes the appropriate menu visible based on the user’s role:

1. Create a custom menu component definition that extends the Webtop menubar
component, and save your configuration file in /custom config:
<component id="menubar" extends="menubar:/webtop/config/menubar_component.xml">

2. Using the Webtop menubar JSP page as a model, create a separate dmf:menu control
with menu items for each role, and give each menu control a different name. Do not
set the visible attribute to either true or false.

3. Extend the Webtop Menubar class and reference this custom class in your custom
menubar component definition.

4. In the class onInit() method, get the user name by calling getDfSession().
getLoginUserName().

5. Get the user’s role from the method of com.documentum.web.formext.role.
RoleService:
getUserRole(java.lang.String strUsername)

6. For the user’s role, get the corresponding menu control (substitute the actual control
name as the first argument):
(Menu)getControl("ctrl_name", com.documentum.web.form.control.Menu).setVisible(true);

Web Development Kit and Client Applications Development Guide 507

Customizing Roles

508 Web Development Kit and Client Applications Development Guide

Chapter 17
Customizing Content Transfer

WDK supports three modes of content transfer that enable the transfer of content between the client
and the repository:
• HTTP transfer
• Unified Client Facilities (UCF), used in standalone Web applications
• Applets, supporting customizations based on WDK 5.2.5
You must configure the mode of content transfer that will be supported by your application. The
mode is specified in /custom/app.xml as are the other global content transfer configuration settings.
For more information, refer to <contentxfer> elements, page 66.

Note: All content that is specified as View in Browser in the user format preferences UI will be
delivered via HTTP transfer, regardless of the application default mode of transfer.

The following topics describe content transfer mechanisms.
• Content transfer modes compared, page 510
• Unified client facilities (UCF), page 513
• HTTP content transfer, page 529
• Content transfer listeners, page 531
• Content transfer service classes, page 532
• UCF transfer component customization, page 533
• Content transfer control initialization, page 534
• Content transfer debugging, page 535
• Streaming content to the browser, page 537
• Content transfer progress, page 537
• Using Pre-5.3 content transfer components, page 536
For information on the content transfer servlets, refer to Web deployment descriptor (web.xml),
page 83.

The legacy WDK 5.2.5 content transfer applet controls and components are described in Web
Development Kit Reference Guide.

Web Development Kit and Client Applications Development Guide 509

Customizing Content Transfer

Content transfer modes compared
The following table compares feature support for the three modes of content transfer:

Table 17-1. Feature support in content transfer modes

Feature WDK 5.2.5 applet UCF HTTP

Download to client Large applet Small applet with
client-side UCF
deployment

No client-side
deployment

Drag and drop Not supported Supported on IE
browser

Not supported

Viewing or editing
application

Controlled by
browser

Configurable Controlled by
browser

ACS support Not supported Supported Limited support for
export or edit; not
supported for view
with relative links

Progress display Supported Supported Supported only by
certain browsers

Preferences Not supported Supported Not supported

Restart interrupted
operation

Not supported Supported Not supported

Checkout Supported Supported Limited support.
User must save
and select checkout
location.

Edit Supported Supported Limited support.
User must save
and select checkout
location.

Checkin Supported Supported Limited support.
User must navigate
to saved document.

View Supported; always
transfers content

Supported; does
not transfer content
if file is up to date
on client

Supported; always
transfers content

Export Supported Supported Supported

510 Web Development Kit and Client Applications Development Guide

Customizing Content Transfer

Feature WDK 5.2.5 applet UCF HTTP

Import Supported Supported Limited support.
Single file selection
at a time, no folder
import.

Client xfer tracing Supported Supported Not supported

Server xfer tracing Supported Supported Supported

File compression Limited support
(on or off)

Supported, with
configurable
exceptions

Turn on HTTP
compression in
web.xml

XML application Supported Supported Import single file
against Default
XML Application

Virtual document Supported Supported Root only

The configuration settings for UCF, HTTP, and WDK 5.2.5 applet modes are mapped
in the following tables:

Table 17-2. How client conguration settings map in content transfer modes

Setting Applet
(app.xml)

UCF
(client.config.xml)

HTTP

Temp working
directory for
upload/download

contentloca-
tionXXX

temp.working.dir None

Checked out files checkoutloca-
tionXXX

checkout.dir User must save file,
then check in from
file

Exported files viewedlocationXXX export.dir or user
choice

Browser-specific
UI to select a
download location

Viewed files viewedlocationXXX viewed.dir Browser tempo-
rary internet files
location, for ex-
ample, $java{user.
home}\Local Set-
tings\Temporary
Internet Files

User location (base
for other locations)

userlocationXXX user.dir (defined in
config file)

None

Web Development Kit and Client Applications Development Guide 511

Customizing Content Transfer

Setting Applet
(app.xml)

UCF
(client.config.xml)

HTTP

Registry file
location

registrylocatio-
nunix

registry.file None

Registry mode registrylocatio-
nunix

registry.mode None

Log file location wdk.log logs.dir None

Tracing/debug Limited: debug
stops cleanup of
temp files on client

tracing.enabled None

File polling None file.poll.interval None

Buffer and chunk
size

buffersize
uploadchunksize

None None

Removal of viewed
files

housekeepingXXX UCF operation
reads registry key

None

XXX denotes settings that have more than one value.

Table 17-3. How server conguration settings map in content transfer modes

Setting Applet
(app.xml)

UCF
(server.config.xml)

HTTP

Temp working
directory for
upload/download

server.
contentlocation*

server.
contentlocation*

server.
contentlocation*

Tracing/debug Limited: debug
stops cleanup of
temp files on server

tracing.enabled Limited: debug
stops cleanup of
temp files on server

Polling for config
file change

None file.poll.interval None

Log file location wdk.log DFC logging file in
log4j.properties

wdk.log

File compression inlinecompression* compression.
exclusion.formats

None

512 Web Development Kit and Client Applications Development Guide

Customizing Content Transfer

Unied client facilities (UCF)
UCF is a lightweight client-based service that transfers content between the client,
application server, and Content Server. UCF performs the following functions:
• Standardizes content handling across infrastructure and applications
• Simplifies XML and compound document processing in a Web environment by

decoupling DFC andWDK and by providing an open framework for content analysis
• Improves reliability, maintainability, and performance of WDK content transfer
• Requires no DFC on the client

Note: UCF content transfer is not used for import when the user has selected accessibility
mode. HTTP content transfer is used in accessibility mode.

Information about UCF in the WDK framework is provided in the following topics:
• UCF on the client, page 513
• Configuring the UCF client, page 514
• Configuring UCF client path substitution, page 517
• Configuring UCF support for unsigned or non-trusted SSL certificates, page 518
• UCF on the application server, page 520
• Configuring the UCF application server, page 521
• Configuring UCF support for chunked transfer encoding, page 522
• UCF troubleshooting, page 524
• Windows client registry in content transfer, page 527
• UCF process, page 525

UCF on the client

A lightweight installation applet silently installs UCF on the client. This applet does not
download and install on the client, so it does not require special permissions for the user.
The applet activates UCF, which downloads and installs UCF components (not applets)
on the client. The applet automatically checks with the UCF server to see whether it
requires any missing or updated client services.

The UCF client does not require DFC. It does require Java 1.4.2 or higher on the client
machine. For Windows clients, if the appropriate version of Java is not found, then the
UCF installer silently installs a private copy of the JRE for the use of UCF only. The
private JRE is not used by the browser.

UCF sessions are short-lived. At the end of the request, the unused session is
disconnected. If the session is not released at the end of the request, it is disconnected
upon the next release() call.

Web Development Kit and Client Applications Development Guide 513

Customizing Content Transfer

For information on configuration default file locations on the client, refer to Configuring
the UCF client, page 514.

Conguring the UCF client

You can configure default settings for client locations and SSL support in the UCF
configuration files. Client location settings are overridden by locations specified in the
client registry. Refer to Windows client registry in content transfer, page 527 for details
on the registry keys. Both the default settings and the registry settings for locations on
the client are overridden by user preference after UCF has been installed on the client.

UCF client default settings are configured in ucf.installer.config.xml, which is located in
/wdk/contentXfer. The contents of this file are used to write a platform-specific config
file on the client, ucf.client.config.xml. The location of this file on the client is specified
in ucf.installer.config.xml, for example, the user’s OS home directory, for example,
C:\Documents and Settings\pradeep\Documentum\ucf\DENG0012\shared\config.
(This location is configurable.) A typical installation is diagrammed below. (The
locations are configurable.)

Figure 17-1. UCF sample client conguration mapping

The following table describes the configurable settings in ucf.installer.config.xml. (Not
all settings are configurable.):

514 Web Development Kit and Client Applications Development Guide

Customizing Content Transfer

Table 17-4. UCF client conguration settings

Element Description

<platform> Specifies platform details. The
combination of os and arch
values must be supported by the
installed WDK release version.
Valid values for attribute os: all | windows
| mac | solaris | hp-ux | aix | linux
Valid values for attribute arch:all | x86 |
ppc | sparc | pa_risc | power | power_rs
| i386. The combination os=”all” and
arch=”all” sets defaults for all platforms.
The values within <platform> override
these defaults.

<defaults> Specifies the default values to be used
if the installer cannot determine a
value. These values are overridden by
settings in <defaults> element within a
platform-specific element (<platform>).

<ucfHome> Location for the UCF runtime on the
client. Refer to Configuring UCF client
path substitution, page 517.

<ucfInstallsHome> Location for components installed by UCF
on the client. Refer to Configuring UCF
client path substitution, page 517.

<configuration> Contains <option> elements that configure
default content transfer file locations on
the client

<option>.<value> All path (option name ends in .dir)
must be absolute or begin with a path
substitution variable (refer to * below).
user.dir: Sets base location for
export.dir, checkout.dir, viewed.dir,
temp.working.dir, and logs.dir
export.dir: Default location for exported
files (UI allows user to select location dur-
ing export, saved as preference)
checkout.dir: Location
for checked out files
viewed.dir: Location for viewed files
temp.working.dir: Location for temporary

Web Development Kit and Client Applications Development Guide 515

Customizing Content Transfer

Element Description

upload download of files, cleaned
up after user specifies the destination
logs.dir: Location of client log file,
used when client tracing is enabled in
tracing.enabled option

Option names

registry.mode Type of registry that
tracks checked out files.
Valid values windows (de-
fault, Windows registry) | file
(all non-Windows platforms)
For file mode, registry file location
will be written into client config
file. All platforms except Macintosh:
user.dir\documentum.in. Macintosh:
user.dir\registry.xml

tracing.enabled Turns on client UCF tracing to a log
file ucf.trace*.log where * is a number
appended to the log name.

file.poll.interval Interval in seconds (non-negative) to poll
for changes to UCF configuration files

https.host.validation Set value to false and persistent to false to
stop server validation of SSL certificates.
(User is still required to accept certificate.)
Default value=true. Refer to Configuring
UCF support for unsigned or non-trusted
SSL certificates, page 518.

https.truststore.file Specifies the location of the trust store
file containing one or more self-signed or
untrusted SSL certificates. Path must be
valid for all users. Refer to Configuring
UCF support for unsigned or non-trusted
SSL certificates, page 518

516 Web Development Kit and Client Applications Development Guide

Customizing Content Transfer

Element Description

https.truststore.encrypted.password Specifies the trust store password.
Default=”changeit”. You can use the UCF
password encryption utility to provide
an alternative password. Set the value
attribute to the encrypted password and
the persistent attribute to false. Refer to
Configuring UCF support for unsigned or
non-trusted SSL certificates, page 518

cipher.name Name of cipher used to encrypt truststore
password. Refer to Configuring UCF
support for unsigned or non-trusted SSL
certificates, page 518

cipher.secret.key Cipher key bytes encoded in base64. Refer
to Configuring UCF support for unsigned
or non-trusted SSL certificates, page 518

cipher.secret.key.algorithm Name of algorithm to use for cipher key.
Refer to Configuring UCF support for
unsigned or non-trusted SSL certificates,
page 518

<platform>.<java> Sets the Java version and location for the
platform

<platform>.<nativelibs> Sets the version and location of
platform-specific native libraries used by
UCF

ucf.installs.config.xml — The file ucf.installs.config.xml describes all of the UCF
installations on the machine. This file is located in the UCF installation home,
which is typically user_home/Documentum/ucf/config/. In the same directory is
ucf.client.logging.properties, which describes the logging (not tracing) options that
controlJava logging behavior for the UCF client. For more information on UCF logging,
refer to UCF logging, page 523.

Conguring UCF client path substitution

The UCF client configuration file can be configured to provide locations for client
content using path substitution variables. UCF client default settings are configured in
ucf.installer.config.xml, which is located in /wdk/contentXfer in your installed WDK
application.

Web Development Kit and Client Applications Development Guide 517

Customizing Content Transfer

The path to location variables in this configuration file can begin with one of the
following substitution variables:
• $java{...}: Any Java system property, for example, $java(user.home)
• $env{...}: Any environment variable, for example, $env(USERPROFILE) in Windows

or the equivalent on other platforms
• $ucf{...}: Any UCF configuration option, for example, $ucf{user.dir}
Path substitutions can be mixed, with more than one substitution within a string.

Caution: All substitutions must resolve to one path per user. For example, on Windows,
$env{USERPROFILE}/Documentum/ucf is valid, but $env{HOMEDRIVE}/Documentum/
ucf is not. This restriction is not enforced by the UCF installer and must be planned for
by the application administrator.

Substitution paths must be defined before they are used. For example, if user.dir is
defined first, it can then be used in the second path as shown below:
<option name="user.dir"><value>$java{user.home}/Documentum
</value></option>

<option name="export.dir"><value>$ucf{user.dir}/Export
</value></option>

The following substitution is invalid because the variable user.dir is used before it is
defined:
<option name="export.dir"><value>$ucf{user.dir}/Export...
<option name="user.dir"><value>$java{user.home}/Documentum...

Tip: Generally, <ucfHome> and <ucfInstallsHome> have the same value. However, if the
user home directory is on a network share, performance may be improved if UCF binaries
are installed in a local directory rather than in the home directory. In this case, change
<ucfHome> to point to a local directory. This directory must be unique for each OS user.

Conguring UCF support for unsigned or non-trusted
SSL certicates

If your enterprise has configured the application server to use an SSL certificate that is
issued by a certifying authority (CA) not trusted by Java or to use a self-signed certificate,
you have two options:
• Configure UCF to switch to non-server validation. This means that the certificate will

not be validated against the Java trust store. The default is server validation against
the Java trust store, so you must explicitly change this setting to support self-signed
certificates or certificates from untrusted CAs. The user must accept the certificate
before UCF can work over SSL.

518 Web Development Kit and Client Applications Development Guide

Customizing Content Transfer

• Install a trust store on each client machine containing the self-signed or non-trusted
certificate and configure the UCF installer configuration file to locate and access
the trust store. Subsequent updates to the VM will not require an update of trust
store file.

Configuring non-server validation mode — In non-server validation mode,
UCF will override the Java default implementation of Trust Manager to allow
UCF client to automatically trust certificates used for SSL authentication. Modify
ucf.installer.config.xml, which is located in /wdk/contentXfer in your installed WDK
application.. Add the following option within the <configuration> element:
<option name="https.host.validation" persistent="false"><value>false
</value></option>

Configuring server validation mode — Install a truststore in each client machine
containing one or more self-signed or untrusted certificate. You can install this to
a pre-defined location, such as $java{user.home}/Documentum/.truststore where
.truststore is the name of the file that contains the certificates.

Set the location in ucf.installer.config.xml in the Web application by adding the following
option element to the <configuration> element:
<option name="https.truststore.file"><value>path_to_client_truststore
</value></option>

The file path to the truststore file must be valid for all clients.

You can also modify the UCF configuration on each client after UCF has been installed on
the client. Navigate to the client UCF home location. This can be located by examining
the value of <ucfHome> in the Web application file ucf.installer.config.xml, located in
/wdk/contentXfer. Add /machine_name/shared/config to this path, and you will locate
the file ucf.client.config.xml. Edit or add the option element https.truststore.file as
shown above.

Ecnrypting a trust store password — To access the certificates trust store, UCF must
have the trust store password. The default used by UCF is "changeit”. You can encrypt
your own password and store the encrypted password in the UCF installer configuration
file.

To encrypt a password, use the default Cipher class in UCF. This utility has the following
syntax:
java -cp ...com.documentum.ucf.common.util.spi.BaseCipher password
[cipher_name key_algorithm] [password_encoding]

Your classpath (–cp …) must contain references to ucf-client-impl.jar and
ucf-client-api.jar. (These APIs are present in the WDK application directory
/wdk/contentXfer.)

Examples:
com.documentum.ucf.common.util.spi.BaseCipher "my password"

Web Development Kit and Client Applications Development Guide 519

Customizing Content Transfer

com.documentum.ucf.common.util.spi.BaseCipher "my password" UTF-8
com.documentum.ucf.common.util.spi.BaseCipher "my password"
DES/ECB/PKCS5Padding DES

com.documentum.ucf.common.util.spi.BaseCipher "my password"
DES/ECB/PKCS5Padding DES UTF-8

The output of the utility will be similar to the following:
cipher.name: DES/ECB/PKCS5Padding
cipher.secret.key: 00V8MsKbeto=
cipher.secret.key.algorithm: DES
Encrypted password (e.g. https.truststore.password): VIGQdGy1YAQ=
Password encoding (e.g. https.truststore.password.encoding): UTF-8

Copy the encrypted password and encoding to their respective <option> elements in
ucf.installer.config.xml.

Note: Some algorithms in the Java Cryptography Extension Reference Guide (Appendix
A) are not supported. The supported algorithm must take take the key as a byte array.
Stronger algorithms can be used and deployed to the JRE lib/security directory.

UCF on the application server

The UCF server runs in the application server. It is deployed as part of the application,
that is, within the WAR file.

WDK UCF components are paired as one container and one component per content
transfer operation. The container has an associated service class that orchestrates the
DFC/UCF/WDK interaction and progress information. The service class is invoked
and executed asynchronously by the container class, using the WDK asynchronous job
framework. Progress is reported by a job progress component. Control is returned to the
container when the job completes or user interaction is required.

The content transfer component is associated with a service processor that propagates
values from the UI to the DFC operation and operation nodes. To support UCF content
transport, a content transfer component definition must contain a <ucfrequired/>
element. The element turns on UCF for all pages by default. UCF can be turned off for
specific events or JSP pages within a component in the following optional elements
within a component definition:

520 Web Development Kit and Client Applications Development Guide

Customizing Content Transfer

<ucfrequired> Contains zero or more <events> and/or
<pages> elements

<events> Contains one or more <event> elements
that correspond to events in the
component class, for example, onInit.
The component class method must be
the value of the <event> name attribute,
and the enabled attribute must be set to
false to bypass UCF for the event. If the
<ucfrequired> element is present and UCF
is disabled for events, one or more pages
must have UCF enabled.

<pages> Contains one or more <page> elements
that correspond to JSP pages in the
component definition, for example, start.
The page element (<pages>.<start> in this
example) in the component definition
must be the value of the <page> name
attribute, and the enabled attribute must
be set to false to bypass UCF for the page.

The content transfer service, processor, and transport classes handle UCF, HTTP, and
applet-based content transfer. Those classes are described in Content transfer service
classes, page 532.

For information on configuring UCF server settings, refer to Configuring the UCF
application server, page 521.

Conguring the UCF application server

You can configure default settings for server file locations in the UCF server configuration
file. The server configuration file ucf.server.config.xml is located in /wdk/src. After
installation on the application server, this file is located in /WEB-INF/classes. The
following table describes server configuration options in ucf.server.config.xml:

Web Development Kit and Client Applications Development Guide 521

Customizing Content Transfer

Table 17-5. UCF application server conguration settings

Element Description

temp.working.dir Location for temporary upload download
of reads and writes, cleaned up content
transfer has completed. Not used by
WDK, which uses server.contentlocation*
in app.xml.

tracing.enabled Turns on server UCF tracing to a DFC log
file trace.log in the location specified by
log4j.properties

file.poll.interval Interval in seconds (non-negative) to poll
for changes to UCF configuration files

compression.exclusion.formats Specifies formats to be excluded from
compression during file transfer.

http11.chunked.transfer.encoding Sets chunked content transfer encoding
to HTTP 1.1 chunking (default) or
UCF alternative chunking (for certain
reverse proxy environments). Valid
values: enabled (default) | disabled (UCF
alternative) | enforced (forces HTTP 1.1.
chunking, for debugging and testing
only). Refer to Configuring UCF support
for chunked transfer encoding, page 522
for information.

alternative.chunking.buffer.size Server informs the client of the buffer size
in bytes for UCF alternative chunking.
(Does not apply to HTTP 1.1 default
chunking.) Default = 2M. Valuemust be an
integer; with units in bytes, kilobytes(K),
or megabytes (M), for example, 1M or
512K (no space). Refer to Configuring
UCF support for chunked transfer
encoding, page 522 for information.

Conguring UCF support for chunked transfer encoding

Some environments with external Web servers that servr as forward or reverse proxy
servers do not support native HTTP 1.1 chunking. For these servers, you must configure

522 Web Development Kit and Client Applications Development Guide

Customizing Content Transfer

ucf.server.config.xml, which is located in /WEB-INF/classes. To disable HTTP 1.1
chunking and use UCF alternative chunking, edit the following options:
<option name="http11.chunked.transfer.encoding"><value>disabled
</value></option>
<option name="alternative.chunking.buffer.size"><value>1M
</value></option>

For performance tuning, you can change the default buffer size for UCF alternative
chunking. Buffer sizes: Default = 2M. Value must be an integer; with units in bytes,
kilobytes(K), or megabytes (M), for example, 1M or 512K (no space).

UCF logging

WDK provides logging at the content transfer component level. For information on this
logging, refer to the section in this document entitled "Content transfer debugging.” .

Server-side UCF uses DFC’s infrastructure for logging. The logs go to the location
specified in the log4j.properties file. UCF server API tracing is turned on in
ucf.server.config.xml:
<option name="tracing.enabled">
<value>true</value>

</option>

Client-side UCF uses the Java logging infrastructure similar to that of log4j The
location is configured in ucf.client.logging.properties file, which is typically found in
user_home/Documentum/ucf/config/. The default log level is set to WARNING. For a
more granular level during troubleshooting, set it to FINE or FINER. Typical log contents
are shown below:
Nov 3, 2005 9:22:54 AM com.documentum.ucf.client.logging.impl.UCFLogger fatal
SEVERE:
Unrecoverable stream error:
com.documentum.ucf.common.configuration.ConfigurationException:
java.io.FileNotFoundException: ucf.server.config.xml

com.documentum.ucf.common.transport.TransportStreamException:
Unrecoverable stream error:
com.documentum.ucf.common.configuration.ConfigurationException:
java.io.FileNotFoundException: ucf.server.config.xml
at com.documentum.ucf.client.transport.impl.ClientReceiver.getRequests(
ClientReceiver.java:51)
at com.documentum.ucf.client.transport.impl.ClientSession.handshake(
ClientSession.java:414)
at com.documentum.ucf.client.transport.impl.ClientSession.run(
ClientSession.java:176)

Tracing is enabled in ucf.client.config.xml. Trace files (ucf.trace*.log) go to the location
specified, as in the example shown below:
<option name="logs.dir">
<value>C:\Documentum\logs</value>

Web Development Kit and Client Applications Development Guide 523

Customizing Content Transfer

</option>
<option name="tracing.enabled">

<value>true</value>
</option>

Typical trace output is shown below:
Mar 25, 2005 11:23:44 AM com.documentum.ucf.client.logging.impl.UCFLogger trace
FINER:
.com.documentum.ucf.common.configuration.IClientConfigurationService.
getConfiguration
[started]

Mar 25, 2005 11:23:44 AM com.documentum.ucf.client.logging.impl.UCFLogger trace
FINER:
.getConfiguration [finished]
Mar 25, 2005 11:23:44 AM com.documentum.ucf.client.logging.impl.UCFLogger trace
FINER:
.com.documentum.ucf.common.configuration.IConfiguration.getOptionValue
[started]

Mar 25, 2005 11:23:44 AM com.documentum.ucf.client.logging.impl.UCFLogger trace
FINER:
.getOptionValue [finished]
Mar 25, 2005 11:23:44 AM com.documentum.ucf.client.logging.impl.UCFLogger trace
FINER:
.com.documentum.ucf.client.transport.impl.ClientSession.findArgIndex
[S] [started]

Mar 25, 2005 11:23:44 AM com.documentum.ucf.client.logging.impl.UCFLogger trace
FINER: .findArgIndex [finished]

UCF troubleshooting

Refer to UCF logging, page 523 for instructions on turning on and interpreting UCF
logging.

Problem scenario: "Initializing plug-in…” page hangs — Troubleshooting steps:

1. See if UCF client is installed correctly, especially configuration files. Look at paths in
UCF client configuration file (refer to Configuring the UCF application server, page
521) to make sure user has permissions on the target directories.

2. Open the browser Java console look for "invoked runtime: ... connected, uid: ..”.
"Invoked runtime” indicates successful launch of the process. A UID indicates
successful connection to the UCF server.

UCF client runtime is not responding — Troubleshooting steps:

524 Web Development Kit and Client Applications Development Guide

Customizing Content Transfer

1. See if the process from the launch command is running: Open the browser Java
console look for " invoked runtime: ... connected, uid: ...” A UID indicates successful
connection to the UCF server.

2. Are there any errors on the UCF server side? Check the application server console.

3. Restart the browser and retry the Webtop operation.

4. Kill the UCF launch process and retry the Webtop operation.

UCF process

Requests for content transfer are passed from the client to the WDK application and then
to UCF through the HTTP client-server mechanism. The components are diagrammed
below:

Web Development Kit and Client Applications Development Guide 525

Customizing Content Transfer

Figure 17-2. UCF client-server process

In UCF mode, all content transfers are handled by the UCF client runtime process,
outside of the browser process. The UCF process is instantiated for each browser request
which requires UCF for its processing

The sequence of interaction between the browser, server, and UCF runtime is shown in
the following diagram:

526 Web Development Kit and Client Applications Development Guide

Customizing Content Transfer

Figure 17-3. UCF client-server session management

Windows client registry in content transfer
WDK 5.2.5 applet content transfer components, and some UCF content transfer
components, use Windows registry keys to read the locations for content transfer files
on the client. The registry is also used to record the name and full path to viewed or
checked out files. The settings in these keys override the default settings in the UCF
client configuration files: ucf.installer.config.xml, which is used by the client installer
to create the client configuration file ucf.client.config.xml. If the user does not have
existing locations specified in the Documentum registry key, the default settings from
this configuration file will be used. Users can then set location preferences, which then
override both the default configuration settings and the registry settings.

The client registry keys are summarized below. Keys are relative to
HKEY_CURRENT_USER (HKCU)\SOFTWARE\Documentum. If the registry key does
not exist, the location specified in the UCF client configuration file is used. Refer to
Configuring the UCF application server, page 521 for details on the client defaults.

Web Development Kit and Client Applications Development Guide 527

Customizing Content Transfer

Table 17-6. Content transfer registry keys used by content transfer applets

Key Name String Purpose

\Common CheckoutDirectory Path to checkout di-
rectory on client. If
not found, defaults to
path specified in <con-
tentxfer>.<client>.<check-
outlocationwindows>
(applets) or value in UCF
client config file (UCF).

\Common ExportDirectory Path to directory for
exported and viewed files
on client. If not found,
defaults to path specified
in <contentxfer>.<client>.
<viewedlocationwindows>
(applets) or or value in
UCF client config file.

\Common\InlineDescen-
dants

(Applets only) Each string
specifies the path to a
checked out file that is a
viewable descendant of the
root XML file. If a chunk
is read-only, its path is
recorded in the ViewFiles
key.

\Common\ViewFiles Specifies the path to a file
that is a file downloaded
for viewing and other
information (applets and
UCF)

\Common\WorkingFiles Specifies the path to a file
that is checked out to the
checkout directory (applets
and UCF)

\HouseKeeping LastHouseKeeping Specifies the date of last
housekeeping (applets
only). DFC modifies this
date after cleaning up
viewed files.

528 Web Development Kit and Client Applications Development Guide

Customizing Content Transfer

HTTP content transfer
All content transfer operations are available via HTTP, with some limitations (refer to
below). HTTP transfer mode uses the transfer mechanism that is defined in the following
standards:
• HTTP/1.1, RFC 2616 (sections 3.6.1, 14.17)
• Form-based file upload, RFC 1887
• Content-Disposition header, RFC 2183

Note: Browser popup blockers interfere with content download because HTTP
download opens a new window to display downloaded content. You can try turning off
the popup blocker or adding the WDK server to the trusted sites in the browser.

An HTTP file upload submits the file content in multipart/form-data encoded HTML
forms. The request is filtered by the RequestAdaptor filter. This filter, specified in
web.xml, wraps requests of type HttpServletRequest in MultipartHttpRequestWrapper
in order to facilitate separation of the multipart content from the request parameters.

The filebrowse control in upload mode ensures that the parent form is rendered with
multipart encoding set. When the user selects a file, the file as well as its path become
part of the control state.

HTTP file download sends the file content inline in HTTP responses. Header information
in the response allows the browser to reconstruct the original file name. The mime-type
in the response header allows the browser to select the appropriate viewer or editor
application for the content. The view component uses the virtual link handler to deliver
content, ensuring that relative links in the content are resolved by the browser.

Limitations — HTTP content transfer is supported for XML files but only for a single
file used with the Default XML Application. For virtual documents, only the root (parent)
file is transferred. The browser handles the launch of viewing and editing applications.

The checkout directory is not configurable. To check out a document, users must select
Edit, then either save the document or open and save it. On checkin, the user must
navigate to the location in which the document was saved.

User preferences are not supported in HTTP mode.

Example 17-1. Getting multi-part upload les in the request
Files that are uploaded via HTTP are available from HttpTransportManager.
getUploadedFiles(paramName). The file name is in ServletRequest.
getParameter(paramName) or ServletRequest.getParameterValues(paramName).

The following example uses the filebrowse control to get the file paths on the client
machine and provide the path to the HTTP import component and container.

Web Development Kit and Client Applications Development Guide 529

Customizing Content Transfer

The JSP page that gets the content contains the filebrowse control as follows. This table
row can be repeated to get multiple files in the same upload:
<table><tr>
<td align="left" valign="top" width="100%">
<dmf:filebrowse name="filebrowse" cssclass="
defaultFilebrowseTextStyle" size="50" fileupload="true"/>

</td>
</tr></table>

The code that gets the files and their metadata and displays the metadata in a JSP page is
shown below:
<table border="0" cellpadding="1" cellspacing="0" width='100%'>
<%
HttpTransportManager manager = HttpTransportManager.getManager();
for (Enumeration e = manager.getUploadedFileParameterNames(
); e.hasMoreElements();)

{
String param = (String) e.nextElement();
String[] fileNames = request.getParameterValues(param);
File[] files = manager.getUploadedFiles(param);
for (int i=0; i<files.length; i++)
{

%>
<tr>
<td style="font-variant: small-caps; font-weight: bold;">
param name: </td>

<td style="white-space: nowrap">
<%=param%></td></tr>

<tr>
<td style="font-variant: small-caps; font-weight: bold;">

client filename: </td>
<td style="white-space: nowrap">

<%=fileNames[i]%></td></tr>

<tr>
<td style="font-variant: small-caps; font-weight: bold;">

path on server: </td>
<td style="white-space: nowrap">

<%=files[i].getAbsolutePath()%></td></tr>

<tr>
<td style="font-variant: small-caps; font-weight: bold;">

size: </td>
<td style="white-space: nowrap">

<%=files[i].length()%></td>
</tr>
<%

}
}

%>
</table>

530 Web Development Kit and Client Applications Development Guide

Customizing Content Transfer

Content transfer listeners
Most UCF content transfer containers set a return value when the task has completed.
The names of those return values are exposed as public constants in each container:

Table 17-7. UCF content transfer result variables

Variable Description

CancelCheckoutContainer.
NEW_OBJECT_IDS

Returns a map of object IDs of the objects
before checkout

CheckinContainer.
NEW_OBJECT_IDS

Returns a map of new object IDs for the
objects checked in

CheckoutContainer.
NEW_CLIENT_PATHS

Returns a map of object IDs to file paths
for the corresponding files on the client

ExportContainer.
NEW_CLIENT_PATHS

Returns a map of object IDs to file paths
for the corresponding files on the client

ImportContentContainer.
NEW_OBJECT_IDS

Returns a list of object IDs for new objects
ids for the imported files. Refer to Web
Development Kit and Applications Tutorial
for an example that gets the new object
IDs.

You can retrieve values or perform some other operation after an action has finished by
instantiating a CallbackDoneListener in your component class. The following example
retrieves checkout return values:
public void someMethod()
{
...
ActionService.execute("checkout", args, this.
getContext(), this, new CallbackDoneListener(
this, "onReturnFromCheckout"));

}

public void onReturnFromCheckout(
String strAction, boolean bSuccess, Map map) {
...
HashMap hmNewClientPaths = (HashMap) map.get(
CheckoutContainer.NEW_CLIENT_PATHS);

if (hmNewClientPaths != null)
{
for (Iterator iter = hmNewClientPaths.entrySet(
).iterator(); iter.hasNext();)

{
Map.Entry e = (Map.Entry) iter.next();
String objectId = (String) e.getKey();
String clientPath = (String) e.getValue();
...

Web Development Kit and Client Applications Development Guide 531

Customizing Content Transfer

}
}

}

Content transfer service classes
The content transfer service layer is component of three parts: a content transfer service
class, a service processor, and a content transport class. Each content transfer operation
involves one service class, one transport class, and multiple processors. These service
classes interact with the component and container classes to perform the content transfer
task.

The container transfer container definition specifies a service class that extends
ContentTransferService and acts as a controller for the UCF processor and transport
classes as well as the WDK container class. The service sets up the DFC context (DFC
session, operation) and reads the WDK container definition. Each content transfer
container has a service implementation.

The container definition also specifies a transport class that encapsulates logic for the
transport mechanism. The class HttpContentTransport implements HTTP transport, and
UcfContentTransport implements UCF transport. This class interacts with the service
class, the underlying DFC operation, WDK content transfer component, and UCF (if
applicable). There is only one transport per service instance.

The content transfer component definition specifies a processor class that extends
InboundProcessor or OutboundProcessor. The component processor sets object
properties on the DFC package and operation objects. The processor operates
independently of the type of transport. Each content transfer component has a processor
implementation.

Some containers also use processor classes. For example, the edit container processor
class launches the editor applications on the client.

Each content transfer component is paired with a container. The component definition
specifies the processor class. The container definition specifies the service and transport
classes. The container component is responsible for creating an instance of the service
class, setting it up with the desired transport class implementation and invoking the
service. The component class creates an instance of the processor class, sets appropriate
property values on it, and supplies it to the container, which executes the service class.
The relationship between the classes is diagrammed below:

532 Web Development Kit and Client Applications Development Guide

Customizing Content Transfer

Figure 17-4. Content transfer component classes and service layer

Both service classes and service processor classes provide hooks for pre- and
post-processing. These customization points are described in UCF transfer component
customization, page 533

The ContentTransferConfig class provides access to the application content
transfer configuration in app.xml, such as transfer mechanism and server and
client content locations. A custom configuration reader class may be specified in
ContentTransferConfig.properties.

UCF transfer component customization
You can extend a content transfer component or container. You can also extend or write
your own service class for the container or service processor class for the component.
provide hooks for pre- and post-processing.

Refer to Content transfer listeners, page 531 for the return values such as new object IDs
that are available from the content transfer container classes.

A container service class extends the abstract class ContentTransferService in the package
com.documentum.web.contentxfer. For example, the export container service class,
com.documentum.web.contentxfer.impl.ExportService, extends OutboundService in the
same package, which itself extends ContentTransferService. The following methods of
ContentTransferService are good customization points:
• preExecute()

Initializes the underlying operation and package objects
• postExecute()

Called at the end of execute()
A component processor class extends the abstract class ServiceProcessorSupport and
implements IServiceProcesso in the package com.documentum.web.contentxfer. For
example, the export component processor class com.documentum.web.contentxfer.impl.

Web Development Kit and Client Applications Development Guide 533

Customizing Content Transfer

ExportProcessor extends OutboundProcessor, which extends BaseProcessor, which
extends ServiceProcessorSupport.

The following methods of ServiceProcessorSupport are good customization points:
• preProcess(IDfContentPackage pkgp)

Called to pre-process the operation package, if one exists, before executing the
operation.

• preProcess(IServiceOperation op)

Called to pre-process the service operation before executing it. If the operation
package exists, this method is called after preProcess(IDfContentPackage).

• postProcess(IDfContentPackage pkgp)

Called to post-process the operation package, if one exists, after executing the
operation.

• postProcess(IServiceOperation op)

Called to post-process the operation after executing it.

Content transfer control initialization
Any component that extends ContentTransferComponent can provide configuration
of named controls in the component definition. For example, you can specify default
attribute values on the control.

Controls that can be initialized are specified in the <init-controls> element of the
component definition. The <control> element has an attribute for the control name
and type. The name must match the control name in the JSP page, and the type must
match the control class. Each attribute value to be initialized is specified within an
<init-property> element. The attribute name is specified as the value of <property-name>
and the value as <property-value>. For example, the cancelcheckout component JSP page
cancelCheckout.jsp has a radio control named nodescendents:
<dmf:radio name="nodescendents" group="group1" nlsid="
MSG_LEAVE_DESCENDENTS_CHECKEDOUT"/>

This control is initialized in the component definition as follows:
<init-controls>
<control name="nodescendents" type="com.documentum.web.form.control.Radio">
<init-property>
<property-name>value</property-name>
<property-value>true</property-value>

</init-property>
</control>

</init-controls>

534 Web Development Kit and Client Applications Development Guide

Customizing Content Transfer

Note: Changes to the configured control’s properties by the component implementation
class at runtime override the configured defaults.

Content transfer debugging
Content transfer tracing flags UCF_MANAGER or HTTP_MANAGER can be
turned on in com.documentum.debug.TraceProp.properties or by navigating to
/wdk/tracing.jsp. Output is found in the WDK log file whose location is specified in
$DOCUMENTUM_SHARED/config/log4j.properties. By default, this file is the value of
log4j.appender.file.File=C\:/Documentum/logs/wdk.log.

Note: The logging is verbose and can generate large logs in a short period of time.

Sample tracing output for UCF checkout operation, from wdk.log (edited for
appearance):
[http-8080-Processor21] DEBUG com.documentum.web.common.Trace-
ucf required: true, component: checkoutcontainer

[http-8080-Processor22] DEBUG com.documentum.web.common.Trace-
ucf required: true, component: ucfinvoker

[http-8080-Processor21] DEBUG com.documentum.web.common.Trace-
Received request key:
2284f8c1b0cfef3b1q113108b1q10338b260041q1d7ffe

[http-8080-Processor21] DEBUG com.documentum.web.common.Trace-
Received client id:
1;2284f8c1b0cfef3b1q113108b1q10338b260041q1d7ffe, httpsession:
E4B2DF134E335B0C03AF2AD13108D098

[http-8080-Processor21]
DEBUG com.documentum.web.common.Trace-
new session id added:
1;2284f8c1b0cfef3b1q113108b1q10338b260041q1d7ffe

[http-8080-Processor21]
DEBUG com.documentum.web.common.Trace-
reserved
2284f8c1b0cfef3b1q113108b1q10338b260041q1d7ffe by
Thread[http-8080-Processor21,5,main]

[http-8080-Processor21] DEBUG com.documentum.web.common.Trace-
ucf required: true, component: checkoutcontainer

[http-8080-Processor21] DEBUG com.documentum.web.common.Trace-
created new session:
com.documentum.ucf.server.transport.impl.ServerSession@1154718, id: 1

[http-8080-Processor21] DEBUG com.documentum.web.common.Trace-
reserved com.documentum.ucf.server.transport.
impl.ServerSession@1154718 by Thread[http-8080-Processor21,5,main]

Web Development Kit and Client Applications Development Guide 535

Customizing Content Transfer

2005-04-12 16:21:05,244 351167 [http-8080-Processor21]
DEBUG com.documentum.web.common.Trace -
get new session: 1, refcount: 1

2005-04-12 16:21:05,260 351183 [http-8080-Processor21]
DEBUG com.documentum.web.common.Trace -
unreserved UcfSessionManager$SessionKey
[1;2284f8c1b0cfef3b1q113108b1q10338b260041q1d7ffe] by Thread
[http-8080-Processor21,5,main]

2005-04-12 16:21:11,904 357827 [http-8080-Processor23]
DEBUG com.documentum.web.common.Trace -
INotificationMonitor.notifyProgress
[stage=UCF_I_UPLOAD_PROGRESS, 0% of 64540 bytes]

Sample server tracing for HTTP view operation, from wdk.log (edited for appearance):
[Thread-34] - add outgoing: content id em89j39g23oa7jj6p,
file D:\Documentum\contentXfer\user2ks-2005.04.01-1712h.58s_8930\
fedfb61q1030077c2e01q1d8000\107_0707.jpg

[Thread-34] - set download event: content id em89j39g23oa7jj6p

[http-8080-Processor3] - sent outgoing:
content id em89j39g23oa7jj6p, file D:\Documentum\contentXfer\
user2ks-2005.04.01-1712h.58s_8930\fedfb61q1030077c2e01q1d8000\
107_0707.jpg, method 2, type image/jpeg

[http-8080-Processor3] - removing outgoing:
content id em89j39g23oa7jj6p

For information on UCF logging, refer to UCF logging, page 523.

Using Pre-5.3 content transfer components
UCF content transfer is new in WDK 5.3. The WDK 5.2.5 content transfer components
are still present in the WDK runtime to support your customizations until you migrate
them. You cannot address a WDK 5.2.5 content transfer component by URL or jump to
it in a component class, because the old and new components have the same name.
Components with a 5.2.5 version are not launched by the component dispatcher. When a
content transfer component is launched by URL, component nest or jump, or action, the
new content transfer components are launched by default.

To use your customized WDK 5.2.5 content transfer component, make sure your content
transfer component and container extend the WDK 5.2.5 component and container. For
example, your custom import component definition, located in /custom/config, would be
similar to the following:
<component id="import:webcomponent/config/library/

536 Web Development Kit and Client Applications Development Guide

Customizing Content Transfer

importContent/import_component.xml">
...

</component>

The import action should launch your component instead of the WDK 5.3 import
component. If you wish to extend WDK 5.3 content transfer components, their
definitions are located in /webcomponent/config/library/contenttransfer, for example:
/webcomponent/config/library/contenttransfer/importcontent/import_component.xml

Streaming content to the browser
HTTP content transfer streams web-viewable content to the browser. If the application
server is running UCF content transfer, additional modes of content streaming are
available:
• All content that the user has set a preference for viewing in the browser will be

streamed to the browser using HTTP content transfer
• You can force streaming using the wdk5–download servlet if the object ID is known
The following example is a URL to the streaming servlet:
http://localhost:8080/webtop/wdk-download?objectId=0900000180279b00

The save vs. open behavior for streamed content is set in the browser. The user can also
right-click on the wdk-download link and save the file. The wdk-download servlet
requires a WDK5 session. For links in non-WDK pages that do not have a session, use
the getcontent component, which will bring up a login dialog. For example:
/webtop/component/getcontent?objectId=0900000180279b00

Content transfer progress
To display progress during content transfer, add a progress listener using the
addProgressListener() method of ContentTransferService. Pass in a listener class that
implements IServiceProgressListener. Progress is reported at the completion of each
IDfOperationStep and at the end of the operation. For example, the JobStatus class
registers a progress listener. The progressChanged() implementation adds to the status
report at the end of each step. The progressEnded() implementation finishes the status
report:
public void progressEnded(ServiceProgressEvent e)
{
setStatusReport(new StatusReportEx(
this, null, null, StatusState.JOB_FINISHED, 100, null));

Web Development Kit and Client Applications Development Guide 537

Customizing Content Transfer

}

538 Web Development Kit and Client Applications Development Guide

Chapter 18
Customizing Authentication

Authentication is performed by the authentication service, which tries all of the authentication
schemes that are configured for the application until the user is successfully authenticated. You can
implement your own authentication scheme that uses your policy servers or business processes.

Authentication and sessions are described in the following topics:
• Authentication service, page 539
• Authentication schemes, page 540
• Silent login, page 542
For information on configuring authentication and login, refer to Application login and
authentication, page 103.

Authentication service
The authentication service authenticates users with an authentication scheme. The
class AuthenticationService provides the default implementation of the authentication
service interface IAuthenticationService. The implementation class also encapsulates the
pluggable authentication scheme framework.

You can provide your own implementation of IAuthenticationService by specifying the
class in the element <authentication>.<service_class> element in app.xml. One of the
main uses of a custom authentication service is for an application to pre- or post-process
the authentication service. For example, the Web Publisher authentication service
extends AuthenticationService and overrides authenticate() to test the user domain.

The authentication service interfaces and schemes are diagrammed below:

Web Development Kit and Client Applications Development Guide 539

Customizing Authentication

Figure 18-1. Authentication service interfaces

Authentication schemes
The authentication service uses a list of authentication schemes to perform authentication.
The list is defined in com.documentum.web.formext.session.AuthenticationSchemes.
properties. The service tries each scheme in the order listed in the properties file to
authenticate a user.

The authentication service processes registered authentication schemes in the order that
they appear in the properties file. The schemes must be indexed sequentially.

The types of schemes supported by WDK authentication are described in Application
login and authentication, page 103. The scheme implementation classes are the following:
• TicketedAuthenticationScheme
• SSOAuthenticationScheme (Single sign-on)
• UserPrincipalAuthenticationScheme
• SavedCredentialsAuthenticationScheme (available only in WDK for Portlets)
• SingleDocbasePerDocbrokerUserPrincipalAuthenticationScheme (available only in

WDK for Portlets)
• DocbaseLoginAuthenticationScheme (per-session authentication)

Presents a login dialog. After a successful Content Server login, the scheme will store
the password in the portal preference store.

540 Web Development Kit and Client Applications Development Guide

Customizing Authentication

Caution: The DFC session manager does not support mixed authentication schemes.
For example, if the user logs into the first repository with a user principal login and
logs into the second repository with a session login dialog, the second login attempt
with thrown an exception.

The authentication service will iterate the list of schemes in the order that they are
specified in the properties file. The service will invoke the scheme’s authenticate() and
getLoginComponent() methods and will stop the process when a scheme method returns
a valid string. This sequence is diagrammed below:

Figure 18-2. Authentication scheme processing

An authentication scheme is an instance of a class that implements the interface
IAuthenticationScheme. This interface defines two methods:

• authenticate(HttpServletRequest request, HttpServletResponse response, String
docbase)

Authenticates a user based on the current HTTP request. The method returns
the repository name in which the user was authenticated. If null is returned, the
authentication has failed. The HttpServletRequest parameter can be any information
from the request, such as a header or cookie. The repository name parameter is
optional, and the authenticate method can obtain the repository name from another
source.

Web Development Kit and Client Applications Development Guide 541

Customizing Authentication

• getLoginComponent(HttpServletRequest request, HttpServletResponse response,
String docbase, ArgumentList args)

If authentication fails, the authentication service calls getLoginComponent() and
launches the specified component. The arguments are the same as those for
authenticate, with the addition of the ArgumentList, which can be populated by the
authentication scheme class with arguments that are passed to the login component.

Note: Your custom authentication scheme must be registered as the first authentication
plugin in the list in com.documentum.web.formext.session.AuthenticationSchemes.
properties.

Silent login
Several forms of silent login are supported in WDK:

External resource login — In the onInit() method, get the login details from an outside
source such as a property file or LDAP. You should display an error message in your
derived class for login failure. The following example shows how to implement login
from a properties file.

Example 18-1. Login from external resource
Add login properties of username, password, and domain to a properties file.
For example, create a file in /WEB-INF/classes/com/mycompany/session named
SilentAuthentication.properties with the following content:
#DOCBASE_NAME=USERNAME,PASSWORD,DOMAIN
testDocbase=testUser2,pwdXXX

Create an authentication scheme that implements IAuthenticationScheme and reads the
login properties, similar to the following class:
package com.mycompany.session;
import java.io.*;
import java.util.*;
import javax.servlet.http.*;
import com.documentum.fc.common.*;
import com.documentum.web.common.ArgumentList;
import com.documentum.web.formext.session.*;

public class SilentAuthenticationScheme implements IAuthenticationScheme
{

/**
* Properties filename that contains the defined credentials.
*/
private static String RES_BUNDLE_NAME = "SilentAuthentication.properties";

/**
* Resource bundle that loads the credentials.
*/

542 Web Development Kit and Client Applications Development Guide

Customizing Authentication

private static PropertyResourceBundle s_resBundle = null;

/**
* Implements IAuthenticationScheme#authenticate(...)
* by reading credentials from the SilentAuthentication.properties file
* and creating sessions for the credentials.
* @param request HTTP request.
* @param response The HTTP response. Not used in this method.
* @param docbase Docbase name. Ignored in this implementation.
* @return docbase The docbase into which the user was logged in.
* For multiple credentials, the first docbase name in
* SilentAuthentication.properties is returned.
*/
public String authenticate(HttpServletRequest request,
HttpServletResponse response, String docbase) throws DfException

{
IAuthenticationService service = AuthenticationService.getService();
HttpSession sess = request.getSession();
initCredentials();

Enumeration docbases = s_resBundle.getKeys();
String defaultDocbase = null;
while (docbases.hasMoreElements())
{

String docbaseName = (String) docbases.nextElement();
String value = s_resBundle.getString(docbaseName);

ArrayList creds = parseCredentials(value);
String username = (String) creds.get(0);
String password = (String) creds.get(1);

String domain = null;
if (creds.size() > 2)
{

domain = (String) creds.get(2);
}

service.login(sess, docbaseName, username, password, domain);

if (defaultDocbase == null)
{

defaultDocbase = docbaseName;
}

}//while
return defaultDocbase;

}

/**
* Implements IAuthenticationScheme#getLoginComponent(...).
* Return null because silent authentication does not have a login component
* @return null
*/
public String getLoginComponent(HttpServletRequest request, HttpServletResponse
response, String docbase, ArgumentList outArgs)

{
return null;

}

Web Development Kit and Client Applications Development Guide 543

Customizing Authentication

/**
* Loads the properties file that contains credentials
*/
protected void initCredentials()
{

try
{

if (s_resBundle == null)
{

InputStream is =
SilentAuthenticationScheme.class.getResourceAsStream(

RES_BUNDLE_NAME);
s_resBundle = new PropertyResourceBundle(is);

}
}
catch (IOException ioe)
{
//error handling

}
}

/**
* Parses a string "username,password,domain" into an ArrayList object.
* @param creds ArrayList of credentials.
* At index: 0=>username 1=>password 2=>domain
* @return
*/
protected ArrayList parseCredentials(String creds)
{

ArrayList listCreds = new ArrayList(3);
StringTokenizer tokCreds = new StringTokenizer(creds, ",");
int cntr = 0;
while (tokCreds.hasMoreTokens())
{

String cred = tokCreds.nextToken();
listCreds.add(cntr, cred);
cntr++;

}
return listCreds;

}
}

544 Web Development Kit and Client Applications Development Guide

Chapter 19
Managing Sessions

Documentum sessions are acquired and managed through IDfSession, for components and actions, or
through IDfSessionManager, for other classes.

The HTTP session objects are available as JSP implicit objects in both the JSP page and in servlets. The
SessionState class encapsulates HTTP session context.

The ClientSessionState class encapsulates the client browser session state. This class is used
by AppSessionContext to restore the client’s selected repository when a browser is refreshed.
It is also used by the API that handles the client repository. For client environments such as
Application Connectors or portlets (clientenv setting in app.xml), this functionality is turned off and
ClientSessionState delegates calls to SessionState.

Session management is described in the following topics:
• Getting a session in a component or action class, page 545
• Getting a session using SessionManagerHttpBinding, page 547
• Storing and retrieving objects in the session, page 549
• Binding and caching in a request thread, page 550
• Application, session, and request listeners, page 550
• IDfSessionManagerEventListener, page 551
• Session synchronization, page 552
• Session tracing, page 552
• JSP implicit objects in WDK, page 553

Getting a session in a component or action
class

Components acquire a session by themethods getDfSession() or getDfSession(REQUEST_
LIFETIME or COMPONENT_LIFETIME). For example:
import com.documentum.fc.client.IDfSession;

Web Development Kit and Client Applications Development Guide 545

Managing Sessions

...
IDfSession dfSession = getDfSession();

REQUEST_LIFETIME specifies that the session is held until the end of the HTTP request.
Note that getDfSession() calls getDfSession(REQUEST_LIFETIME). If you call get
DfSession() more than once within the same request, the same session will be returned.

COMPONENT_LIFETIME specifies that the session is held until the component exits
or the HTTP session times out, whichever occurs first. For performance and scalability,
you should not use COMPONENT_LIFETIME unless necessary. Use request lifetime so
that sessions are held only briefly.

Note: Use REQUEST_LIFETIME to ensure session cleanup. There is no guarantee that a
session will be released if it is stored for longer than a request lifetime. For example, a
user may close the browser.

The Component class method that acquires a session, getDfSession(), obtains the session
through SessionManagerHttpBinding. The session is released when the component
is destroyed.

Caution: Do not store IDfSession objects as member variables. The session may time
out and cause a runtime error. Instead, every time a session is needed in that class,
call the Component class getDfSession() method. IDfTypedObjects obtained through
IDfCollection do not cause a problem. (They are a memory-cached row from a
collection).)

Example 19-1. Getting a session in a component class
In the following example from the component class DeleteQueueItem, the deleteItem()
method gets a session in order to perform the repository operation:
private boolean deleteItem()
{
boolean retval = false;
try
{
...
// perform dequeue
IDfSession dfSession = getDfSession();
dfSession.dequeue(new DfId(m_strObjectId));
// error check here
retval = true;

}
...

}

An action class can get a session by calling getDfSession on the component instance that
is passed into execute() and queryExecute().

546 Web Development Kit and Client Applications Development Guide

Managing Sessions

Example 19-2. Getting a session in an action class
In the following example from the action class AddComponentFSPrecondition, the
queryExecute() method gets a session using the component instance that is passed in by
the action service:
public boolean queryExecute(String strAction, IConfigElement config,
ArgumentList arg, Context context, Component component)

{
boolean bExecute = false;
IDfSession dfSession = component.getDfSession();
try
{ ... }

}

Note: The IDfSessionManager interface methods getSession() and release() can be nested.
That is, if getSession() is called twice for the same repository, the same IDfSession object
will be returned each time. If release is called twice on that IDfSession object, the session
will not be released until the second call. This nesting behavior ensures that the same
session is used for all DocbaseObject and DocbaseAttribute control actions, for example.

Getting a session using
SessionManagerHttpBinding

You can get a Documentum session in any class or JSP page using the static methods
of SessionManagerHttpBinding. You must explicitly release a session that is obtained
with SessionManagerHttpBinding. If you get a session within a component class using
getDfSession(), the session is automatically released at the end of the component lifetime.

To access a session from a non-component class, call the helper class
SessionManagerHttpBinding to return the IDfSessionManager instance and the current
repository name. IDfSessionManager binds to the HTTP sessions and can store and
retrieve the current session. You can also get and set the current repository.

To get a session, use the following syntax:
IDfSessionManager sessionManager =
SessionManagerHttpBinding.getSessionManager();

IDfSession dfSession = null;
try
{
dfSession = sessionManager.getSession(strDocbase);
...

}

Note: getSession() will throw an exception if the user’s identity has not been set for the
current repository and the user has not been authenticated.

Web Development Kit and Client Applications Development Guide 547

Managing Sessions

You must release all sessions that you obtain through IDfSessionManager. Release the
session in the request that acquired it. It is recommended that you also release the
session in a finally block. For example:
finally
{
if (dfSession != null)
{
sessionManager.release(dfSession);

}
}

After you release the session, the session is kept alive by the session manager for 5
seconds when connection pooling is enabled. If the session is not reclaimed, the session
is disconnected. This allows a client to set the session shortly after releasing it without a
performance penalty. If connection pooling is disabled and the session is released, the
session timeout occurs after several minutes.

Example 19-3. Getting a session with SessionManagerHttpBinding
Following is an example of a component class that gets and releases a session and gets
the current repository:
public class MyComponent extends Component
{
/**
* Handle an action event
* @param c the control that raised the event
* @param a the event arguments
*/
public void onActionEvent(Control c, ArgumentList a)
{
//get the session Manager
IDfSessionManager sessionManager =
SessionManagerHttpBindingBinding.getSessionManager();
IDfSession dfSession = null;
try
{
//get the current Docbase name and session
dfSession = sessionManager.getSession(
SessionManagerHttpBindingBinding.getCurrentDocbase());
...

}
...
finally
{
if (dfSession != null)
{
sessionManager.release(dfSession);

}
}

}
}

548 Web Development Kit and Client Applications Development Guide

Managing Sessions

Storing and retrieving objects in the session
WDK session state is "browser aware”: WDK will store and retrieve the navigation
location and other state information on a per browser window basis.

Session state is managed by com.documentum.web.common.SessionState. You can store
and retrieve some objects in the session by calling setAttribute(String strAttrName,
Object oValue). Do not store session variables using HttpSessionState or HttpSession.

Note: Do not store objects in the session if your component implements Serialized unless
they are marked as transient. DFC and BOF objects cannot be serialized.

To support multiple browser windows, add a __dmfClientId request parameter on
URLs. This parameter will be used to maintain session state. When you construct a URL
in JavaScript, call addBrowserIdToURL(). For example:
var url = addBrowserIdToURL("<%=strUrl%>");
location.replace(url);

If a WDK-based application does not store session variables using SessionState and does
not create URLs using addBrowserIdToURL, session state will be shared by multiple
browser windows, as in previous versions of WDK.

Example 19-4. Storing and retrieving a string in SessionState
In the following example from ObjectLocator, the user’s previous navigation path
is stored:
protected void setPreviousContainerNavigated(String strPath)
{
String strVarName = getDocbaseSessionVariableKey(
CONTAINERPATH_SESSION_VAR+'\n' + getInitialDocbaseType());

if (strPath == null || strPath.length() == 0)
{

SessionState.removeAttribute(strVarName);
}
else
{
SessionState.setAttribute(strVarName, strPath);

}
}

The value is retrieved with getAttribute():
protected String getPreviousContainerNavigated()
{
// get initial folder path
String strContainerPath = (String)SessionState.getAttribute(
getDocbaseSessionVariableKey(
CONTAINERPATH_SESSION_VAR+'\n' + getInitialDocbaseType()));

return strContainerPath;
}

Web Development Kit and Client Applications Development Guide 549

Managing Sessions

Binding and caching in a request thread
The utility class com.documentum.web.common.ThreadLocalVariable allows you to
bind a variable to a single thread. The class has methods to set and get the thread value
and to render the variable to a String. The finalize() method removes the variable from
the dictionary of known variables.

The class com.documentum.web.common.ThreadLocalCache class stores and
retrieves objects in the scope of the current thread.For example, ObjectCacheUtil
and UserCacheUtil use ThreadLocalCache to cache sysobjects, user objects, and user
privileges. If you find that a component is getting the same object multiple times, use one
of the cache utility classes to cache the object. For example, the FreezeAssemblyAction
class caches the object to avoid multiple fetches:
IDfSession dfSession = component.getDfSession();
String objectIdArg = arg.get("objectId");
IDfSysObject sysobject =
(IDfSysObject) ObjectCacheUtil.getObject(dfSession, objectIdArg);

if (sysobject.getHasFrozenAssembly() == false)
{

if (sysobject.getLockOwner().length() == 0)
{

assembledFromId = sysobject.getAssembledFromId();
if (isAssembly(assembledFromId))
{

canExecute = true;
}

}
}

The class com.documentum.web.formext.control.docbase.DocbaseAttributeCache caches
IDfTypedObject lookups from the data dictionary, which occurs several times per
attribute. Objects can be retrieved similar to the following:
DocbaseObject obj = (
DocbaseObject)getForm().getControl(strObject);

IDfTypedObject type = DocbaseAttributeCache.getDfTypedObject(
strAttribute, obj);

In the same package, DocbaseObjectCache caches the corresponding IDfValidator and
IDfPersistentObject for each repository object.

Application, session, and request listeners
The com.documentum.web.env package provides the following listener interfaces:
• Application listeners

550 Web Development Kit and Client Applications Development Guide

Managing Sessions

Listener classes that implement IApplicationListener are notified at application
start and end. The listener implement must be registered in the app.xml element
<listeners>.<application-listeners>.

• Session listeners

Listener classes that implement ISessionListener are notified each time a session is
created or destroyed. The listener implement must be registered in the app.xml
element <listeners>.<session-listeners>.

• Request listeners

Listener classes that implement IRequestListener are notified at request start
and end. The listener implement must be registered in the app.xml element
<listeners>.<request-listeners>.

A listener class for the DFC session manager can be registered in the app.xml file as the
value of the element <application>.<dfsessionmanagereventlistener><class>.

These application, session, and request listeners must be registered in app.xml in order
to be notified. They are notified by the WDKController filter class, which is mapped to
all requests ("/”). For more information on the controller, refer to Table 2–35, page 85.

IDfSessionManagerEventListener
You can register a listener class for the DFC session manager by ading an entry to
your custom app.xml file: Add the element <dfsessionmanagereventlistener> under
<application>. Add a child element <class> and provide the fully qualified class name of
your listener class.

The listener class must implement the DFC interface com.documentum.fc.client.
IDfSessionManagerEventListener, which defines two methods:
• onSessionCreate

• onSessionDestroy

Example 19-5. Implementing a Session Event Listener
In the following example from the Web Publisher listener
WcmSessionManagerEventListener, the listener performs business logic in
onSessionCreate():
public void onSessionCreate (IDfSession session) throws DfException
{
String value = session.apiGet("get", "sessionconfig,_is_restricted_session");
if (DfUtil.toBoolean(value) == false)
session.getSessionConfig().appendString("application_code",
IWcmConstant.APPLICATION_CODE);

}

Web Development Kit and Client Applications Development Guide 551

Managing Sessions

public void onSessionDestroy (IDfSession session) throws DfException
{
//Do nothing

}

Session synchronization
HTTP session synchronization (locking and unlocking) is managed through
com.documentum.web.common.SessionSync. The component dispatcher, form
processor, and control tag all use session locking. For example, ControlTag locks the
session for doStartTag() and doEndTag().

Session locking has a negative impact on performance. If you lock the session, you
must unlock in the Finally block.

Example 19-6. Synchronizing the HTTP session
The following example from Control.doStartTag() locks and unlocks the session:
final public int doStartTag() throws JspTagException
{
try
{
SessionSync.lock(pageContext.getSession());
m_bInRenderStart = true;
renderStart(pageContext.getOut());

}
...
finally
{
m_bInRenderStart = false;
SessionSync.unlock(pageContext.getSession());

}
}

Session tracing
By default, a single session is traced when tracing is enabled. To enable tracing for the
current session, visit /wdk/tracing.jsp tool and check the box that enables tracing for
the current HTTP session.

To trace all sessions, set SESSIONENABLEDBYDEFAULT to true using tracing.jsp or by
editing WEB-INF/com/documentum/debug/Trace.properties.

552 Web Development Kit and Client Applications Development Guide

Managing Sessions

JSP implicit objects in WDK
The following JSP objects are used extensively by the WDK libraries. Objects can be
used in JSP pages or in Java classes and can be referenced in the JSP page or Java class
by their JSP object name. Each object is referenced here by its JSP object name, with
the class name in parentheses:

pageContext (javax.servlet.jsp.PageContext) — Context for the current page. Variables
that are scoped to the page context are available while the page is being processed.
The pageContext object is available to handlers in your Java classes in order to output
JavaScript dynamically to the browser.

Example 19-7. Printing JavaScript dynamically to the browser
Use the PageContext object to get the current form and output to it. The following
example from the Web Publisher class WpStatusBar writes JavaScript to the browser in
its implementation of IRequestListener.notifyFinish():
public void notifyFinish(PageContext pageContext)
{
//Get the top level form here
Form form = (Form)pageContext.getAttribute(
FORM, PageContext.REQUEST_SCOPE);

WpAsyncTaskListener listener =
...
String value = WpStatusBar.getClientMessageId(listener);
StringBuffer buf = new StringBuffer(1024);
// Output initialisation function (called using timeout)
buf.append("<script>function _updateTaskStatus(){\n");
buf.append("fireClientEvent('")
.append(UPDATE_TASK_STATUS_EVENT)
.append("','")
.append(UPDATE_TASK_STATUS_FUNCTION)
.append("','")
.append(value)
.append("',self.name);");
buf.append("}</script>\n");
// Invoke initialisation function on timer
buf.append("<script>setTimeout('_updateTaskStatus()', 50);</script>\n");
...
pageContext.getOut().print(buf);
//error handling

}

request (javax.servlet.http.HttpServletRequest) — The HTTP request or URL, which is
sent by the client browser to the server. You can access request parameters, attributes,
headers, and cookies.

Example 19-8. Accessing request parameters
The following example from repeatingAttributes.jsp passes in the request object to create
a URL to a JavaScript page:

Web Development Kit and Client Applications Development Guide 553

Managing Sessions

<script src='<%=Form.makeUrl(request, "/wdk/include/modal.js")%>'
language='JavaScript1.2'>

response (javax.servlet.http.HttpServletResponse) — HTTP response, or the HTML
that is sent from the JSP container to the client browser. You can access the response
object in your Java class to set cookies or to print out the response.

Example 19-9. Writing a response from a servlet
In the following example from WorkflowEditorServlet, the response object is used to
write output from the servlet:
responseResult = handleResourceRequest(
session, (IRequest) requestObject, locale);

// Send response.
response.setContentType(IConstants.DEFLATED_JAVA_SERIALIZED_CONTENT);
DeflaterOutputStream deflaterOut = new DeflaterOutputStream(
response.getOutputStream());

out = new ObjectOutputStream(deflaterOut);
out.writeObject(responseResult);
deflaterOut.finish();
out.flush();

out (javax.servlet.jsp.JspWriter) — Prints to the response message body. This object is
used extensively by the tag classes.

Example 19-10. Writing HTML output in a tag class
In the following example from the tag class HiddenTag, the JSP writer is used to write
HTML output:
protected void renderEnd(JspWriter out)
throws IOException

{
Hidden hidden = (Hidden)getControl();
StringBuffer buf = new StringBuffer(256);
buf.append("<input type='hidden' ").append(renderNameAndId());
buf.append(" value='")
.append(formatText(hidden.getValue()))
.append("'>");
out.println(buf.toString());

}

Note: URLs in JSP pages must have paths relative to the Web application root context or
relative to the current directory. For example, the included file <%@ include file='doclist_
thumbnail_body.jsp' %> is in the same directory as the including file. The included file
<%@ include file='/webcomponent/navigation/drilldown/drilldown_body.jsp' %> is in
the /webcomponent subdirectory of the Web application.

554 Web Development Kit and Client Applications Development Guide

Managing Sessions

Refer to third-party JSP documentation for more information on how to use JSP implicit
objects.

Web Development Kit and Client Applications Development Guide 555

Managing Sessions

556 Web Development Kit and Client Applications Development Guide

Chapter 20
Customizing Search

The following topics describe commonly used features in search customization:

• Programmatic search value assistance, page 557
• Troubleshooting search, page 558
• Search class diagrams, page 560
For information on default search behavior and configuration options, refer to Configuring search,
page 144.

Programmatic search value assistance
Data dictionary value assistance is available in 5.3 advanced search, unless the value
assistance is conditional. If you have not defined value assistance for an attribute in the
repository data dictionary, you can add value assistance programmatically. You must
define a custom tag handler to render the value assistance values. The tag handler is
specified in the search configuration file advsearchex.xml as follows:
<searchvalueassistance>
<attribute_type_name>
fully_qualified_class_name

</attribute_type_name>
</searchvalueassistance>

When the user selects an attribute for search, the values in the criteria dropdownlist
control will be populated by the custom tag class. To add your own custom
tag class, copy the file /wdk/advsearchex.xml to /custom/config and add your
handlers to the <searchvalueassistance> element. Your tag handler must implement
ISearchAttributeValueTag.

Note: Do not delete the Documentum value assistance handlers, because the entire
contents of the <searchvalueassistance> will override the contents of the element in the
WDK version of this file.

Web Development Kit and Client Applications Development Guide 557

Customizing Search

The following tag handlers render values for certain attributes. The handler classes are
in com.documentum.web.formext.control.docbase.search.
• BooleanVATag

Provides values for any Boolean attribute
• ContentTypeVATag

Provides valid a_content_type (dm_format) names and descriptions
• ExistingValueVATag

Uncomment this tag and specify an attribute for which to populate the dropdown
list with all existing values for the selected object type

• ObjectTypeVATag

Populates the search object type dropdown list with available object types
• PermissionVATag

Provides possible permission values (none, browse, read, relate, version, write,
delete) for setting world_permit, group_permit, and owner_permit attributes

• SearchMetaDataVATag

Gets attribute names, default value, and description for each attribute. This handler
is for internal use only.

Your tag class should extend the abstract class SearchVADropDownListTag and
implement ISearchAttributeValueTag. For example, the BooleanVATag class implements
populateValueDropDownList to provide the two boolean values:
protected void populateValueDropDownList(SearchDropDownList ddList)
{
Option optionTrue = new Option();
optionTrue.setValue("1");
optionTrue.setLabel(SearchControl.getString("MSG_TRUE", ddList));
ddList.addOption(optionTrue);

Option optionFalse = new Option();
optionFalse.setValue("0");
optionFalse.setLabel(SearchControl.getString("MSG_FALSE", ddList));
ddList.addOption(optionFalse);

}

Troubleshooting search
You can enable query debugging in $DOCUMENTUM_HOME/config/log4j.properties:
• Debug DQL queries by adding the following line:

log4j.logger.com.documentum.fc.client.search.impl.broker.DocbaseBroker=DEBUG

558 Web Development Kit and Client Applications Development Guide

Customizing Search

• Debug ECI queries by adding the following line:
log4j.logger.com.documentum.fc.client.search.impl.broker.ECISBroker=DEBUG

After restarting the application, exercise your query and examine the log. The log file
name and location is specified in the log4j.properties file. The following excerpt from
wdk.log traces a query against a 5.2.5 repository:
2005-04-20 15:04:20,300 362317 [DocbaseBroker:processing]
DEBUG com.documentum.fc.client.search.impl.broker.DocbaseBroker -
InternalProcess dql=SELECT r_object_id,object_name,r_object_type,r_lock_owner,
owner_name,r_link_cnt,r_is_virtual_doc,r_content_size,a_content_type,
i_is_reference,r_assembled_from_id,r_has_frzn_assembly,a_compound_architecture,
i_is_replica,r_modify_date FROM dm_sysobject WHERE (
object_name LIKE %5.3% ESCAPE \) AND FOLDER(
/Product Info/ 5.3 Products/ECI 5.3/Engineering/Functional Specs,DESCEND) AND (
a_is_hidden = FALSE)

2005-04-20 15:04:20,721 362738 [DocbaseBroker:processing]
DEBUG com.documentum.fc.client.search.impl.broker.DocbaseBroker -
Send 1 results for action query: com.documentum.fc.client.search.impl.
DfQueryBuilder@9801f4 sources:dm_notes

Document not returned by search — Check the following list of possible causes:
• Check whether the docbase is indexed
• Verify that Indexing Agent is running on the Content Server and that the expected

document has been properly indexed:

1. Connect to http://localhost:15100 on the host where Index Server is running.

2. In the query box, enter: dmftkey:id_of_object, substituting the object ID for
the object to be searched for.

3. Click Search.

The XML data displayed on the screen should have the proper object metadata. If
you see object metadata, then the reference object has been indexed.

• Verify that the DQL query contains ENABLE(FTDQL)

Performance issues — The following tips may speed up search performance:
• Remove the display of folder location in search_component.xml.
• Configure case-insensitive search on pre-5.3 or non-indexed 5.3 docbases
• Use FTDQL hint to optimize DQL queries. Can be used to add database-specific

hints or turn off search for indexed properties. DQL hints are documented in Content
Server DQL Reference Manual.

• Check bandwidth between the application server and Content server

Limitations — The following limitations may affect your expected search results:
• Basic search:

— No search on content-less objects such as folders on a 5.2.5 repositories

Web Development Kit and Client Applications Development Guide 559

Customizing Search

— No search on attributes in 5.2.5 repositories (must use advanced search)

— No wild-card matching

— Failover is not supported
• Advanced search:

— No explicit Verity support, for example, for Verity semantics such as "does not
contain” for pre-5.3 repositories

— No support for conditional value assistance

— Property search is not case-sensitive against a 5.3 indexed repository

— Failover is not supported

Search class diagrams
The following UML diagram illustrates the search component classes and their
dependencies:

560 Web Development Kit and Client Applications Development Guide

Customizing Search

Figure 20-1. Search component UML diagram

Web Development Kit and Client Applications Development Guide 561

Customizing Search

562 Web Development Kit and Client Applications Development Guide

Chapter 21
Implementing Component and User
Preferences

Component-level preferences are defined in the component definition file and implemented in the
component behavior class. They can be exposed through the component UI in order to override the
component preference on a per-user basis (for example, the login showoptions preference), but most
components do not expose the component preferences.

The preferences service adds support for persistent user preferences. The preferences service gets and
sets user preferences using a persistent store class that writes cookies to the client machine.

Preferences are described in the following topics:
• Creating a component preference, page 563
• Storing and retrieving component preferences, page 566
• Storing and retrieving user preferences, page 567
• Tracing preferences, page 569

Creating a component preference
If a component preference does not need to be exposed as a preference for individual
users, it is easier to create a custom element whose value is read in your component class.
In the following example, a simple class that extends ObjectGrid displays all objects of a
certain type. The component definition has a custom element <showwebviewableonly>.
If set to true, the query that populates the grid gets objects with a specific attribute value
of true. The definition is shown below:
<component id="webdocs">
...
<columns>
<column>
<attribute>object_name</attribute>
<label><nlsid>MSG_NAME</nlsid></label>
<visible>true</visible>

</column>

Web Development Kit and Client Applications Development Guide 563

Implementing Component and User Preferences

...
<column>
<attribute>tp_edition</attribute>
<label><nlsid>MSG_EDITION</nlsid>nlsid></label>
<visible>true</visible>

</column>
<column>
<attribute>tp_web_viewable</attribute>
<label><nlsid>MSG_PUBLISH</nlsid></label>
<visible>true</visible>

</column>
</columns>

<showwebviewableonly>true</showwebviewableonly>
</component>
</scope>
</config>

The component class that reads this custom element is shown below. The lines that read
and use the custom element value are highlighted:
package com.mycompany.webdocs;
import com.documentum.web.common.ArgumentList;
import com.documentum.web.formext.config.ConfigService;
import com.documentum.web.formext.config.Context;
import com.documentum.web.formext.config.IConfigLookup;
import com.documentum.webcomponent.navigation.objectgrid.ObjectGrid;

public class WebDocs extends ObjectGrid
{
public void onInit(ArgumentList args)
{
this.readPrefs();
super.onInit(args);

}

protected String getQuery(String strVisibleAttrs, ArgumentList args)
{
StringBuffer strQueryBuf = new StringBuffer(512);
if (m_bWebViewableOnly==true)
{
strQueryBuf.append("SELECT DISTINCT r_object_id,")
.append(strVisibleAttrs).append(INTERNAL_ATTRS)
.append(" FROM technical_publications_web WHERE
tp_web_viewable = true ORDER BY object_name");

}
else
{
strQueryBuf.append("SELECT DISTINCT r_object_id,")
.append(strVisibleAttrs).append(INTERNAL_ATTRS)
.append(" FROM technical_publications_web ORDER BY object_name");

}
return strQueryBuf.toString();

}

private void readPrefs()
{
Boolean bWebViewableOnly = this.lookupBoolean("

564 Web Development Kit and Client Applications Development Guide

Implementing Component and User Preferences

showwebviewableonly");
if (bWebViewableOnly != null)
{
bWebViewableOnly.toString());
m_bWebViewableOnly = true;

}
}
private boolean m_bWebViewableOnly = false;

}

The object grid output before the preference is added is shown below. Objects with
webviewable set to either true or false are obtained by the query:

Figure 21-1. Component without preference

The object grid output when the new preference in the component definition is shown
below. Only objects with webviewable set to true are shown:

Figure 21-2. Component with preference

To use the <preferences> element in the component definition, replace your custom
element (<showwebviewableonly> in the example above) with one similar to the
following:
<preferences>
<preference id="showwebviewableonly">

Web Development Kit and Client Applications Development Guide 565

Implementing Component and User Preferences

<label><nlsid>MSG_PUBLISH</nlsid></label>
<description><nlsid>MSG_PUBLISH</nlsid></description>
<type>boolean</type>
<value>true</value>

</preference>
</preferences>

In your component class, read the preferences element as follows. Note the lookup path
notation for elements in the component configuration (highlighted):
private void readPrefs()
{
Context cfgContext = new Context(Context.getApplicationContext());
IConfigLookup lookup = ConfigService.getConfigLookup();
Boolean bWebViewableOnly = lookup.lookupBoolean("
component[id=webdocs].preferences.preference[id=
showwebviewableonly].value", cfgContext);

if (bWebViewableOnly != null)
{
m_bWebViewableOnly = bWebViewableOnly.booleanValue();

}
}

Storing and retrieving component preferences
Use the preference lookup hook to store and retrieve preferences. The preference lookup
hook routes all configuration service lookups through the preference service to check for
a preference.

This lookup hook intercept calls to lookupBoolean(), and it adds the component
path to the lookup. For example, the Login class reads its preferences with a call to
lookupBoolean():
Boolean bShowOptions = lookupBoolean(CONFIG_SHOWOPTIONS);
m_bShowOptions = bShowOptions.booleanValue();
The preference service appends the component path to the preference name:
"component[login].showOptions”. This full path name is passed to the preference store
for lookup.

The component class then uses the preference in its business logic. In the same example,
the Login class gets the preference value and passes it to a method that uses it:
showHideOptions(m_bShowOptions);

Example 21-1. Overriding preferences
Default values for preferences can be defined in configuration XML files and can be
overridden on a per-user basis. For example, the login component looks up the advanced
options setting in the login dialog, which was automatically stored as a preference on a
previous login:

566 Web Development Kit and Client Applications Development Guide

Implementing Component and User Preferences

Boolean bShowOptions = lookupBoolean("showOptions");

When you store a preference that overrides a component definition value, your
component must write the preferences to the preference store with the same name that is
used in the configuration path .

The following example overrides the advanced options selection in the login component.
In a login class that extends Login, write the preference as follows:
IPreferenceStore store = PreferenceService.getPreferenceStore();
store.writeBoolean("component[login].showOptions", m_bAdvancedOptions);

As a shortcut to writing the full path, you can use the helper method buildConfigPath in
the Component class. For example:
public MyLogin extends Component
{
...
void setShowOptions(Boolean bShowOptions)
{
IPreferenceStore store = PreferenceService.getPreferenceStore();
store.writeBoolean(buildConfigPath("showOptions"));

}
}

Storing and retrieving user preferences
User preferences are stored as cookies by default. The WDK preferences component
is a container that displays several tabs, each generated by a specialized preferences
component. The specialized preferences component displays several related preferences
that affect one or more components. For example, in the general preferences component
UI the user can select a preferred theme. The AppGeneralPreferences class gets the
preference store and writes the preference.

IPreferenceStore provides an interface to the storage mechanism with methods for
reading and writing preference values. The actual storage mechanism can consist of a
file system, database, or cookies. (By default, WDK 5 stores preferences as cookies.) Only
one instance of the preference store is used for each HTTP session.

The PreferenceService class uses CookieManager to store and retrieve preferences.
CookieManager provides access to all cookies for the current session by calling
CookieManager.getCookieJar(). Then you can use methods on the CookieJar class
to add or remove cookies. Add a persistent cookie with setCookie() or a session
cookie with setSessionCookie(). CookieJar concatenates all cookies into a single cookie
and compresses it. The preferred method of storing preference cookies is using the
IPreferenceStore methods described below.

Get the preference store by importing IPreferenceStore and PreferenceService into your
class and then calling getPreferenceStore():

Web Development Kit and Client Applications Development Guide 567

Implementing Component and User Preferences

import com.documentum.web.formext.config.IPreferenceStore;
import com.documentum.web.formext.config.PreferenceService;
...
IPreferenceStore preferenceStore = PreferenceService.getPreferenceStore();

When you create cookies, remember that HTTP cookie names and values cannot contain
newline characters. The following IPreferenceStore methods read and write preferences:

• readString(String strname): Reads a preference as a string. Returns the preference
value as a String.

• readBoolean(String strname): Reads a preference as a string. Returns the preference
value as a boolean.

• readInteger(String strname): Reads a preference as a string. Returns the preference
value as an integer.

• writeString(String strname, String strValue): Writes a preference name and string
value.

• writeBoolean(String strname, Boolean bValue): Writes a preference name and
boolean value.

• writeInteger(String strname,Integer nValue): Writes a preference name and integer
value.

Tip: Preferences are stored as cookies. Since cookies are passed back and forth with
every request and response, there is a small increase in network traffic. If you need to
minimize network traffic or service users on low-bandwidth connections, you may wish
to not use preferences. Additionally, cookies are stored on the browser’s local machine,
so preferences for roaming users is not supported.

To improve performance, cookie preferences are stored in memory the first time they
are read or written in a session.

Example 21-2. Storing user preferences
The following example stores the user preference for displaying attributes:
IPreferenceStore store = PreferenceService.getPreferenceStore();
store.writeBoolean("component[id="attributes].showAllAttributes", true);

The second example stores the user name as a String:
IPreferenceStore store = PreferenceService.getPreferenceStore();
store.writeString ("Username", strUserName);

Note: When you create preferences, remember that HTTP cookie names and values
cannot contain newline characters.

Example 21-3. Retrieving user preferences
By default, the readXXX methods return a reference to the cookie-based preference store.

In the following example, CancelCheckout reads the preference store in order to display
a warning:
public static boolean showChangeLossWarning()

568 Web Development Kit and Client Applications Development Guide

Implementing Component and User Preferences

{
IPreferenceStore preferences = PreferenceService.getPreferenceStore();

if (preferences.readBoolean(INHIBIT_CHANGE_LOSS_WARNING) == null)
{
// preference to not warn has not been stored
return true;

}
else
{
// preference to not warn has been stored
return false;

}
}

The following example gets the user name preference:
//Get a username preference value
IPreferenceStore store = PreferenceService.getPreferenceStore();
String strUsername = store.readString ("Username");

Tracing preferences
To turn on preferences tracing, set the following flags in com.documentum.debug.
TraceProp.properties (located in /WEB-INF/classes):
com.documentum.web.formext.Trace.CONFIGSERVICE=true
com.documentum.web.formext.Trace.PREFERENCES=true

You can also turn on preferences tracing by navigating to http://application_name/wdk/
tracing.jsp.

Web Development Kit and Client Applications Development Guide 569

Implementing Component and User Preferences

570 Web Development Kit and Client Applications Development Guide

Chapter 22
Other Customizations

The WDK 5 framework consists of services that are used by more than one component in the
application. For example, the preferences service is used by the several components and can
potentially be used by any component. The configuration, action, role, and content transfer services
are discussed in their own chapters. (Refer to Chapter 14, Using the Configuration Service, Chapter
15, Customizing actions, Chapter 16, Customizing Roles, and Chapter 17, Customizing Content
Transfer, respectively). The framework also provides the following services:
• Asynchronous action and component execution, page 571
• Branding service, page 578
• Image service APIs, page 579
• Locale service, page 580
• Accessibility service, page 584
• Help service, page 590
• Utilities, page 595

Asynchronous action and component
execution

The asynchronous framework in WDK allows component and action jobs to run
asynchronously, returning control to the client immediately. An example of a job is either
the component event handler code or action code to be executed.

You can turn on or off asynchronous processing support for the application in the
application’s app.xml file. In this file you can also specify a global job event handler for
pre- and post-processing, set the maximum number of aynchronous jobs per user, and
turn on or off user notification of job finish. The event handlers and job notification
settings are overridden by settings in your asynchronous component or action definition.
Global asynchronous settings in app.xml are described in Table 2–33, page 83.

The asynchronous framework has the following features:

Web Development Kit and Client Applications Development Guide 571

Other Customizations

• Component and action jobs can be run synchronously or asynchronously
• Asynchronous support can be turned on or off globally
• Details of running asynchronous components and actions can be viewed
• Asynchronous execution can be aborted from the UI
• The user inbox receives a notice upon asynchronous completion (finished, failed,

aborted)
• Handlers are called to perform pre- and post-processing of asynchronous jobs

— The pre-execution callback handler can call UI components and indicate whether
to proceed with execution

— A global pre- or post-execution handler can be specified in app.xml. This handler
can be overridden in the action or component definition.

The following sections describe asynchronous support:
• Asynchronous action job execution, page 572
• Asynchronous component job execution, page 574
• Job execution framework, page 575
• UI in asynchronous processing, page 577
• Asynchronous process, page 577

Asynchronous action job execution

Custom actions based on WDK 5 will work in the 5.2.5 asynchronous framework. By
default, all actions execute synchronously unless configured as asynchronous.

When an action is invoked from the UI, the action service is called to invoke the action
implementation. The action implementation calls the job execution service to execute
the job. If the job is asynchronous, the job execution service calls the asynchronous job
manager to execute the job asynchronously.

Action completed listeners are called when an action is started asynchronously.
The thread for the asynchronous action calls the post-processing handler after the
asynchronous action has completed.

To enable asynchronous execution of an action, you must perform the following steps:

1. Add to the action definition an <asynchronous> element as a child of the <action>
element with a value of true.

If the <asynchronous> element is not present, the value is assumed to be false, and
the action will execute synchronously.

2. (Optional) Set the <asynchronous> element attribute sendnoticeonfinish to true to
notify the user inbox when the action is finished.

572 Web Development Kit and Client Applications Development Guide

Other Customizations

3. (Optional) Add a pre- and/or a post-execution handler to the action definition by
adding a <job-event-handler> element whose value is the fully qualified class name
of the event handler.

4. Add action implementation code to your action class that calls the job execution
service.

5. Add the internal job class to your action implementation

Example 22-1. Enabling asynchronous execution of an action
The following example enables asynchronous execution of a delete action.

1. Add an <asynchronous> element with a value of true to the action definition:
<action id="delete">
...
<asynchronous sendnoticeonfinish="false">true</asynchronous>
...

</action>

2. (Optional) Add a pre- and/or a post-execution handler to the action definition:
<job-eventhandler>com.documentum.custom.DeleteHandler</job-eventhandler>

3. Add action implementation code to your action class. Note that the arguments are
passed to the internal Job implementation (highlighted):
package com.documentum.test;

import com.documentum.web.formext.action.IActionExecution;
import com.documentum.web.formext.config.IConfigElement;
import com.documentum.web.formext.config.Context;
import com.documentum.web.formext.component.Component;
import com.documentum.web.common.ArgumentList;
import com.documentum.web.common.job.JobExecutionService;
import com.documentum.job.Job;
import com.documentum.fc.client.IDfSessionManager;

public class TestAction implements IActionExecution
{
public boolean execute(String strAction, IConfigElement config,
ArgumentList args, Context context, Component component,
Map completionArgs)
{
return JobExecutionService.getInstance().executeActionJob(
new TestActionJob(args), args, context,
component, strAction, null);

}

public String[] getRequiredParams()
{
return new String[0];

}
}

4. Add the internal job class implementation to your action implementation:

Web Development Kit and Client Applications Development Guide 573

Other Customizations

private static class TestActionJob extends Job
{
// Get arguments
public TestActionJob(ArgumentList actionArgs)
{
m_actionArgs = actionArgs;

}

public boolean execut(IDfSession Manager sessMgr,
String docbaseName)

{
System.out.println("Thread name:" + Thread.currentThread(
).getName());
// use the m_actionArgs here
return true;

}

public String getName()
{
return "test action job";

}

private ArgumentList m_actionArgs;
}

Asynchronous component job execution

Custom components based on WDK 5 will work in the 5.2.5 asynchronous framework.
By default, all components execute synchronously unless configured as asynchronous.

When a component event handler is invoked from the component UI (JSP page), the
event handler calls the job execution service to execute the job. If the job is asynchronous,
the service calls the asynchronous job manager to execute the task asynchronously.

To enable asynchronous execution of a component job, you must perform the following
steps:

1. Add an <asynchronous> element with a value of true to the component definition.
The parent element is <component>. If this element is not present, the value is
assumed to be false, and the component will execute synchronously. Set the
attribute sendnoticeonfinish to true to notify the user inbox when the component
job is finished.

2. (Optional) Add a pre- and/or a post-execution handler to the component definition
by adding a <job-event-handler> element whose value is the fully qualified class
name of the event handler.

3. Add component implementation code to your component class that calls the job
execution service.

574 Web Development Kit and Client Applications Development Guide

Other Customizations

4. Add to the component class an inner class that extends com.documentum.job.Job.

Example 22-2. Enabling asynchronous execution of a component
The following example enables asynchronous execution of checkin component.

1. Add an <asynchronous> element with a value of true to the component definition:
<asynchronous sendnoticeonfinish="false">true</asynchronous>

2. (Optional) Add a pre- and/or a post-execution handler to the component definition:
<job-eventhandler>com.documentum.custom.DeleteHandler</job-eventhandler>

3. Add component implementation code to your component class:
onCommitChanges()
{
CheckinJob job = new CheckinJob();
JobExecutionService service = JobExecutionService.getInstance();
service.execute(job, args, getContext(), this);

}

4. Add to the component class an inner class that extends com.documentum.job.Job:
Private class CheckinJob extends Job
{
Public void execute()
{
//code to perform checkin operation
//report progress using Job.setStatusReport()

}

Job execution framework

The package com.documentum.jobs is responsible for asynchronously executing action
and component jobs. The caller can either pull or be pushed with the status and the
progress of the async jobs. The caller can also pass a job lifecycle event handler.
Appropriate methods in the event handler will get called during the job execution
lifecycle. The job interacts with the caller by suspending its execution and asking the
caller to provide input data to continue the execution. The caller can either ask the job to
continue after providing the data or simply ask the job to abort the execution.

The job implementation can break the whole task into a set of subtasks called steps. Your
implementation can specify the number of steps and the names of each step. A progress
bar in the UI then displays progress for each step. The job implementation must keep
track of which step it is in during the execution.

Example 22-3. Job with Steps
In the following example, an asynchonrous action class adds steps:
import com.documentum.job.Job;

Web Development Kit and Client Applications Development Guide 575

Other Customizations

import com.documentum.fc.client.IDfSessionManager;

public class JobWithSteps extends Job
{

public JobWithSteps()
{

// When adding steps, the base Job implementation keeps track of the
// number of steps. The steps could alsobe read from a properties file
addStep("Initializing"); // step 1
addStep("Reading data"); // step 2
addStep(""); // step3 (the step name is unknown during init)
addStep("Transforming data"); // step 4

}

/**
* Executes the job.
* @return True if the execution is successful; false otherwise
*/
public boolean execute(IDfSessionManager sessionManager, String docbaseName)
{

// by default the job is in step 1
// perform step 1 logic here. The status report is filled up with step number 1,
// the step name, and total # of steps

nextStep(); // now the job is in step 2

// perform logic for step 2. The status report is filled up with step number 2,
// the step name, and total # of steps

nextStep(); // now the job is in step 3

// In the constructor, the step name of step 3 is set as empty string.
// Update the step name here
setStepName(getCurrentStep() - 1, "Parsing data");

nextStep(); // now the job is in step 4
// perform step 4 logic. The status report is filled up with step number 4,
// the step name, and total # of steps

return true;
}

/**
* Returns the name of the job
* @return Display name of the job
*/
public String getName()
{

return "Test Job";
}

}

576 Web Development Kit and Client Applications Development Guide

Other Customizations

UI in asynchronous processing

The UI for invoking an asynchronous action or component is no different from the UI to
invoke synchronous jobs. The following UI components or controls are used to inform
the user of asynchronous job processing:

• Display task status icon in the statusbar component

The Webtop statusbar component adds an animated job status icon to display
progress and a button to launch the jobstatus component. The icon will be displayed
dynamically when asynchronous jobs are running.

• Display the status of an asynchronous job

The jobstatus component displays the job details such as component or action name,
current status, and messages generated by the component or action. This component
uses the StatusListener class to provide status details.

Asynchronous process

The process in which asynchronous actions and component jobs execute is diagrammed
below:

Web Development Kit and Client Applications Development Guide 577

Other Customizations

Figure 22-1. Job execution interaction diagram

Branding service
The branding service allows you to customize the look of your application user interface.
The branding service manages the UI look by themes, which incorporate images and
icons, and cascading style sheets (CSS).

Users select a theme for display in the preferences component. The set of themes
available are configured in /wdk/app.xml. The logic for theme lookup of registered
theme is in the class ConfigThemeResolver. To override the default theme lookup
from app.xml, implement your own theme resolver based on user role or some other
criterion. Implement IThemeResolver and register your resolver in the properties file
/WEB-INF/classes/com/documentum/web/common/BrandingServiceProp.properties.

578 Web Development Kit and Client Applications Development Guide

Other Customizations

Additionally, you can override the theme that is displayed dynamically, based on user
roles or some other criterion.

The Image service APIs, page 579 provides support for loading and caching style sheets,
files, and images.

Image service APIs
Using the image service, you can manage the images used as background for buttons,
labels, and other controls. You can resolve icon state programmatically or based on
Documentum attributes. Use the image service to determine whether the referenced
image exists on the app server and to cache the image dimensions for faster loading.

The image service enhances the performance of pages containing images by fetching
images from the local file system of the app server and caching the image and the image
dimensions. The image service uses the file checker service to determine whether the
file exists on the J2EE server file system.

Graphical tab bars use the image service to set the height of the tab bar, based on the
heights of images in the bar. Tree control images use the image service to determine the
dimensions of tree icons. Tree nodeheight and nodewidth values can be overridden
in the JSP tag.

The ImageService class has the following APIs:

isExist(String strUrl, PageContext pageContext) — Tests whether a given URL exists
on the file system. This method is a wrapper for FileChecker.isExist. Use this to construct
an image in your tag class.

Example 22-4. Getting an image in a tag class
In the following example from ActionMenuItemTag, the image service provies the
required image:
private void renderImageIcon(StringBuffer buf, ActionMenuItem menuItem)
{
String strImageIcon = menuItem.getImageIcon();
// check that the image icon exists
if (ImageService.isExist(strImageIcon, pageContext) == false)
{
strImageIcon = null;

}
else
{
// prepend virtual root
strImageIcon = Form.makeUrl(pageContext.getRequest(), strImageIcon);

}
// render
if (strImageIcon != null)
{

Web Development Kit and Client Applications Development Guide 579

Other Customizations

buf.append('\'')
.append(strImageIcon)
.append('\'');

}
else
//handle missing image

}

getDimensions(String strUrl, PageContext pageContext) — Takes a URL to a GIF
image and returns the height and width of the image as a java.awt.Dimension object. If
the dimensions have not been previously cached, the image service calls the file checker
service. Use the dimensions to render an image.

Example 22-5. Getting the dimensions of an image
In the following example from the BookmarkLinkTag class, the image service provides
the image width and height for output to HTML:
Dimension extents = ImageService.getDimensions(
strBookmarkIconUrl, getForm().getPageContext());

buf.append("<img src='")
.append(SafeHTMLString.escape(strBookmarkIconUrl))
.append("' width=")
.append((int)extents.getWidth())
.append(" height=")
.append((int)extents.getHeight())
.append(" alt='")
.append(SafeHTMLString.escape(getTooltipString(link)))
.append("' border=0/>");

Locale service
WDK supports localization (translation) of the UI through the locale service and
National Language Service (NLS) lookup. Locale support is specified in the application
configuration file. When the user selects a locale, the appropriately-named set of
localized strings will be used. The localized strings are contained in NLS properties files.
For more information on creating, naming, and adding localized files to your application,
refer to Configuring and localizing strings, page 137.

Applet strings are externalized, and string values are passed to the applets via HTML
parameters that are generated by the content transfer applet tags.

Images have an NLS entry in a resource bundle. This string is displayed as the HTML
image alt tag text to support accessibility requirements. Refer to Image accessibility
strings, page 587 for information on configuring image alt tags.

The following topics describe customization involving the locale service or NLS bundles:
• Retrieving localized strings, page 581

580 Web Development Kit and Client Applications Development Guide

Other Customizations

• Dynamic messages in NLS strings, page 582
• Adding locale support to custom components, page 583
• LocaleService APIs, page 583
• Locale codes, page 584

Retrieving localized strings

The component definition specifies the name of the NLS bundle or NLS class to be used
for lookup. For example:
<nlsbundle>com.documentum.example.ExampleNlsProp</nlsbundle>

The locale service looks up the resource file in /custom/strings/documentum/example/
ExampleNlsProp.properties. The string is dereferenced from the properties file:
MSG_EXAMPLE=This is an example

If you reference a string with its NLS ID in a JSP page or Java class,
the configuration service will look up the nlsid element in a properties
file for the user’s locale. The following example retrieves a string from
/WEB-INF/classes/com/example/MyComponentNlsProp.properties:
<dmf:webform/>
<dmf:label name="label1" nlsid="MSG_EXAMPLE");

For general uses you can retrieve one your component strings in the following way:
<%
CustomComponentName form = (
CustomComponentName)pageContext.getAttribute(
Form.FORM, PageContext.REQUEST_SCOPE);

%>
<span title='<%=form.getString(
"MSG_COMPONENT_STRING")%>'>

To retrieve a localized string in your component Java class, call the getString() method,
passing in the NLS ID. This method will look for the resource file named in the
component definition and deference the string that is represented by the NLS ID:
import java.util.ResourceBundle;
...
String strExample = getString("MSG_EXAMPLE");
demoExample.setLabel(strExample);

You can use theNlsResourceClass and NlsResourceBundle method stringExists() to
determine whether a string exists.

Web Development Kit and Client Applications Development Guide 581

Other Customizations

Dynamic messages in NLS strings

You can write messages from your action or component class using MessageService that
take a runtime message and add it to an introductory NLS string. In your component or
action class, import MessageService and add the message, similar to the following:

Example 22-6. Dynamic Error Messages
In the following example from SubmitForCategorization, two different messages are
dispatched depending on the runtime context:
import com.documentum.webcomponent.library.messages.MessageService;
...
IDfSysObject oObject = getObject();
if (m_fIsAutoEnabled)
{
oObject.queue(
DEF_USER_AUTO_PROC, QUEUE_EVENT_AUTO_PROCESS, QUEUE_PRIORITY,
QUEUE_IS_MAIL, new DfTime(), getString("MSG_QUEUE_AUTO_PROC"));

MessageService.addMessage(
this, "MSG_ACKNOWLEDGE_AUTO_SUBMISSION", new String[] {
oObject.getObjectName()});

}
else
{
oObject.queue(
DEF_USER_MANUAL_PROC, QUEUE_EVENT_MANUAL_PROCESS, QUEUE_PRIORITY,
QUEUE_IS_MAIL, new DfTime(), getString("MSG_QUEUE_MANUAL_PROC"));

MessageService.addMessage(
this, "MSG_ACKNOWLEDGE_MANUAL_SUBMISSION", new String[] {
oObject.getObjectName()});

}

The third parameter to addMessage() is an array of parameters for runtime substitution
in the NLS string. The array does not have to be object name as in the example above.

MessageService uses java.text.MessageFormat to perform the substitution. Refer to
the J2SE javadocs for MessageFormat for more information on concatenating dynamic
messages.

The properties file has an entry similar to the following:
MSG_ACKNOWLEDGE_MANUAL_SUBMISSION=
The document "{0}" was submitted to the queue for manual
categorization.

Tip: WDK finds the message string by the component definition. The component
in this example, submitforcategorization, names the NLS bundle that contains
its strings, com.documentum.webcomponent.library.submitforcategorization.
SubmitForCategorizationNlsProp.

582 Web Development Kit and Client Applications Development Guide

Other Customizations

Adding locale support to custom components

Your components must specify in their configuration file an NLS bundle
(<nlsbundle>)that will be used to look up strings based on user locale. For example:
<config>
<scope type='dm_sysobject'>
<component id='mycomponent'>
<nlsbundle>com.example.mycomponent.MyComponentNlsProp</nlsbundle>
...

Create the properties file corresponding to your bundle class. For example:
MSG_TITLE=Demo
MSG_EXAMPLE=This is your example

Add the properties files to the /strings directory under your custom application
directory. Properties files in an application that extends another application override the
string definitions in the base application.

LocaleService APIs

The locale service is implemented in the LocaleService class. This class has the following
methods:

getLocale() — Retrieves Locale from the session. If the session variable doesn’t exist, it
will be created.

Example 22-7. Getting the user’s locale
The locale service can retrieve the user’s locale. In the following example from
DynamicPerformerResultSet, getLocale() retrieves a localized string:
// initialize values coming from the bundle
Locale locale = LocaleService.getLocale();
m_strNullPerformer = getNlsResourceClass().getString(
"MSG_NO_PERFORMER_ASSIGNED", locale);

m_delim = getNlsResourceClass().getString(
"MSG_MULTIPLE_PERFORMER_NAME_DELIMITER", locale);

setLocale() — Sets a new locale in the session.

Example 22-8. Setting the locale for an object
In the following example from the Web Publisher class WcmContent, setLocale() sets
the locale for a new translation:
theDoc.setObjectName(name);

Web Development Kit and Client Applications Development Guide 583

Other Customizations

// need to set this before we promote the object to WIP state
theDoc.setLocale(newLocale);

getDefaultLocale() — Returns the default locale based on the locale of the application
server OS..

getSupportedLocales() — Gets the locales that are named in app.xml.

createLocale() — Creates a Locale object from a string representation of a locale.

Locale codes

The WDK locale service uses Java locale names and country codes to set the user’s locale.

Supported locales are configured in the application app.xml file. In your custom layer
app.xml file you can override the <supported_locales> element and list the locales that
are supported by your application.

Java locales are constructed from a concatenation of the two-letter ISO language code
and the two-letter ISO country code in the form xx_YY, where xx is the two-character
lower-case language code and YY is the two-character uppercase code. The language
code alone (YY) is an acceptable locale code string.

For the full list of ISO language codes, refer to Code for the Representation of the Names
of Languages. From ISO 639. For the full list of ISO country codes, refer to English
country names and code elements.

Accessibility service
WDK components are compliant with the standards of section 508 of the U.S. Disabilities
Act. The accessibility service provides support for displaying a UI that is accessible to
vision-impaired users. The service turns on accessibility based on the user’s selection of
accessibility in the login page. The accessibility preference is stored in a cookie along
with other user preferences.

The accessibility service turns on support for keyboard navigation, tooltip presentation,
and special navigation pages that are rendered in place of actionmultiselectcheckbox
controls. For information on configuring accessibility features, refer to Configuring
accessibility, page 310.

The following topics describe WDK accessibility features and how to use them to create
an accessible Web application:

584 Web Development Kit and Client Applications Development Guide

http://www.oasis-open.org/cover/iso639a.html
http://www.iso.ch/iso/en/prods-services/iso3166ma/02iso-3166-code-lists/list-en1.html

Other Customizations

• Accessibility mode, page 585
• Accessible control labels, page 586
• Event handlers, page 586
• Image accessibility strings, page 587
• Accessible tables, page 588
• Applet descriptions, page 589
• Frame titles, page 589
• Writing alt tags or label descriptions, page 590

Accessibility mode

In accessibility mode, several controls and components have different behavior:

• HTTP content transfer is used for import when the user has selected the accessibility
mode.

• The actionmultiselectcheckbox control is rendered as a link to a list of actions for
the object.

• The actionmultiselectcheckall control is rendered as a link to a page of global actions,
that is, actions that do not require an object.

• Menu controls (menugroup, menuitem, actionmenuitem, menuseparator) generate a
single link that invokes the action that is normally associated with the menu item.

• The Webtop menubar component renders a page of action links for an item. It does
not render a menu bar.

• The help service launches a PDF file, which is accessible, instead of online help.
• Button controls have an accessible parameter. When set to true, the button is

rendered as a link that is accessible by the tab key. This parameter can be set
independently of the user’s accessibility preference and is used to make the buttons
on the login page accessible before the accessibility option is selected.

• The login component page has tab-accessible buttons and a checkbox that enables
accessibility for the user.

• The Webtop browsertree and titlebar components have an additional link to the
user’s work area at the beginning of all links on the page. This allows the user to tab
to the link and navigate to another frame directly. The shortcut to the workarea is
provided through a JavaScript function, setFocusOnFrame(Frame framename). This
JavaScript function is contained in the file /wdk/include/locate.js.

• Accessibility defaults for alt text, keyboard navigation, and shortcuts can be set in the
application configuration file app.xml. Refer to Table 2–9, page 65 for details.

• Alt text strings can be configured for images. Refer to Image accessibility strings,
page 587 for information on how to use these strings in a WDK-based application.

Web Development Kit and Client Applications Development Guide 585

Other Customizations

Note: Multiple selection is not supported in accessibility mode. Instead, a tab-accessible
link next to each object launches an action page of actions that are available for the object.

Accessible control labels

Every control must be labelled, either by using one of the tooltip attributes, if supported,
or by adding a label tag. A non-compliant control has neither kind of label:
<dmf:text name="containedwords" focus="true" size="40"
defaultonenter="true"/>

The same control can have a tooltip attribute. Many controls support this attribute, and
some additionally support tooltipnlsid and tooltipnlsdatafield. (Refer to the tag library
descriptor for supported attributes on a particular control.):
<dmf:text name="containedwords" focus="true" size="40"
defaultonenter="true" tooltipnlsid="MSG_CONTAINING"/>

Alternatively, a control can have an associated label tag, which supports tooltips:
<LABEL for="Email"> Email </LABEL>
<INPUT type="text" name="emailinput" size="8" class="NavBold" id="Email">
</INPUT>

Event handlers

Event handlers must not be device dependent, that is, dependent on mouse input. A
non-compliant handler is similar to the following:
<a href="http://www.yahoo.com" onmouseover="window.status=
'Go to the Yahoo homepage':return true">Yahoo Home Page

The same event can be handled in a device-independent manner by adding an onFocus
event:
<a href="http://www.yahoo.com" onMouseOver="window.status=
'Go to the Yahoo homepage':return true" onFocus="window.status=
'Go to the Yahoo homepage':return true">Yahoo Home Page

The following table lists device-independent alternatives to mouse events:

Table 22-1. Device-independent events

Mouse event Device-independent event

onClick onKeyPress

onMouseDown onKeyDown

586 Web Development Kit and Client Applications Development Guide

Other Customizations

Mouse event Device-independent event

onMouseUp onKeyUp

onMouseOver onFocus

onMouseOut onBlur

onDblClick onKeyDown

Image accessibility strings

Images can be rendered with HTML alt attribute text values to comply with accessibility
standards. A non-compliant example of an image tag is:
IMG src="library_map.gif"

The image can be made accessible by adding a properties file with alt text for the image.
The WDK image accessibility resource files are located in the following directory of each
application layer: /strings/com/documentum/web/layer_name/accessibility/icons and
/strings/com/documentum/web/layer_name/accessibility/images where layer_name is
wdk, webcomponent, webtop, wp, custom, or a client application layer name.

To dene the lookup for an image or icon le or directory
You can create a lookup file for a single image or all of the images in a directory, but not
the subdirectories. In the following example, you are creating the alt text for a several
format icons in a theme directory (the first icon is named f_123w_16.gif).

1. Create a properties file named alt.properties in the same directory as the image.

2. Specify the properties file for the image (icon) or images (icons). For example:
nlsbundle=com.documentum.web.accessibility.icons.FormatAltNlsProp

3. Create the properties file that you referenced in the alt.properties file. In the
above example, you would create a file /WEB-INF/classes/com/documentum/web/
accessibility/icons/FormatAltNlsProp.properties.
Add a key to the property file for each image or icon. For example:
f_123w_16.gif = Lotus 1-2-3 r5

To override the alt text displayed for images and icons within a component , redefine the
NLS lookup in the component NLS file.

Web Development Kit and Client Applications Development Guide 587

Other Customizations

Accessible tables

To be accessible, tables must have titles or be described just before the table is presented.
Additionally, tables must have header cells that describe the contents of each column
and row scope cells at the beginning of each row. The following table is not compliant
because reader software cannot distinguish which column a table cell belongs to:
<TABLE>
<TR>
<TD>Jane</TD>
<TD>20</TD>
<TD>Female</TD>

</TR>
<TR>
<TD>John</TD>
<TD>23</TD>
<TD>Male</TD>

</TR>
</TABLE>

The above example can be made accessible with the additionof table header cells with ID,
matched to a headers attribute on each table cell. This method is useful for small tables:
<TABLE>
<TR>
<TH id="names">Name</TH>
<TH id="ages">Age</TH>
<TH id="sex">Sex</TH>

</TR>
<TR>
<TD headers="names">Jane</TD>
<TD headers="ages">20</TD>
<TD headers="sex">Female</TD>

</TR>
<TR>
<TD headers="names">John</TD>
<TD headers="ages">23</TD>
<TD headers="sex">Male</TD>

</TR>
</TABLE>

Alternatively, you can use a column scope attribute on each table header cell and a row
scope attribute on the header cell of each table row. This method is supported by most
but not all accessibility software. The first cell must contain identifying information for
the row:
<TABLE>
<TR>
<TH scope="col">Name</TH>
<TH scope="col">Age</TH>
<TH scope="col">Sex</TH>

</TR>
<TR>

588 Web Development Kit and Client Applications Development Guide

Other Customizations

<TH scope="row">Jane</TD>
<TD>20</TD>
<TD>Female</TD>

</TR>
<TR>
<TH scope="row">John</TD>
<TD>23</TD>
<TD>Male</TD>

</TR>
</TABLE>

Applet descriptions

APPLET elements should contain a text equivalent, usually in the form of an alt attribute.
Some assistive technologies and browsers cannot understand their content. In additio,
the interface for the applet itself must be accessible.

A non-compliant applet tag has no description, similar to the following:
<APPLET code="urname.class" width="10" height="10"></applet>

The above example can be made accessible with the addition of the alt attribute and a
text string description as follows:
<APPLET code="urname.class" width="250" height="22"
alt="This applet allows a user to view a clock">
This applet allows a user to view a clock

</APPLET>.

Frame titles

HTML <frame> tags should have titles. Use the WDK frame tags to generate a frame
with a title and ID. The ID is necessary to maintain proper browser history and state.

The following example generates a non-accessible frame:
<dmf:frame nlsid="MSG_MESSAGEBAR" frameborder="false"
name="messagebar" src="/component/messagebar" scrolling="no"
noresize="true"/>

The above example is compliant with the addition of a frame title attribute:
<dmf:frame nlsid="MSG_MESSAGEBAR" title="Message Bar"
frameborder="false" name="messagebar" src="/component/messagebar"
scrolling="no" noresize="true"/>

Web Development Kit and Client Applications Development Guide 589

Other Customizations

Writing alt tags or label descriptions

The basic formula for a Documentum ALT tag or label is Noun+Ver, for example:
Element name + What the element does. Visually impaired users who are familiar with
the UI can hear the name from the screen readerand proceed. A full but not lengthy
description following the name will help less familiar users and will not impede more
experienced users.

Use a period between the element name and the description. This will cause the screen
reader software to pause and allow the experienced user to move on unless they wish
to hear the description.

The following example is the alt text for the inbox graphic:

Documentum Inbox. Where you can check your workflow tasks and notifications.

Help service
For standalone Web applications, the help service enables context-sensitive help at the
component level. For portal applications, context-sensitive help is configured through
the portlet configuration file portlet.xml in /WEB-INF. When the user launches the help
button or help link, the help for the current component is displayed in a help host page
(in a separate browser window).

The help service is described in the following topics:
• Adding help to a standalone Web application, page 590
• Localizing help files, page 595

Adding help to a standalone Web application

You can use WDK component help in your application and add new help files for your
custom components. A set of help files is included in the WDK client applications in the
/help directory at the root of application.

To add help files for your custom application, first install WDK and select the option
to customize an existing application. Select an installation of Webtop or another
WDK-based Web application. The application will be copied to a development directory
in which you can customize the application and the help files.

The following topics provide details on the help component:
• The help component, page 591
• Adding help for a custom component, page 591

590 Web Development Kit and Client Applications Development Guide

Other Customizations

• Invoking the help, page 592
• Scoping and filtering the help, page 593
• Launching help, page 594

The help component

Help files are mapped in the help-index component definition. The configuration file
that contains this definition, help_component.xml, is located in the product application
layer /config directory or a subdirectory of the /config directory. For example, if you are
customizing the Webtop product, the help-index component definition is located in
/webtop/config. If you are customizing the Web Publisher product, the definition is
located in /wp/config/app.

The names of help files are specified in the <help-entries> element. Each file name is
specified as the value of an <entry> element. The id attribute of the <entry> element
matches the value of the <helpcontextid> element in a component definition.

For example, the entry for the abortwpworkflow component in Web Publisher is
specified as follows.
<entry id="abortwpworkflow">wp_managing_workflows.htm</entry>

The entry id matches the helpcontext value in the abortwpworkflow definition:
<helpcontextid>abortwpworkflow</helpcontextid>

Adding help for a custom component

When you write a new component and need to provide end-user help, you should
extend the help-index component so that your application can be updated without
overwriting your custom help files.

Note: The help file must be in a format that can be viewed in a browser, such as HTML
or PDF.

If your custom component extends the functionality of a WDK component, and the
WDK help is sufficient, the WDK help will be displayed by the help service, because
your component inherits the helpcontextid value from the parent component. You do
not need to extend the help component.

If your component provides new functionality that has separate documentation, you can
copy the WDK help topic for the parent component or create your own HTML file, using
a WDK help file as a template.

Web Development Kit and Client Applications Development Guide 591

Other Customizations

To add help for a new component

1. Create a helpcontextid for your component in the component definition. For
example:
<component id="my_component">
...
<helpcontextid>my_component</helpcontextid>

</component>

2. Extend the help-index component.

a. Copy the help-index component definition from /config/app to /custom/config.

b. Change the component element to extend the original. For example (substitute
the appropriate product directory, such as wp or dam):
<component id="help-index" extends=
"help-index:webtop/config/app/help_component.xml">

3. Map the component to a help file in your custom help-index component definition,
adding an entry for each help file. For example:
<entry id="my_component">my_component.htm</entry>

4. Add your localized help files for each component to the appropriate directories. For
example, if you have localized my_component.htm in French, Spanish, and English,
add the copies to /help/en and /help/fr. Make sure you have added an entry for
the locales in app.xml.

Invoking the help

The help is invoked when a button, link, or other control in your application calls the
JavaScript function onClickHelp() in the file /wdk/include/help.js. A new window is
launched containing the context-appropriate help file.

If your component will be used for both portal and standalone environments, name
your help button DialogContainer.CONTROL_HELPBUTTON. (You must import
com.documentum.web.formext.component.DialogContainer into your JSP page.) Help
buttons with this name will be suppressed in portal environments so that portlet help
can be launched instead. For example:
<dmf:button name='<%=DialogContainer.CONTROL_HELPBUTTON %>' nlsid='MSG_HELP'
onclick='onClickHelp' runatclient='true' height='16' cssclass="buttonLink"
imagefolder='images/dialogbutton' tooltipnlsid="MSG_HELP_TIP"/>

To display help for any control that has an onclick attribute, set the attribute to call
onClickHelp(). Some controls that can launch the help are: button, link, radio, checkbox,
image, tab, and menuitem. For example:
<dmf:button name="help" cssclass="buttonLink" nlsid="MSG_HELP"
onclick="onClickHelp" ...>

</dmf:button>

592 Web Development Kit and Client Applications Development Guide

Other Customizations

The help for the component that contains the control will be displayed.

The supporting JavaScript onClickHelp() function is available to every JSP page that
contains the <dmf:webform/> tag. This tag generates in the HTML output a reference to
the help.js JavaScript file .

Scoping and ltering the help

You can set the help context based on the value of a scope qualifier. Alternatively, you
can add a filter to the help that displays the help when a qualifier value is satisfied. The
scope qualifier is applied in the component definition. The filter qualifier is applied in
the help-index definition.

Example 22-9. Scoping the help
When you scope a component based on a qualifier, you can provide a different
helpcontextid value for that scope. In the following example, the administrator and
consumer users see different help files:
<config>
<scope role="administrator">
<component id="subscriptions_list">
...
<pages>
<start>subscriptions_admin.jsp</start>

</pages>
<helpcontextid>subscriptions_admin</helpcontextid>
</component>
</scope>

<scope role="consumer">
<component id="subscriptions_list">
...
<pages>
<start>subscriptions_consumer.jsp</start>

</pages>
<helpcontextid>subscriptions_consumer</helpcontextid>

</component>
</scope>
</config>

Your help-index component definition has two entries:
<entry id="subscriptions_admin">subscriptions_admin.htm</entry>
<entry id="subscriptions_consumer">subscriptions_consumer.htm</entry>

Example 22-10. Filtering the help les
You can filter a set of help files that are displayed only when a qualifier value is satisfied.
For example, the Web Publisher application is built on Webtop and displays Webtop

Web Development Kit and Client Applications Development Guide 593

Other Customizations

help. The Web Publisher help-index component adds a set of help entries that are
displayed only for a certain qualifier value. The Web Publisher components all have a
wpcontext value of wpview. You can use any qualifer that is defined in your application
to filter help files.

In the following example, you have different properties help depending on the
repository, but the help refers to a single component. Your help-index component
definition would look something like this:
<component id="help-index" extends=
"help-index:webtop/config/app/help_component.xml">
...
<help-entries>
<entry id="default">default.htm</entry>
<!-- Docbase A1 helps -->
<filter docbase="A1">
<entry id="properties">properties_a1.htm</entry>

</filter>
<!-- Docbase A2 helps -->
<filter docbase="A2">
<entry id="properties">properties_a2.htm</entry>

</filter>
...

</help-entries>

Launching help

The base directory for help is registered in the properties file com.documentum.help.
helpProp.properties. The default base directory for the help is web_root/help.

The help service uses a base URL, which is registered in /WEB-INF/classes/com/
documentum/web/common/HelpService.properties, to locate the JSP page that hosts the
help file. The base URL is defined in the properties file as follows:
HelpUrl=/help/help.jsp?context=
The value of the context is added by the help service based on the current component.

The help host page detects the client browser and launches the context-sensitive help
file for the current component in a new window. The help service looks up the context
value in the help-index component definition and launches the appropriate help page
for the user’s locale.

Example 22-11. Creating a custom help directory
The following example changes the base URL to a custom help directory. You
must make changes to two files: com.documentum.help.helpProp.properties and
/WEB-INF/classes/com/documentum/web/common/HelpService.properties. Your
custom copies of these files will override the base locations.

Create the directory structure /custom/myhelp in your application.

594 Web Development Kit and Client Applications Development Guide

Other Customizations

Create the directory structure /custom/strings/com/documentum/web/common and
place in it a copy of the file HelpService.properties from /WEB-INF/classes/com/
documentum/web/common. Open this file and change the entry for the base path to
the following:
HelpUrl=/custom/myhelp/help.jsp

Create the directory structure /custom/strings/com/documentum/help and place in it a
copy of the file helpProp_en.properties. Add a copy for each locale of help in your
application, for example, helpProp_de_DE.properties. Open the properties files that you
have copied and change the base help URL to the following (English example). Make
sure that a directory exists and contains localized help files for your application:
url=/custom/myhelp/en

Restart your application server to see the help files from the new directory.

Localizing help les

You can add help files for each locale that is supported by your application. The help
service locates the localized file based on the user’s selected locale. For example, the
English help file for the delete component, deleting.htm, is located in /help/en, and the
French file, also named deleting.htm, is located in /help/fr.

Utilities
The following utility classes and services are provided by the WDK 5 framework:
• Clipboard service, page 595
• Rendering messages to users, page 600
• Reporting errors, page 601
• Version utility, page 603
• Encoding utilities, page 604
• Input mask, page 606

Clipboard service

The clipboard service provides a session-based clipboard to handle copy, move, and
link operations on multiple objects across components. The user adds items from one

Web Development Kit and Client Applications Development Guide 595

Other Customizations

or more folder locations to the clipboard modal window using the Add to Clipboard
menu action. The user then navigates to the destination folder for the copy, move, or
link operation. The selected copy, move, or link operation is performed on all items in
the clipboard. The next Add performed after a copy, move, or link command clears the
current contents of the clipboard.

Clipboard operations are verified though the action service. The default action service
preconditions are that the user has read permissions on the source object and full write
permissions on the destination folder. Items can be added to the clipboard from more
than one repository if the user has identical login credentials for the two repositories
(same user name and password).

The following topics describe the implementation of clipboard support in a custom
component:
• Clipboard APIs, page 596
• Using the clipboard in a component, page 597
• Location and refresh, page 598
• Clipboard Action Filtering, page 599

Clipboard APIs

The clipboard service has the following classes and interfaces in the package
com.documentum.web.formext.clipboard:

Clipboard — Implements IClipboard and provides add, copy, and paste functions as
well as clipboard maintenance functions

IClipboard — Returned by Component.getClipboard().

IClipboardCutHandler — This interface is called after a successful pasteAsMove()
clipboard operation. The interface declares a single method: the onCut() event handler.

IClipboardPasteHandler — This interface is called after a successful pasteAsCopy()
or pasteAsLink() clipboard operation. Declares onPasteAsCopy() and onPasteAsLink()
methods.

ClipboardUtil — This class provides a set of static utility methods that are the default
implementation of deep copy, deep delete, and link operations on standard dm_sysobject
and dm_folder objects.

The IClipboard interface declares the following methods, which must be handled by
custom components that use the clipboard:

596 Web Development Kit and Client Applications Development Guide

Other Customizations

• add(String strObjectId, IClipboardCutHandler handler): Adds one or more object
IDs to the clipboard. The first parameter can be an array of object IDs. The second
parameter (IClipboardCutHandler) will be called if the item is used for a move
operation.

• pasteAsCopy(String strObjectId, IClipboardPasteHandler handler): Pastes one or
more object IDs from the clipboard using the specified paste handler. The first
parameter can be an array of object IDs. If the IClipboardPasteHandler value is null,
the current paste handler will be used.

• pasteAsLink(): Same as pasteAsCopy(). The link operation is performed handled by
the paste handler.

• pasteAsMove(): Pastes the specified items from the clipboard using the specified
paste handler and then cuts the original items from their original location by calling
the associated IClipboardCutHandler for each item. The first parameter can be an
array of object IDs. The second parameter: This handler will be used if a null value is
passed for the handler during any future paste operations.

Using the clipboard in a component

You can enable your components to use the clipboard for Documentum objects by calling
getClipboard() on the Component class to retrieve the IClipboard interface for the
current user.

Your component must import IClipboard, IClipboardCutHandler, and
IClipboardPasteHandler in your component class and implement the two handler
interfaces. You can also import the utility class ClipboardUtil if your component can use
the default implementation of the copy, link, or delete operations.

Your component must implement the following clipboard handler methods:

onCut(String strObjectId) — Event handler for onCut event. For example:
public void onCut(String strObjectId)
{
try
{
ClipboardUtil.deleteObject(getDfSession(), strObjectId);

}
catch (DfException dfe)
{
WebComponentErrorService.getService().setNonFatalError(this,
"MSG_CLIPBOARD_CUT_ERROR", dfe);

}
}

onPasteAsCopy(String strObjectId) — Event handler for onPasteAsCopy event. For
example:

Web Development Kit and Client Applications Development Guide 597

Other Customizations

public void onPasteAsCopy(String strObjectId)
{
try
{
ClipboardUtil.copyObject(getDfSession(), strObjectId, m_strFolderId);

}
catch (DfException dfe)
{
WebComponentErrorService.getService().setNonFatalError(
this, "MSG_CLIPBOARD_PASTE_ERROR", dfe);

}
}

onPasteAsLink(String strObjectId) — Event handler for onPasteAsLink event. For
example:
public void onPasteAsLink(String strObjectId)
{
try
{
ClipboardUtil.linkObject(getDfSession(), strObjectId, m_strFolderId);

}
catch (DfException dfe)
{
WebComponentErrorService.getService().setNonFatalError(
this, "MSG_CLIPBOARD_PASTE_ERROR", dfe);

}
}

Location and refresh

If you handle an operation that requires a location, you must resolve the location for the
current component, for example, a folder path for a repository list, or an inbox package
object for an inbox component.

In the paste handler examples, the component gets the target folder ID from the
FolderUtil utility class com.documentum.web.formext.docbase.FolderUtil:
m_strFolderId = FolderUtil.getFolderId(strFolderPath);

The target folder ID is required for a copy or link operation.

After a clipboard operation, the component that launched the clipboard may need
to refresh the display to show changes from the operation. You should override
onRefreshData() and call refresh() on any data provider controls such as data grid. This
will reload the data that may have changed.

598 Web Development Kit and Client Applications Development Guide

Other Customizations

Clipboard Action Filtering

You can enable action filtering on clipboard functions using the action service. Action
classes in the package com.documentum.webcomponent.environment.actions allow
you to set preconditions for clipboard actions. For example, the action definition in
dm_sysobjects is /webcomponent/config/actionsdm_sysobject__actions.xml defines the
following actions:

• addtoclipboard: Requires objectId parameter. lockOwner and object type parameters
are optional. Two precondition classes are defined: AddToClipboardAction and
RolePrecondition. The AddToClipboardAction class gets a Documentum session,
looks up the object type from its ID, gets the lock owner, and allows execution if
there is no lock or the current user has the lock.

• move: No parameters are defined. The moveAction precondition class is defined.
The moveAction queryExecute() method checks whether there are items in the
clipboard. The moveAction() method calls IClipboard pasteAsMove().

• copy: No parameters are defined. The copyAction precondition class is defined. The
copyAction queryExecute() method checks whether there are items in the clipboard.
The copyAction() method calls IClipboard pasteAsCopy().

• link: No parameters are defined. The linkAction precondition class is defined. The
linkAction() method calls IClipboard pasteAsLink().

To enable a clipboard action filter, reference the action in a button or link. For example, the
cut action ID is defined in /webcomponent/config/environment/clipboard/dm_sysobject_
clipboard_actions.xml. In /webcomponent/navigation/drilldown/drilldown_body.jsp, an
Add to Clipboard button is placed on the page:
<dmfx:actionlink ... name='addtoclip' ... action='addtoclipboard'>
The action addtoclipboard is resolved by the configuration service to its definition in
dm_sysobject_clipboard_actions.xml, and the preconditions are evaluated.

To remove a clipboard action for a specific qualifier such as object type, use the
notdefined attribute on a scoped action. In the following example, the clipboard actions
are disabled for my_custom_type objects:
<scope type="my_custom_type">
<action id="addtoclipboard" notdefined="true">
</action>

</scope>

For more information on using the action service, refer to Chapter 15, Customizing
actions.

Web Development Kit and Client Applications Development Guide 599

Other Customizations

Rendering messages to users

The message service maintains in the session a list of messages to the user from various
services and components. You can use the message service to post success or error
messages when you do not need a special UI component such as a prompt.

Some of the most commonly used message service interfaces in com.documentum.
webcomponent.library.messages.MessageService class are described below:

addMessage(Form form, String strMessagePropId) — Adds a message to the form
(usually the status bar component). Parameters: Form name, NLS ID of the message
string. For example:
MessageService.addMessage(this, "MSG_LDAP_CONNECTION_FAILED");

An optional third is an array of parameters for NLS string substitution. Each parameter
substitutes a placeholder in the message string corresponding to a numbered position in
the array. The placeholder takes the form {n} where n is the number of the parameter
starting from zero.

addDetailedMessage(Form form, String strMessagePropId, Object oParams, String
strDetail, boolean bHighPriority) — Adds a message with additional detail to
the message list. The first parameter can be subtituted with an NLS resource class
(NlsResourceClass) instead of a form class. The third parameter is optional (an array of
NLS Java token parameters). Refer to the Javadocs for more detail on this overloaded
method.

The message is taken from the NLS property file, and the additional detail field supplies
information that is not externalized or translated, such as an exception message from an
error. Optionally, the user can mark a message as high priority, which are shown in red
in the View All Messages screen. For example:
MessageService.addDetailedMessage(
form, strMessagePropId, oParams, exception.getMessage(), true);

The Messages component uses the message service to get the result set of messages and
initialize a data grid with the result set. For example:
Datagrid msgGrid = (Datagrid)getControl(CONTROL_GRID, Datagrid.class);
ResultSet res = MessageService.getResultSet();
msgGrid.getDataProvider().setScrollableResultSet((ScrollableResultSet)res);

To display a message in a component:

1. Insert an entry into the NLS file for the component or form. The following examples
show an entry without and with Java token parameters:
//without substitution
MY_MESSAGE=That operation cannot be performed in this component.
//with substitution
MY_MESSAGE_2=The operation cannot be performed:{0} Component: {1}

600 Web Development Kit and Client Applications Development Guide

Other Customizations

2. Import the message service in your behavior class.

3. At the point in your behavior class where the message is posted, call
MessageService.addMessage(). The following example gets the message strings
above:
//without substitution
MessageService.addMessage(this, "MY_MESSAGE");
//with substitution

String[] strParams = new String{} {"Delete", "VDM editor"};
MessageService.addMessage(this, "MY_MESSAGE_2", strParams);

Note: The parameters are an array, so any object can be passed in if it can be
converted to a string.

Reporting errors

Error handling is governed by the error message service. The base class,
ErrorMessageService, is in the com.documentum.web.common package. When a fatal
error is thrown, the WrapperRuntimeException class calls ErrorMessageService and
saves the error into the session. The message can then be retrieved by the error message
component.

Errors thrown during processing of JSP pages are handled by the error handler servlet,
which saves the stack trace in the session.

The error message service is configurable in the application configuration file app.xml,
so that each application can have its own error message service.

For information on using tracing to track down errors, refer to Tracing, page 333.

WrapperRuntimeException — Use WrapperRuntimeException to pass specific error
messages in your catch blocks. For example:
private static String adjustEventName(String eventName)
{
try
{
if(eventName.indexOf(' ') == -1)
{
throw new WrapperRuntimeException("no event name", e);

}
...

or simply:
catch (Exception e)
{
throw new WrapperRuntimeException(e);

}

Web Development Kit and Client Applications Development Guide 601

Other Customizations

Reporting user errors — You can use the WebComponentErrorService to report error
messages from components to users. In the following example, the error message service
reports an error when the user tries to view an object that does not exist. The method
setReturnError() is in the Form class, so it is inherited by all components:
catch (Exception e)
{
setReturnError("MSG_CANNOT_FETCH_OBJECT", null, e);
WebComponentErrorService.getService().setNonFatalError(
this, "MSG_CANNOT_FETCH_OBJECT", e);

}
Where "this" is the component or form object, and the error string is an NLS key that
exists in your component NLS resource file.

If you are handling an error in a contained component, you cannot call
setComponentReturn(). You could create a custom error page (<pages>.<errorPage> in
your component definition) to display your error message. The following example
sets the error as the value of a label control (name=”errorLabel”) on your error page
before calling the page:
try
{
//code that anticipates an error

}
catch(Exception e)
{
WebComponentErrorService.getService().setNonFatalError(this, "
TestMessage", new Exception("Test Exception"));

Label lblErr = (Label)getControl("errorLabel");
lblErr.setText("Your error message and instructions go here...");
setComponentPage("errorPage");

}

Custom error message service — You can register an error message service for your
application layer. Use the<errormessageservice> element in app.xml for your application
layer to specify the class that handles your application error messages. For example, the
webcomponent app.xml specifies the following:
<errormessageservice>
<class>com.documentum.webcomponent.common.WebComponentErrorService
</class>

</errormessageservice>

Because the error message service class is registered for an application layer, any control
or component class can use the same call. For example:
catch(DfException exp)
{
// Writes a message to warn of the error
ErrorMessageService.getService().setNonFatalError(
this, "MSG_ERROR_USER_IMPORT", exp) ;

}

602 Web Development Kit and Client Applications Development Guide

Other Customizations

The class ErrorMessageService provides several methods. One of the methods that is
commonly used by component classes is setNonFatalError(): Allows an exception to be
set as a non-fatal error, along with a message. For example, you can add a detailed
exception message from a DFC operation. Parameters:
• Form: Form class that contains the context of the error
• strMessagePropId: String ID of the error message in the form’s property file
• oParams: (Optional) Array of parameters for use in the NLS string
• exception: The Exception object.

Error handler servlet — The error handler servlet calls the error message component
and saves the stack trace in the session. If you do not specify an error page in your JSP
page, the exception will be displayed inline. Each JSP page in your application should
include a directive to redirect to the errormessage page in the case of an exception.
The syntax for the directive is:
<% page errorPage="/wdk/errorhandler.jsp" %>

This error message service class is called by default for all components in the
webcomponent layer because it is the registered error message handler in the
webcomponent app.xml file.

The error handler JSP page has a directive at the top of it that specifies to the J2EE server
that it is an error page. The servlet is called by the J2EE server when there is an error on a
JSP page, and the servlet then opens a newwindow to load the error message component.

Error message component — The error message component gets a
WrapperRuntimeException from the session, where it was saved by the error handler
servlet. The component extracts the original exception and displays the message and
stack trace.

Version utility

The utility class com.documentum.web.util.Version provides methods for comparison
of version strings. For Documentum versions, the standard version string format is
[(digit)*[letter]][.(digit)*[letter]][.(digit)*[letter]][.(digit)*[letter]].

The methods compareTo(Version ver) and compareTo(String str) compare the input
version object or string to the current version string. For example:
private static boolean isOldMacOS()
{
String osname = System.getProperty("os.name");
String osversion = System.getProperty("os.version");
return (osname.indexOf("Mac OS") != -1) && ((new Version("10.0")).
compareTo(osversion) > 0);

}

Web Development Kit and Client Applications Development Guide 603

Other Customizations

The next example tests whether the repository version is greater than a specified minor
version:
private static final String MIN_SERVER_VERSION = "5.0";
IDfSession dfsession = getDfSession();
if ((new Version(MIN_SERVER_VERSION).compareTo(
dfsession.getServerVersion()) <= 0)

{
m_bVersionOk = Boolean.TRUE;

}

Encoding utilities

The following encoding utilities are provided in WDK:
• SafeHTMLString, page 604
• StringUtil, page 605
• ZipArchive, page 606

SafeHTMLString

The class com.documentum.web.util.SafeHTMLString prints HTML-safe strings by
escaping any embedded characters that would be interpreted as HTML by a browser.
The escape() method takes a string and returns a safe string. In the following example,
event arguments are encoded to be returned as a JavaScript string:
public String getOnclickScript ()
{
StringBuffer buf = new StringBuffer(128);
buf.append(menu.getEventHandlerMethod("onclick"))
.append("(this");
// escape the output params
ArgumentList eventArgs = getEventArgs();
if (eventArgs != null)
{
Iterator iterNames = eventArgs.nameIterator();
while (iterNames.hasNext())
{
String strArgName = (String) iterNames.next();
String strArgValue = (String) eventArgs.get(strArgName);
buf.append(",\"");
buf.append(SafeHTMLString.escape(strArgValue));
buf.append('"');

}
}
buf.append(");");
return buf.toString();

}

604 Web Development Kit and Client Applications Development Guide

Other Customizations

Use the escapeScriptLiteral() method to encode data that will be rendered as a JavaScript
argument. It escapes single quotes, double quotes, backslash, and closing tags.

StringUtil

The class com.documentum.web.util.StringUtil supports the printing of HTML-safe
strings by escaping any embedded characters that would be interpreted as HTML by a
browser. This utility class provides the following methods:
• escape(String strText, char character)

Escapes given character in the specified string. For example:
m_out.println("<script>setMessage('" + StringUtil.escape(
strMessage, '\'') + ": " + percent + " %');</script>");

• unicodeEscape(String str)

Escapes unicode characters in the input string. For example, processing URL
parameters:
import java.net.URLEncoder;
...
bufferUrl.append("&");
bufferUrl.append(strArgName).append("=");
if (strArgValue != null && strArgValue.length() >0)
{
bufferUrl.append(URLEncoder.encode(
StringUtil.unicodeEscape(strArgValue)));

}

• replace(String strSource, String strSearch, String strReplace)

Replaces occurences of a search string with a replace string. For example:
String strDateFormat = df.format(date);
strDateFormat = StringUtil.replace(strDateFormat, "2003", "yyyy");

• splitString(String strParameters, String strDelimiter)

Splits a token separated string of values into a vecto of strings. If no value is supplied
at one position, the string must contain the value null at that position. For example:
strCheckoutPaths = Base64.decode(strCheckoutPaths);
Vector checkoutPaths = StringUtil.splitString(
strCheckoutPaths, IContentXferConstants.PARAMETER_SEPARATOR);

...
public static final String PARAMETER_SEPARATOR = "|";

Web Development Kit and Client Applications Development Guide 605

Other Customizations

ZipArchive

The class com.documentum.web.util.ZipArchive creates a zip archive based on a file
path in a string. In the following example, the XML files within the current war file
are read and added to a ConfigFile object:
String strWARFile = System.getProperty(strAppName + ".war");
ZipArchive warArchive = null;
try
{
warArchive = new ZipArchive(strWARFile);

//Get all files inside given folder recursively (true = recurse)
Iterator iterSubs = warArchive.listFilesInFolder(strFolderPath, true);
while (iterSubs.hasNext())
{
String strFilePathName = (String)iterSubs.next();
if (strFilePathName.endsWith(".xml"))
{
ConfigFile configFile = new ConfigFile(strFilePathName, strAppName);
configFiles.add(configFile);

}
}

}

Be sure to close the archive when you are finished with it:
finally
{
warArchive.close();

}

Input mask

The InputMaskUtil class implements an input mask that accepts a string of characters.
If you need to mask user input, you can also use the input mask control. Refer toWeb
Development Kit Reference Guide for information on the input mask control.

To use a mask, implement a method that calls InputMaskUtil.parseMaskString().
This method will flag the escaped characters in your mask string. Then you call
InputMaskUtil.isCharValid() on the input string. The following example uses an input
mask to validate a string that is passed in:
protected boolean doCompare(String strValue)
{
boolean bValid = false;
// Retrieve mask to validate against
String strMask = getMask();
int valueLen = strValue.indexOf(0);
valueLen = strValue.length();
// if the input value is shorter than the mask, the value is not valid.

606 Web Development Kit and Client Applications Development Guide

Other Customizations

if (valueLen < strMask.length())
{
bValid = false;

}
else
{
bValid = true; // check the strValue in the for loop
for (int j = 0; j<valueLen; j++)
{
if (!InputMaskUtil.isCharValid(j, strValue.charAt(j),
strMask, false))

{
bValid = false;
break;

}
}
return bValid;

}
}

Web Development Kit and Client Applications Development Guide 607

Other Customizations

608 Web Development Kit and Client Applications Development Guide

Chapter 23
Using Business Objects in WDK

Documentum business objects (DBOs) are Java components that use DFC to perform business logic,
independent of the presentation layer or application logic. A business object can perform the same
operation for a Web application and a Desktop application.

WDK installs several business objects: workflow inbox, workflow reporting, subscriptions, and
content intelligence services. Web Publisher uses a few dozen business objects. The Documentum
developer Web site (developer.documentum.com) provides many other examples of useful business
objects, such as autonumbering and autonaming, deep export, zip service, and recycle bin.

In the Web environment, DBOs can be included on the application server. On the Content Server, the
DBOs can exist as server methods, jobs and lifecycle procedures. You can not directly call a DBO on
the Content Server from a client such as WDK.

DBOs are written in Java. You then instantiate the DBO and call its methods in a WDK client.

The following topics describe how to call DBOs from a WDK-based application:
• Calling an SBO method, page 609
• Using TBOs, page 610
For information on how to create DBOs, refer to theDocumentum Foundation Classes Development Guide.

Calling an SBO method
A service-based business object (SBO) provides functionality as a service to be used
by applications. The SBO is not specific to a particular object type. Examples of SBOs
include subscriptions and inbox.

To call an SBO method:

1. Use the SessionManagerHttpBinding to create a Session Manager object.

2. Use the IDfClient.newService() factory method, passing the service name and
Session Manager, to create the SBO instance.

Web Development Kit and Client Applications Development Guide 609

http://developer.documentum.com

Using Business Objects in WDK

3. Set the repository for the service. The repository name must be passed either to
the SBO or to every method of the SBO.

4. Call methods from the SBO.

Example 23-1. Calling an SBO method
The following example from DRLInboxItemViewtAction instantiates the inbox service
and calls a service method:
final IDfSessionManager manager = SessionManagerHttpBinding.getSessionManager();
IInbox inboxService = (IInbox)DfClient.getLocalClient().newService(
IInbox.class.getName(), manager);

inboxService.setDocbase(SessionManagerHttpBinding.getCurrentDocbase());

IDfSession session = null;
try
{
session = manager.getSession(SessionManagerHttpBinding.getCurrentDocbase());
String strObjectId = getTaskId(args, session);
args.replace("objectId", strObjectId);
context.set("objectId", strObjectId);

//call the service method
ITask task = inboxService.getTask(new DfId(strObjectId), true);
...

}

Using TBOs
A type-based business object (TBO) allows you to override DFC methods for a specific
object type. Once your TBO is registered, your TBO methods will be called when the
relevant operation is called on the TBO type. For example, your TBO for my_sop type
overrides the checkin operation and creates a rendition on checkin. When the user checks
in a document of the type my_sop, your checkin operation is performed.

TBOs are instantiated when a user performs an action on a custom type. Unlike SBOs,
you do not need to explicitly instantitae TBOs. TBOs can be called only for custom server
object types and not for Documentum types such as dm_document or dm_sysobject. .

Use a TBO to override methods in the base class or create custom methods for the type.
TBOs extend DfPersistentObject or subtypes. For example, you could override DfFolder
or DfDocument behavior in your TBO. The TBO interface must extend IDfBusinessObject.

The Documentum object hierarchy with a type-based object is shown below:

610 Web Development Kit and Client Applications Development Guide

Using Business Objects in WDK

Figure 23-1. Documentum object hierarchy

When you create a TBO and register it with the DBOR registry, the operations in
your TBO are automatically performed for objects of that type in your WDK-based
applications. Refer to Documentum Foundation Classes Development Guide for information
on creating TBOs.

Web Development Kit and Client Applications Development Guide 611

Using Business Objects in WDK

612 Web Development Kit and Client Applications Development Guide

Chapter 24
Customization Examples

WDK client applications such as Webtop, Web Publisher, Digital Asset Manager, or Documentation
Administrator can be configured and customized using the general guidelines in this guide. For
information on locating the correct files for configuration, refer to Finding files to configure controls,
page 162.

This section describes customization of features that are specific to a client application:
• Displaying Objects: Datagrid and objectgrid, page 613
• Creating a component, page 614
• Customizing components, page 617
• Customizing controls, page 623
• Customizing actions, page 625
• Custom queries and data sources, page 630
• Creating a validator, page 633
• Creating a qualifier, page 635
• Using a prompt within a container, page 636

Displaying Objects: Datagrid and objectgrid
The objectgrid component and the datagrid control can both display objects.
The objectgrid component renders attributes for objects returned by a query on
dm_sysobjects. The component gets a data provider and sets the list of attributes to be
displayed in a datagrid. The objects are displayed in objectgrid.jsp. Some examples
of components that extend objectgrid to display objects are locations, relationships,
renditions, versions, and history.

Some components display objects using a datagrid only. These component generally
display lists of objects that are not dm_sysobjects. A component that displays a datagrid
must get a data provider for the datagrid and provide the query to the data provider,
just as the objectgrid component does. For example, the formatlist component displays

Web Development Kit and Client Applications Development Guide 613

Customization Examples

all formats in the repository. The formatlist component gets the data provider in its
onInit() method as follows:
datagrid.getDataProvider().setDfSession(getDfSession());

The formatlist component then sets the query:
m_strQuery = "select r_object_id,name,description,
dos_extension,com_class_id from dm_format";

datagrid.getDataProvider().setQuery(m_strQuery);

Creating a component
Your component can extend another component, or you can create a new component
from scratch. Your component must have the following parts:

• A component class that extends Component or one of its subclasses and implements
your component behavior

• Getter and setter methods in the component class to access public component
properties

• A component configuration file
• One or more JSP pages
• Means of launching the component: Menu, button, or link
The following steps outline the requirements for creating a component. For a detailed
example of creating a component, refer to theWeb Development Kit and Applications
Tutorial.

1. Extending a component, page 614

2. Creating a component definition, page 615

3. Adding component parameters to the component class, page 615

4. Getting data, page 616

5. Creating the component JSP pages, page 616

6. Implementing navigation in a component, page 616

Extending a component

You can take advantage of functionality in a component by extending it. For example,
the Webtop advanced search component extends the WDK search component. The
component class extends the parent component class, and the XML definition extends

614 Web Development Kit and Client Applications Development Guide

Customization Examples

the parent component definition. The following procedures lists the steps that were
required to extend the search component.

For more information on extending a component definition, refer to Component
inheritance (extends), page 224.

Creating a component denition

Your component configuration file must contain certain elements. For more information
on the elements in a component configuration file, refer to Component configuration
file, page 221:

Define the required and optional parameters in your component definition. Values for
these parameters will be passed to the component class in the Request. A parameter
definition has the following syntax:
<param name="packageName" required="true"></param>

Because you have specified that this parameter is required, you can get it from the
argument list that is passed to your component onInit() method when the component
is called:
public void onInit(ArgumentList args)
{
String strFolderPath = args.get("packageName");
...

}

Adding component parameters to the component class

The component’s settings are defined in the definition XML file by the <params> tag. The
parameters are passed to the component when it is first called. The component class will
enforce the use of required parameters.

Example 24-1. Adding parameters
User-defined arguments may be added to the component parameters. In the following
example, an extended attributes component specifies an "approved” parameter in
addition to the two parameters in the base component:
<params>
<param name="objectId" required="true"></param>
<param name="readOnly" required="false"></param>
<param name="approved" required="false"></param>

</params>

Web Development Kit and Client Applications Development Guide 615

Customization Examples

The parameters are passed by the component dispatcher to the attributes component.
The extended attributes component class then gets the parameters in the onInit() event
handler method (the event handler for the component iniitialization lifecycle event):
public void onInit(ArgumentList args)
{
super.onInit(args);
String strObjectId = args.get("objectId");
String strApproved = args.get("approved");
if (strApproved.equalsIgnoreCase("true"))
{
bApproved = true;

}
}

Getting data

Your component can get data using a data source such as a JDBC result set, an XML
result set, or a DFC session interface. Refer to Getting data, page 390 for examples.

Creating the component JSP pages

Your component should have at least one JSP page. The initial component JSP page is
registered in the component definition as the value of the <pages>.<start> element.

The JSP pages in your component, if they are not included in another JSP page, should
have the <dmf:webform/> tag somewhere before the HTML <body> tag. Immediately
after the <body> tag, add <dmf:form> to include all of the HTML, JavaScript, and JSP tag
content of your page. Close the form tag just before you close the <body> tag.

Your component class must handle all events fired on the JSP page, unless they are
handled in client-side JavaScript on the page.

Refer to Contents of a WDK JSP page, page 234 for an overview of component JSP pages.

Implementing navigation in a component

You can implement navigation between your component pages and navigation to other
components using the component navigation methods:

• setComponentPage(String strPageName: Navigates to the specified component page
URL as defined by the logical page name in the component definition XML file.

616 Web Development Kit and Client Applications Development Guide

Customization Examples

• setComponentJump(String strComponentName, String strStartPage, Arguments
args, Context context): Jumps to the component specified by the component name.

• setComponentNest(String strComponentName, String strStartPage, Arguments args,
Context context): Nests to the component specified by the component name.

• setComponentReturn(): Returns from a nested call.
Refer to Calling a container from a server class, page 457 for more information.

Customizing components
The following examples describe common customizations of components:
• Displaying a single custom object type (object grid), page 617
• Getting a component reference in a JSP page, page 623

Displaying a single custom object type (object grid)

The drilldown component allows you to display all objects in a selected cabinet or folder.
You may want to display only a selected object type. For this purpose, use a component
that extends the objectgrid component.

The following example creates a component that displays a custom object type, technical
publications web. It displays two custom attributes for the type and allows you to sort
on those attributes, Edition and Publish:

Figure 24-1. Custom type object grid

The following topics describe how to create a custom object grid:
• Creating the custom grid component definition, page 618
• Creating the object grid class, page 619

Web Development Kit and Client Applications Development Guide 617

Customization Examples

• Adding custom columns to the display, page 619
• Adding externalized strings, page 620
• Launching the object grid component, page 621
For the working code samples, refer to the Documentum Developer Web site
(http://developer.documentum.com).

Creating the custom grid component denition

Create a component configuration file, for example, webdocs_component.xml, in
/custom/config to define your new component. This definition is a copy of the objectgrid
component definition that specifies a new component JSP page, new component class,
new properties file. At the end of the columns list, ttwo new columns have been added
to display custom attributes:
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<config version='1.0'>

<scope>
<component id="webdocs">
<pages>

<start>/custom/webdocs/webdocs.jsp</start>
</pages>
<class>com.mycompany.webdocs.WebDocs</class>
<nlsbundle>com.mycompany.webdocs.WebDocsNlsProp</nlsbundle>
<header visible='false'/>
<columns>

...
<column>

<attribute>r_lock_owner</attribute>
<label><nlsid>MSG_LOCK_OWNER</nlsid></label>
<visible>true</visible>

</column>
<column>

<attribute>tp_edition</attribute>
<label>Edition</label>
<visible>true</visible>

</column><column>
<attribute>tp_web_viewable</attribute>
<label>Publish?</label>
<visible>true</visible>

</column>
</columns>

</component>
</scope>

</config>

Note: When you add columns to the component definition, you must also add them to
the JSP page in order for them to be displayed.

618 Web Development Kit and Client Applications Development Guide

http://developer.documentum.com

Customization Examples

Creating the object grid class

You specified a component class in the webdocs component definition. The objectgrid
component class is abstract and should be extended. Create the custom object
grid class file in your J2EE IDE and instruct your IDE to compile the class file in
/WEB-INF/classes/com/company_name/class_name. This class simply overrides the
query that supplies the data for the object grid. The internal attributes are supplied
by the query string defined in ObjectGrid: r_object_id, object_name ,r_link_cnt,
r_is_virtual_doc, owner_name, r_object_type, a_content_type, r_lock_owner
,r_content_size, i_is_reference. The visible attributes are supplied by the list of columns
in the component definition.

The object grid class should override the query similar to the following example. The
FROM statement specifies the object type.
package com.mycompany.webdocs;
import com.documentum.web.common.ArgumentList;
import com.documentum.webcomponent.navigation.objectgrid.ObjectGrid;

public class WebDocs extends ObjectGrid
{
public void onInit(ArgumentList args)
{
super.onInit(args);

}

/**
* Supplies the query for the component.
* @param strVisibleAttrs visible attributes list
* @param args Argument list
* @return String the DQL statement for component.
*/
protected String getQuery(String strVisibleAttrs, ArgumentList args)
{
StringBuffer strQueryBuf = new StringBuffer(512);
strQueryBuf.append("SELECT DISTINCT r_object_id as sortby,")
.append(strVisibleAttrs).append(INTERNAL_ATTRS)
.append(" FROM technical_publications_web ORDER BY object_name");

return strQueryBuf.toString();
}

}

Retstart the application server to pick up your new component class and definition.

Adding custom columns to the display

The objectgrid component JSP page objectgrid.jsp, located in /webcomponent/navigation/
objectgrid, can display the result sets of dm_sysobject queries only. It can display the
following attributes of dm_sysobject type: object_name, r_version_label, r_content_size,

Web Development Kit and Client Applications Development Guide 619

Customization Examples

r_modify_date, a_content_type, title, authors, owner_name, r_lock_owner ,
r_object_type, r_creation_date, r_modifier, r_access_date, group_name, r_creator_name,
and primary folder path. The implementing component must provide its own JSP pages
for non-dm_sysobject type queries.

Custom attributes can be added to the component definition in preparation for
formatting and display. These attributes must also be added to the component layout
JSP for display. Refer to Creating the custom grid component definition, page 618 for an
example.

To display the custom attributes using a celltemplate control, you can either specify the
field in the celltemplate tag or specify some generic data type. The following example
adds a custom field to the column header block. The celltemplate tag attribute "field”
specifies the attribute to be displayed, and the datafield attribute on the datasortlink tag
specifies the label for the column header:
<dmf:celltemplate field='tp_edition'>
<dmf:datasortlink cssclass='drilldownFileInfo' name='sort5'
datafield='tp_edition' reversesort='true'/>

</dmf:celltemplate>

You also add your columns to the dmf:datagridRow control. The following example
adds the tp_edition column:
<dmf:celltemplate field='tp_edition'>
<dmf:label cssclass='drilldownLabel'/>:
<dmf:label datafield='tp_edition'/>

</dmf:celltemplate>

You may also need to pass attribute values from your objects to actions if the action,
or the component called by the action, uses these values. (You can find this out by
examining the parameters in the action or component definition.) This data is provided
in the form of argument tags in the actionlinklist tag. In the following example, two
custom attribute are passed as arguments:
<dmfx:actionlinklist name="<%=ObjectGrid.ACTIONS_LIST%>">
<!-- arguments passed to ALL actions in the list -->
<dmf:argument name="objectId" datafield="r_object_id"/>
...
<dmf:argument name="tp_edition" datafield="tp_edition"/>
<dmf:argument name="tp_web_viewable" datafield="tp_web_viewable"/>

</dmfx:actionlinklist>

Adding externalized strings

Your component definition specifies a properties file to display your component strings.
Strings are externalized to a properties file to facilitate configuration and localization.

620 Web Development Kit and Client Applications Development Guide

Customization Examples

These strings may be used for column headers, such as in your <columns> element in
the definition:
<column>
<attribute>tp_edition</attribute>
<label><nlsid>MSG_EDITION</nlsid>nlsid></label>
<visible>true</visible>

</column>

You may also use externalized strings in your JSP page, such as the title:
<dmf:label cssclass='drilldownTitle' nlsid='MSG_TITLE'/>

Create a .properties file in the same directory as your compiled class file, for example,
/WEB-INF/classes/com/mycompany/webdocs. You must import the objectgrid
component properties file to get the relevant strings, then add your custom strings, for
example:
NLS_INCLUDES=com.documentum.webcomponent.GenericActionNlsProp,
com.documentum.webcomponent.GenericObjectNlsProp,
com.documentum.webcomponent.navigation.objectgrid.ObjectGridNlsProp

MSG_TITLE=Web Documents
MSG_EDITION=Edition
MSG_PUBLISH=OK to Publish

Launching the object grid component

For testing purposes, you can launch your component with a simple URL, for example:
http://localhost/webtop/component/webdocs

Your component will fill the entire application frame, similar to the following:

Web Development Kit and Client Applications Development Guide 621

Customization Examples

Figure 24-2. Custom grid launched by URL

You can add the custom grid to the Webtop browsertree navigation component by
extending the browsertree definition and adding a node as follows. Replace the icon file
name with an icon that you have placed in /custom/theme/theme_name/icons:
<docbasenodes>
<node componentid='webdocs'>
<icon>classify.gif</icon>
<label>Web Documents</label>
<streamlinecomponent>webdocs</streamlinecomponent>

</node>

After you refresh the configurations in memory by navigating to /wek/refresh.jsp, the
node will be displayed in the tree and will launch your component:

Figure 24-3. Launching from the Webtop browser tree

622 Web Development Kit and Client Applications Development Guide

Customization Examples

Note: The object grid display page, objectgrid.jsp, is designed to display a streamline
(drilldown) view. To support multiple selection in a classic (objectlist) view, you must
design a second JSP page that includes checkboxes.

Getting a component reference in a JSP page

The component instance is available in the component JSP pages by calling the
pageContext getAttribute() method. In the following example, a JSP script gets the
component, which is the top-level Form instance, and then calls a component method:
<%@ page import="com.documentum.web.formext.component.Component,
com.documentum.web.form.IParams"%>

<%
ObjectLocator locatorComp = (ObjectLocator)pageContext.
getAttribute(IParams.FORM, PageContext.REQUEST_SCOPE);
if(locatorComp.getTopForm() instanceof LocatorContainer)
{
locatorComp.doSomeStuff();

}
%>

Customizing controls
A control class must extend one of the following abstract control classes:

• com.documentum.web.form.Control
• com.documentum.web.form.control.StringInputControl
• com.documentum.web.form.control.BooleanInputControl
You must also implement a control tag class that extends one of the following tag classes:

• com.documentum.web.form.ControlTag
• com.documentum.web.form.BodyControlTag
• com.documentum.web.form.control.StringInputControlTag
• com.documentum.web.form.control.BooleanInputControlTag
The control class must perform the following functions:

• Constructor must accept a container and a name
• Class must override getEventNames()
• Class must declare property access methods
• Class must override updateStateFromRequest(). When you implement

updateStateFromRequest(), use getRequestParameter() to retrieve a value from the
request. This method will encode the value in UTF-8.

Web Development Kit and Client Applications Development Guide 623

Customization Examples

Choosing a control superclass

The following table can help you select a superclass for your control:

Table 24-1. Choosing a control superclass

Criterion Superclasses

Is the control simple, with no user input
and no contained tags? (Example: A
button that fires events in response to user
action)

Use Control and ControlTag. Override
renderStart() and renderEnd() to write
the HTML rendition.

Does the control accept no user input but
contain tags within it? (Example: A panel
that displays the controls that it contains)

Use Control and BodyControlTag.
Override methods inherited from
javax.servlet.jsp.tagext.BodyTagSupport
to write the HTML rendition.

Does the control accept a string from user
input but contain no tags? (Example: A
text box that reads a string value from user
input)

Use StringInputControl and
StringInputControlTag. Override
renderStart() and renderEnd() to write
the HTML rendition.

Dos the control accept boolean input from
a user but contain no tags? (Example: A
check box)

Use BooleanInputControl and
BooleanInputControlTag. Override
renderStart() and renderEnd() to write
the HTML rendition.

Adding control events

Event handlers for control events are specified in the control by calling
Control.setEventHandler(). This method registers the named control to handle particular
events that are posted to from the client to the server. (Events are not fired on the client.)
This method has three parameters:

• Event name: Name of the event
• Event handler method name: Name of the method that handles the event
• Handler: Control object that exposes the event handler method. Null if the form

class exposes the event handler method.
The following example in the class MyControl sets an event handler for the onSelect
event:
public MyClass()
{
setEventHandler(EVENT_ONSELECT, "onSelect", this);

624 Web Development Kit and Client Applications Development Guide

Customization Examples

final static public String EVENT_ONSELECT = "onselect";
}

The server event is called by JavaScript that is rendered by the tag class. The
renderEventArg() method, available to every tag class, specifies the following parameters:
• Buffer to write to (first parameter),
• HTML event name (optional)
• Server event handler
If only two parameters are passed, the second parameter is the server event. The first
example below fires a server event, and the second examples includes the HTML event
on the control:
protected void renderStart(JspWriter out)
{
StringBuffer buf = new StringBuffer(192);
...
renderEventArg(buf, MyControl.EVENT_ONSELECT);

}

protected void renderStart(JspWriter out)
{
StringBuffer buf = new StringBuffer(192);
...
renderEventArg(buf, "onchange", MyControl.EVENT_ONSELECT);

}

Customizing actions
The following topics describe some common action customizations:
• Adding a custom action, page 625
• Implementing the action execution class, page 627
• Custom action execution class with pre- and post-processing, page 629

Adding a custom action

Your component must perform the following steps to enable a custom action:

1. Add an action-enabled item in the UI. For example:
<dmfx:actionmenuitem dynamic='multiselect' name=
'mypromotelifecycle' nlsid='MSG_PROMOTE_LIFECYCLE'
action='mypromote' showifinvalid='true'/>

2. Create an action definition whose action ID matches the action ID of your
action-enabled operation. For example, to match the above example, your action

Web Development Kit and Client Applications Development Guide 625

Customization Examples

ID would be <action id=”mypromotelifecycle”. Specify the following items in the
definition:

• Required and optional action parameters

• Optional precondition class with any precondition parameters (user-defined
element names and values)

• Execution class with any execution parameters (user-defined element names
and values)

For example:
<action id="myCheckin">
<params>
<param name="objectId" required="true"></param>
<param name="lockOwner" required="false"></param>
<param name="ownerName" required="false"></param>

</params>
<preconditions>
<precondition class=
com.documentum.web.formext.action.RolePrecondition">
<role>Contributor</role>

</precondition>
<precondition class="com.acme.MyCheckinAction">
</precondition>

</preconditions>
<execution class="com.documentum.web.formext.action.LaunchComponent">
<component>checkin</component>
<container>checkincontainer</container>

</execution>
</action>

3. Create your precondition class and implement the methods queryExecute() and
getRequiredParams(). These methods are executed when the action control
tag is processed on the server. Your method queryExecute() method should
test for preconditions using the required preconditions. For example (without
error-handling code):
public boolean queryExecute(String strAction, IConfigElement config,
ArgumentList arg, Context context, Component component)

{
// determine whether lock owner matches user
boolean bExecute = false;
IDfSession dfSession = component.getDfSession();
try
{
// get lock owner
String strLockOwner = arg.get("lockOwner");
// get user
String strUserName = dfSession.getLoginUserName();

// compare
if (strUserName != null && strLockOwner != null &&
strUserName.equals(strLockOwner))

{

626 Web Development Kit and Client Applications Development Guide

Customization Examples

bExecute = true;
}

}
...
return bExecute;

}

4. In your action class, implement the methods execute() and getRequiredParams() to
perform the actual operation. In the example above, the execution is passed to the
component class because LaunchComponent is specified as the execution class in
the action definition. Refer to the next section for examples of an action execute()
method. (Implementing the action execution class, page 627).

Implementing the action execution class

In the following example, the action class creates a URL for a selected object and calls
another component to mail the URL to a user. For the full working code in this example,
refer to the Documentum developer Web site, http://developer.documentum.com.

To implement the action, you must implement the methods execute() and
getRequiredParams(). In the following example, arguments are defined in the action
configuration file as follows:
<action id="formwebtopurl">
<params>
<param name="objectId" required="true"></param>
<param name="objectId" required="true"></param>
<param name="objectId" required="true"></param>
</params>
<execution class="com.documentum.custom.action.WebtopURLCreator"/>
</action>

The JSP page contains a datagrid whose query returns several attributes and objects.
Within a datagridrow control, the actionlink control is generated for each object in the
datagrid. The actionlink control passes the required parameters as arguments to an
actionlink control, as follows:
<dmfx:actionlink name="createurl" datafield="object_name"
action="myaction">
<dmf:argument name="objectId" datafield="r_object_id"/>
<dmf:argument name="actionId" value="view"/>
<dmf:argument name="jumpComponent" value="mailer"/>

</dmfx:actionlink>

The arguments for the selected object will be passed to the action execute() method
as an ArgumentList object. The component named in the jumpComponent argument
will be launched by the action.

The getRequiredParams() method returns the names of the parameters that are required
by the action execution. For example:

Web Development Kit and Client Applications Development Guide 627

http://developer.documentum.com

Customization Examples

public String [] getRequiredParams()
{
return new String [] {"objectId"};

}

The execute() method accepts the argument values and performs the action. For example:
public boolean execute(String strAction,IConfigElement config,
ArgumentList args, Context context, Component component,
java.util.Map map)

{
String webtopUrl = ""; //the complete URL
String appBaseUrl = "";
String objectId = "";
String actionId = "";
String appHost = "";
String jumpComponent = "";

jumpComponent = args.get("jumpComponent");
PageContext pageContext = component.getPageContext();
ServletRequest servletRequest = pageContext.getRequest();
appHost = servletRequest.getServerName() + ":" +
servletRequest.getServerPort();
appBaseUrl = component.getBaseUrl();
objectId = args.get("objectId");
actionId = args.get("actionId");
webtopUrl = "http://" + appHost + appBaseUrl + "/action/" +
actionId + "?objectId=" + objectId;

ArgumentList mailArgs = new ArgumentList();
mailArgs.add("mailBody",webtopUrl);
mailArgs.add("objectId",objectId);
mailArgs.add("component",jumpComponent);
component.setComponentNested(
"dialogcontainer",mailArgs,component.getContext(),null);
return true;

}

Action tracing
Turning on action tracing — Set the following flag in /WEB-INF/classes/com.
documentum.debug.TraceProp.properties to turn on action service tracing:
com.documentum.web.formext.Trace.ACTIONSERVICE=true

You can also set this trace flag by navigating to http://application_context_name/wdk/
tracing.jsp.

The CONFIGSERVICE tracing flag is also useful in debugging actions.

628 Web Development Kit and Client Applications Development Guide

Customization Examples

Custom action execution class with pre- and
post-processing

Following is a description of the syntax to create an action execution class that performs
pre- and post-processing.

1. Extend an existing action execution class. For example:
public class CustomActionExecutionClass extends
SomeExistingActionExecutionClass

2. Add your pre-processing code to the beginning of the execute method. For example:
{
public boolean execute(String strAction, IConfigElement config,

ArgumentList args, final Context context,
Component component, Map completionArgs)

{
// DO PRE ACTION PROCESSING HERE

}

3. Implement an action complete listener class. For example:
class ActionListener implements IActionCompleteListener
{
public ActionListener(IActionCompleteListener listener)
{
m_listener = listener;

}
private IActionCompleteListener m_listener;

}

4. Add your post-processing to the listener onComplete() implementation. For
example:
public void onComplete(String strAction, boolean bSuccess, Map map)
{
if (m_listener != null)
{
m_listener.onComplete(strAction, bSuccess, map);

}
// DO POST ACTION PROCESSING HERE

}

5. Finish up the execute() method by replacing the listener with any other existing
action listener so that it also gets called. For example:
// replace complete listener with new one.
IActionCompleteListener completeListener = (
IActionCompleteListener)completionArgs.get(
ActionService.COMPLETE_LISTENER)

completionArgs.put(
ActionService.COMPLETE_LISTENER, new ActionListener(
completeListener));

Web Development Kit and Client Applications Development Guide 629

Customization Examples

}

The complete pseudocode is as follows:
public class CustomActionExecutionClass extends
SomeExistingActionExecutionClass

{
public boolean execute(String strAction, IConfigElement config,
ArgumentList args, final Context context,
Component component, Map completionArgs)

{
// DO PRE ACTION PROCESSING HERE
class ActionListener implements IActionCompleteListener
{
public ActionListener(IActionCompleteListener listener)
{
m_listener = listener;

}

public void onComplete(
String strAction, boolean bSuccess, Map map)

{
if (m_listener != null)
{
m_listener.onComplete(strAction, bSuccess, map);

}

// DO POST ACTION PROCESSING HERE
}
private IActionCompleteListener m_listener;

}

// replace complete listener with new one.
IActionCompleteListener completeListener = (
IActionCompleteListener)completionArgs.get(
ActionService.COMPLETE_LISTENER)

completionArgs.put(ActionService.COMPLETE_LISTENER, new ActionListener(
completeListener));

}
}

Custom queries and data sources
The following topics describe how to implement custom queries and data sources:
• Adding a custom query or data source, page 631
• Populating a dropdown list with a query, page 632

630 Web Development Kit and Client Applications Development Guide

Customization Examples

Adding a custom query or data source

You can display data from the following sources:
A hard-coded query string
A generated query string
A result set
A JDBC driver
An in-memory array

To display data from a query string

1. Add the following lines to your component behavior class by overriding the
onRender() lifecycle method:
Datagrid myGrid=(Datagrid)getControl("mygrid", Datagrid.class);
myGrid.getDataProvider().setConnection(conn);

2. Add the following lines to your component JSP layout page. Modify the query
attribute to contain your query. Add controls to the datagridRow tag as appropriate,
and set the datafield attributes of those controls to the columns you have queried
and wish to display:
<dmf:datagrid name="myGrid" query="select object_name from...">
<dmf:datagridRow>
<td><dmf:label datafield="object_name"/></td>

</dmf:datagridRow>
</dmf:datagrid>

To display data from a generated query string

1. Use the same onRender() override as above for a hard-coded query string.

2. Use the same JSP as above, but remove the query attribute from the datagrid tag.

3. Place your query string in your component behavior class, overriding the onInit()
lifecycle method. For example:
Datagrid myGrid=(Datagrid)getControl("mygrid", Datagrid.class);
myGrid.getDataProvider().setQuery(myQueryString);

If you regenerate the query string, use the same code to re-set the query string
whenever it changes.

To display data from another data source ResultSet

1. Use the JSP page as above for a hard-coded query string, but remove the query
attribute.

2. Use the following code in your component onInit() lifecycle method to override the
default behavior:
Datagrid myGrid=(Datagrid)getControl("mygrid", Datagrid.class);
myGrid.getDataProvider().setResultSet(myResultSet);

Web Development Kit and Client Applications Development Guide 631

Customization Examples

3. Re-query your ResultSet and reapply it to the datagrid as appropriate for your data.

To display a list of data using a JDBC driver — Use any of the code above, but
use your specific Connection object in the setConnection() call in your component
onRender() method.

Note: For some JDBC sources, the result set may contain column names in all capital
letters, for example, Oracle.

To display a list of data from an in-memory array

1. Use the JSP page as above for a hard-coded query string, but remove the query
attribute.

2. In your custom component, override the onInit() lifecycle method similar to the
following example:
Datagrid myGrid=(Datagrid)getControl("mygrid", Datagrid.class);
String[] myColumnNames = newString[]{"object_name", "r_object_id"};
TableResultSet mySet = new TableResultSet(myListOfData, myColumnNames);
myGrid.getDataProvider().setScrollableResultSet(mySet);

The ArrayList myListOfData[] should be filled with an array containing the data
you wish to display. You can also use a vector for this parameter. The String array
myColumnNames[] should be filled with the names of columns that you wish to
use for your data.

3. Generate the data and reapply the ScrollableResultSet to the datagrid as appropriate
for your data. (Refer to example in step 2.)
The WDK scrollable result sets include classes to handle data in arrays, lists, and
lists containing arrays (tables).

Populating a dropdown list with a query

You can use a DQL query to set the results for a dropdown list. The following example
from a component class gets a list of formats from the repository and displays them for
user selection in a dropdown list control:
public void onInit(ArgumentList args)
{
super.onInit(args);

// set the session on the data provider control (dropdown list)
DataDropDownList dropDownList = ((DataDropDownList) getControl(
FORMAT_RENDITION_LIST, DataDropDownList.class));
dropDownList.getDataProvider().setDfSession(getDfSession());

String strQuery = "SELECT name FROM dm_format WHERE can_index =
true and topic_format = '0000000000000000' ORDER BY name";

632 Web Development Kit and Client Applications Development Guide

Customization Examples

// set the query on the list control
dropDownList.getDataProvider().setQuery(strQuery);
...
}

Creating a validator
You can build a custom validator in the following steps:

1. Developing a validator tag, page 633

2. Developing a validator class, page 634

3. Using the validator in a component, page 634

The following example illustrates the steps in building a simple password validator that
rejects passwords 1111 or 1234.

Developing a validator tag

First, add the JSP to your custom tag library. In the following example, you have added
your custom tag library definition file (*.tld) to /WEB-INF/tlds, and you add an entry for
the password validator:
<tlibversion>1.0</tlbversion>
<jspversion>1.1</jspversion>
<shortname>acme</shortname>
<tag>
<name>passwordvalidator</name>
<tagclass>com.mycompany.PasswordValidatorTag</tagclass>
<bodycontent>jsp</bodycontent>
<attribute>
<name>name</name>
<required>true</required>
<rtexprvalue>true</rtexprvalue>

</attribute>
<attribute>
<name>controltovalidate</name>
<required>true</required>
<rtexprvalue>true</rtexprvalue>

</attribute>
<attribute>
<name>nlsid</name>
<required>false</required>
<rtexprvalue>true</rtexprvalue>

</attribute>
<attribute>
<name>errormessage</name>

Web Development Kit and Client Applications Development Guide 633

Customization Examples

<required>false</required>
<rtexprvalue>true</rtexprvalue>

</attribute>
<attribute>
<name>visible</name>
<required>false</required>
<rtexprvalue>true</rtexprvalue>

</attribute>
</tag>

Create the tag class that extends BaseValidatorTag. Add accessor methods for any
custom validator attributes:
package com.mycompany;
import com.documentum.web.form.control.validator.BaseValidatorTag;

public class PasswordValidatorTag extends BaseValidatorTag
{
protected Class getControlClass()
{
return PasswordValidator.class;

}
}

Developing a validator class

Your validator control class must override doValidate() to provide custom validation:
package com.mycompany;
import com.documentum.web.form.control.validator.BaseValueValidator;

public class PasswordValidator extends BaseValueValidator
{
protected boolean doValidateValue(String strValue)
{
boolean bValid = true;
if (strValue.equals("1111") || strValue.equals("1234"))
{
bValid = false;
}
return bValid;
}
}

Using the validator in a component

Add the new passwordvalidator tag to the change password form:
<%@ page contentType="text/html; charset=UTF-8" %>
<%@ page errorPage="/wdk/errorhandler.jsp" %>
<%@ taglib uri="/WEB-INF/tlds/dmform_1_0.tld" prefix="dmf" %>

634 Web Development Kit and Client Applications Development Guide

Customization Examples

<%@ taglib uri="/WEB-INF/tlds/acme_1_0.tld" prefix="dmf" %>
<html>
<head>
<dmf:webform/>
<title><dmf:label label="ChangePassword"/></title>
</head>

<body class='contentBackground' topmargin='10' bottommargin='10'
leftmargin='13' rightmargin='0' marginheight='10' marginwidth='13'
onload='relogin()'>

<dmf:form>
<h3><dmf:label label="Change Password"/></h3>
<table>
<tr>
<td>Username:</td>
<td><dmf:text name="userName" size="40"/>
<dmf:requiredfieldvalidator name="val"
controltovalidate="userName" errormessage=
"You must supply a name"/></td>

</tr>
<tr>
<td>Current Password:</td>
<td><dmf:text name="password" size="40"/>
<dmf:requiredfieldvalidator name="val" controltovalidate=
"password" errormessage= "You must supply your current
password"/></td>

</tr>
<tr>
<td>New Password:</td>
<td><dmf:text name="newpassword" size="40"/>
<dmf:requiredfieldvalidator name="val" controltovalidate=
"newpassword" errormessage= "You must enter a new password"/>
<acme:passwordvalidator name="val" controltovalidate=
"newpassword" errormessage="You cannot use 1111 or 1234"/>

</td>
</tr>

</table>
</dmf:form>
</body>
</html>

Creating a qualier
Custom qualifier classes must implement the IQualifier class and the following methods:

getContextNames() — Returns a string array of context names for the scope.

getScopeName() — Returns the name of the scope associated with the qualifier

Web Development Kit and Client Applications Development Guide 635

Customization Examples

getScopeValue(QualifierContext) — Returns the scope value for one or more
context values. For example, for the scope "type”, the caller passes in an object ID of
"0193c...3e7d”, and the method returns "dm_document”.

getParentScopeValue(String) — For a passed scope value, returns the parent scope
value. For example, for the scope "type”, the caller passes in a scope of 'dm_document',
and the method returns 'dm_sysobject'. A null return value indicates that there is no
parent.

getAliasScopeValues(String) — Returnsan array of equivalent alias values for a passed
scope value

Using a prompt within a container
If your component needs to use a prompt to display a warning or confirmation, nest to the
prompt component. Your component must be a container class in order to use the prompt
component, that is, it must extend Container or a subclass of Container. The Container
class implements a listener interface so that you can call setComponentNested().

To display a prompt in a container

1. Call the prompt component in your component event handler. For example, if you
component has an OK button, add the following event handler.
public void onOkPressed(Form form, Map map)
{
ArgumentList args = new ArgumentList();
//Get the prompt window title from your component NLS resource
args.add(Prompt.ARG_TITLE, getString("MSG_CONFIRM_COMMIT_TITLE"));
//Get the prompt message from your component NLS resource
args.add(Prompt.ARG_MESSAGE, getString("MSG_CONFIRM_COMMIT_MESSAGE"));
//Add the path to the warning icon
args.add(Prompt.ARG_ICON, Prompt.ICON_WARNING);
//Add button text
args.add(Prompt.ARG_BUTTON, new String[] {Prompt.CONTINUE,
Prompt.CANCEL});
setComponentNested("prompt", args, getContext(), this);

}

2. Check prompt state in your component class when the prompt component returns.
public void onReturn(Form form, Map map)
{
//check the Don't show again checkbox
String strDontShow = (String)map.get(Prompt.RTN_DONTSHOWAGAIN);
if (strDontShow !=null &&
Boolean.valueOf (strDontShow).booleanValue())

{
//Call a helper method that inhibits the prompt next time
inhibitPrompt();

636 Web Development Kit and Client Applications Development Guide

Customization Examples

removeReturnedValue(Prompt.RTN_BUTTON);
removeReturnedValue(Prompt.RTN_DONTSHOWAGAIN);

}
//check which button was clicked
String strButton = (String)map.get(Prompt.RTN_BUTTON);
if (strButton != null && strButton.equals(Prompt.CONTINUE)
{
...
setComponentReturn();

}
}

3. Inhibit the prompt if the Don't Show Again checkbox was checked:
private void inhibitPrompt()
{
IPreferenceStore preferences = PreferenceService.
getPreferenceStore();
preferences.writeBoolean(INHIBIT_PROMPT_PREFERENCE,
Boolean.TRUE);

}

Web Development Kit and Client Applications Development Guide 637

Customization Examples

638 Web Development Kit and Client Applications Development Guide

Index

508, see accessibility

A
Accelerated Content Services

configuration, 66
accessibility

applets, 589
buttons and icons, 585
configuration in app.xml, 65
control label, 586
development guidelines, 584
event handlers, 586
frames, 589
images, 587
login, 585
service, 584
tables, 588
writing alt tags and descriptions, 590

<accessibility>, 65
ACS, 66
actionlist, 178
actions

action execution with pre- and
post-processing, 629

configuration file, 215
controls, 389
custom, 625
dynamic state, 172
execution, 493
filtering clipboard functions, 599
generic, 172, 215
genericnoselect, 173
implementation, 627
introduction, 211
LaunchComponent, 496
LaunchComponent navigation, 239
launching, 212
launching components, 239
listeners, 500
lists, 178

multiselect, 172
nesting, 503
overview, 211
passing arguments, 213
preconditions, 491
role-based, 292
roles and object ACL permissions, 293
service, 491
singleselect, 172
tracing, 337, 628
version, 55

<adobe_comment_connector>, 72
alttextenabled, 310
app.xml, 58
AppFolderName, 58
applet, 91
applets

accessibility, 589
installation fails, 330

application
failover, 89
qualifier, 485

application connector
authentication, 271
components, 266
events, 270

application layer
contents, 39
inheritance, 42
overview, 38

application stops working, 328
<application>, 60
applications

configuration example, 309
configuration file, 58
configuration in app.xml, 60
environment properties, 88
environments, 43
inheritance, 42
interaction of elements, 46
login, 103

Web Development Kit and Client Applications Development Guide 639

Index

managing frames, 120
name, 58
packaging and deployment, 154
performance, 344
timeout, 101
tracing, 339

architecture, Documentum stack, 26
ArgumentTag, 433
ArrayResultSet, 405
asynchronous

actions, 572
components, 574
framework, 575
global settings, 82
listeners, 575
overview, 571
process, 577
UI, 577

attribute lists
in data dictionary, 199

attributelist
configuration file, 196
context or scope, 195
controls, 192

attributes
configuration example, 312
custom data handler, 407
custom data handlers, 77
display of, 395
single and repeating, 193
tracing, 338

authentication, 539
elements, in app.xml, 63
J2EE, 104
schemes, 540

<authentication>, 63

B
binding

data, 186
to a thread, 550

BOF, in WDK, 609
branding

adding themes to NLS, 125
configuration example, 307
images and icons, 133
overview, 122
service, 578
style sheets, 127

tracing, 337
breadcrumb

displaying, 412
supporting, 413

browser
history, 241
requirements, 70

<browserrequirements>, 70
browsertree, limiting size, 88
business objects, in WDK, 609
buttons, 134

accessible, 585
changing text, 134
configuring, 295

C
cache size

query, 346
cachesize, 57
caching data, 394
classpath, 323
client capability

overview, 287
roles, 289

client session state
global setting, 78

<client-sessionstate>, 78
ClientCacheControl, 85
clientenv, 53

qualifier, 485
clipboard

filtering actions, 599
overview, 595
tracing, 337
using in a component, 597

clusters
failover, 89

columns
configuring, 229
dynamic (runtime), 232

columns, number of, 185
combocontainer, 246
comment

Adobe, settings in app.xml, 72
compiling

JSP pages, 157
component

getting reference in JSP, 623
guidelines, 359

640 Web Development Kit and Client Applications Development Guide

Index

implementing failover, 442
included, 449
listener, 447
preferences, 273

componentinclude, 240
components

adding parameters, 615
APIs, 435
calling components from URL, 247
calling from action, 248
Component class, 436
containers, 243
creating a definition, 615
creating JSP pages, 616
customizing, 614
definition, 221
dispatcher, 467
dispatching, 467
extending, 614
filters, 228
hiding with notdefined, 227
hiding with scope, 227
implementation, 445
included, 240
inheritance, 224
invoking within a container, 247
jump to, 437
launch by action, 239
lifecycle, 469
messages and labels, 236
navigation methods, 437
navigation overview, 237
overview, 219
reuse, 436
role-based UI, 294
scope, 225
sequence of processing, 470
tracing, 339
UI, 233
updating with client events, 421
URL bridge, 469
URL to, 238
using static HTML or JSP, 237
using the clipboard, 597
version, 55
WDK 5 bridge, 468

compression, content transfer, 66
CompressionFilter, 85
<config>, 60
ConfigResultSet, 404

ConfigService, 480
configuration

adding menu items, 300
application startup, 309
attributes example, 312
branding example, 307
buttons and images, 295
classes, 479
component XML file, 221
control tags, 160
data grid, 302
defined, 33
element, in app.xml, 60
examples, 295
files, 49
files, finding, 162
inheritance, 51
lookup algorithm, 489
object filter example, 317
overview, 47
processing, 488
properties example, 311
scope (qualifiers), 52
service, 479
tag libraries, 164
tracing, 337
validator example, 308

configuration file
action, 215
application, 58
attributelist, 196
component, 221
lookup, 481

containers
abstract, 245
accessing contained components, 462
calling components in a container, 247
calling contained components from

script, 247
calling from server class, 457
change notifications, 458
classes, 457
combo, 246
components that require, 250
content transfer, 247
dialog, 245
labels, 249
modal, 251
navigate to next page, 441
navigating, 460

Web Development Kit and Client Applications Development Guide 641

Index

navigation, 245
overview, 243
propagating values within, 460
property sheet, 246
tracing, 339
wizard, 245

content transfer
applet, 91
containers, 247
debugging, 535
fails, no temp directory, 330
listeners, 531
modes, compared, 510
overview, 509
progress, 537
registry, 527
results (UCF), 531
service and processor classes, 533
stream to browser, 537
using 5.2.5 components, 536

content transfer service
classes, 532

ContentTransferService, 533
<contentxfer>.<common>, 66
context

attributelist, 195
introduction, 31
overview, 487
passing values to action, 215
relation to scope, 52

contextvalue attribute, 215
Control class

base class, 380
class properties, 380

control tag
configuration, 160
tracing, 337

controls
action-enabled, 171, 389
adding events, 624
attribute lists, 192
boolean, 170
changing a style, 130
choosing a superclass, 624
classes, 379
component helper, 170
configuration overview, 160
Control base class, 380
ControlTag class, 381
creating, 383

customizing, 623
databound, 184, 389
databound, see databound

controls, 186
Documentum object validation, 204
event arguments, 168
events, 165
format, 170
handling events on client, 168
handling events on server, 420
hiding, 177
ID, 384
indexed, 385
lifecycle, 428
media, 170
multiple selection, 415
naming, 384
passing arguments to event

handler, 433
relation to tags, 432
retrieving values, 384
scrollable, 183
setting values, 386
string input, 170
tooltips, 208
tracing, 337
types, 169
using, 382
validation, 202
XML configuration file, 175

ControlTag, 381
CookieManager, 567
cookies

overview, 99
writing and reading, 567

copy_operation
in app.xml, 79

<copy_operation>, 79
CreateInstallerWAR tool, 155
cross-site scripting

HTML in attribute values, 201
validation, 71

<custom_attribute_data_handlers>, 77
customization

components, 614
controls, 623
defined, 33
object grid, 617
validator, 633

642 Web Development Kit and Client Applications Development Guide

Index

D
data binding

support classes, 390
data dictionary

attribute labels, 137
list of attributes, 192
refresh, 355
scopes, displayed in WDK, 195
search, 144
using attribute lists, 199

databound controls
binding data, 186
caching data, 394
data grid configuration example, 302
data handler classes, 406
DataProvider class, 390
getting data, 390
introduction, 184
overview, 389
paging, 189
result sets, 404
ResultSet data provider, 390
sorting, 188

datadropdown lists
configuring, 181

datagrid
adding custom attributes, 407
compared to objectgrid, 613

DataProvider
getXXX, 393
setQuery, 391

DataProvider class, 390
dates, future, 327
debugging

content transfer, 535
Java, 357
JavaScript, 356
JSP, 355
overview, 354
search, 558
XML, 356

<default-mechanism>, 66
defaultonenter event, 167
deployment, 156
deployment descriptor

listeners, 85
servlets, 86

DFC
storing objects, 549

DFC business objects, 329
directory structure

applications, 38
branding, 124

<discussion>, 77
display

global settings, 81
<display>, 81
dmcl

tracing, 334
docaseattributelist

lookup, 403
docbase

qualifier, 484
DocbaseAttributeCache, 550
docbaseattributelist control, 194
docbaseobject

configuration, 395
DocbaseObjectCache, 550
docbaseobjectconfiguration

definition, 395
<docbaseobjectconfiguration>, 395
Documentum type

custom icons, 296
drag and drop

global setting, 79
in component definition, 452
in control, 455
in JSP, 454
overview, 450
performance, 454
supported components, 451
troubleshooting, 456

<dragdrop>, 79, 452
dragdropregion tag, 454
dropdown lists

configuring, 181
dynamicAction.js, 172

E
entitlement

qualifier, 486
Environment.properties, 88
environments

for development, 37
introduction, 43

error message
configuration in app.xml, 70
service, 601

Web Development Kit and Client Applications Development Guide 643

Index

<errormessageservice>, 70
event

Content Server, notification, 97
event handler

accessibility, 586
navigation, 113
navigation to component, 112
registering client handlers, 114
setting programmatically, 427

events
arguments, 168
between frames, 117
client preprocessing, 242
client to server, 417
client-side, overview, 112
control, 165
control lifecycle, 428
control state change, 423
control, configuring, 168
handle on server or client, 417
handling inter-frame events, 119
handling inter-frame events on

server, 119
handling on client, 168
handling on server, 420
how they are raised, 424
server to client, 422
updating components, 421

execution
class, 493
element, 217
permit, 217

<execution>, 217
ExpandInstallerWAR tool, 156

F
failover, 89

enabling for the application, 89
implement in component, 442
tracing, 336

<failover>, 62
<fallback_identity>, 62
filters, 228

based on role, 293
dynamic (with

LaunchComponent), 498
latency/bandwidth, 350
servlet, 85

flags, tracing, 335

foreign object, 464
foreign objects

operations on, 242
foreign type, 218
form processor

navigation operations, 473
overview, 470
properties, 97

<formats>, 74
FormInclude, 475
FormOperation, 473
forms

class, 475
custom, 475
form processor, 470
tag class, 475
WebformIncludes s (generate style

sheets and JavaScript), 475
FormTag, 475
fragment control, 189
<fragmentbundles>, 189
frames

accessibility, 589
event handlers, 119
firing events, 117
handling events on server, 119
managing, 120

framework
WDK, 571

G
generic, 172
generic actions, 215
genericnoselect, 173
global registry, 486

H
help service

calling, 592
overview, 590

history
browser, 241
configuring, 98
performance, 349
setting size, 241

hooks
form navigation, 97
lookup, 482

644 Web Development Kit and Client Applications Development Guide

Index

HTML
in attributes, 201

HttpContentTransportManager, 529

I
IApplicationListener, 550
IAuthenticationScheme, 540
IConfigElement, 479
IConfigLookup, 481
IConfigLookupHook, 482
IConfigReader, 483
icons

controls, 207
for custom type, 296
themes, 133

IDfSession, 545
IDfSessionManager, 547
IDfSessionManagerEventListener, 551
ILaunchComponentEvaluator, 498
images, 207

buttons, 134
configuring, 295
image service, 579
in style sheets, 128
replacing, 207
themes, 133

included component, 449
<infomessageservice>, 70
inheritance

applications, 42
components, 224
configuration, 51
strings, 139

<init-controls>, 534
initialize

content transfer controls, 534
inlinecompression, 66
<inlinecompressionXXX>, 66
input mask

utility, 606
validator, 203

interaction
of application elements, 46

internationalization
locale service, 580
testing, 141

invalid ticket, 332
IParams, 476
IQualifier, 484

IRequestListener, 551
IReturnListener, 447
ISessionListener, 551

J
J2EE authentication, 104
Java

debugging, 357
Java properties files, see properties files
java.io.IOException, 327
java.lang.verify, 332
JavaScript, 327

debugging, 356
files in WDK, 116
generated, 116
getting component value, 121
modal windows, 425
postServerEvent, 417
registering, 115
tracing, 117
using, 115
utilities, 112

<job-execution>, 82
JSP

comments, 156
creating, 236
debugging, 355
fragments, 189
getting component reference, 623
implicit objects, 553
jump to page, 437
request tracing, 336
return URL, 473
standard, 25
structure of page, 233
using outside components, 257

jump
to component, 437
to component page, 437

K
keyboardnavigationenabled, 310

L
language

element, in app.xml, 62 to 63
<language>, 62 to 63
latency

Web Development Kit and Client Applications Development Guide 645

Index

performance filters, 350
LaunchComponent, 215, 239, 248, 496

dynamic filters, 498
with permit check, 218

lifecycle
component, 469
control events, 428

listener
component, 447

listeners
action, 500
application, 550
content transfer, 531
control, 430
in web.xml, 85
request, 550
session, 550
session manager, 551

<listeners>, 78
ListResultSet, 405
lists, dropdown

configuring, 181
load balancing, 352
locale

element, in app.xml, 62
<locale>, 62
locales

adding, 138
adding localized files, 140
login, 111
NLS file naming, 140
NLS files, 138
retrieving strings, 141, 581
service, 580
service APIs, 583
tracing, 337

logging, 324, 343
UCF, 523

login, 103
accessible, 585
explicit, 111
J2EE principal, 104
locale, 111
manual, 104
password encryption, 105
preferences, 111
setting up J2EE principals, 106
silent, 542
skip authentication, 110
ticketed, 108

M
max_sessions, 112
memory allocation, 346
menus

configuration example, 300
configuring, 178
passing arguments to, 180
role-based, 507

message service, 600
mirror object, 464
modal windows

overview, 425
performance, 353

<modified_vdm_nodes>, 76
move_operation

in app.xml, 80
<move_operation>, 80
multiple selection

actions, 172
implementing, 415

N
navigation, 329

component methods, 437
components, 237
history, 241
in client event handler, 113
LaunchComponent, 239
return to caller, 440
to a component, 112
to next page, 441
URL parameters, 424
URL to component, 238
within containers, 460

NLS
adding new themes, 125
definition, 137
dynamic substitution, 582
file names, 140
includes, 138
nlsbundle element, 583
strings, 138

noReturnURL, 473
notdefined, 227
notification

Content Server event, 97
<notification>, 72

646 Web Development Kit and Client Applications Development Guide

Index

O
objectfilter

example, 317
objectgrid

compared to datagrid, 613
custom, 617

olecompound element, 217
onchange event, 167
onclick event, 167
onselect event, 167
out (JSP object), 554

P
page not found

HTTP 1.1 not enabled, 328
PageContext, 553
paging

of data, 189
password encryption, 105
performance

actions, 345
browser history, 349
cookies, 349
drag and drop, 454
events, 344
HTTP sessions, 348
import, 352
latncy/bandwidth filters, 350
memory settings, 346
modal windows, 353
object creation, 345
overview, 344
paging and cache size, 346
preferences, 349
qualifiers, 352
queries, 345
strings, 346
tracing, 345
value assistance, 349

permit
precondition, 218

plugins
in app.xml, 80

<plugins>, 80
postComponentJumpEvent(), 113
postComponentNestEvent(), 114
postServerEvent(), 417
precompiling, 157
precondition

element, 216
overview, 491
passing argument to, 389
permission level, 218
role, 216

<precondition>, 216
preferences

component, 273
component, storing and

retrieving, 566
configuration, 276
custom component, 563
definition, 273
login, 111
overview, 563
storing and retrieving, 567
tracing, 337
user, configuring, 277

<preferences>, 273
<preferred_renditions>, 75
primary element, 50
primary folder path

displaying, 412
getting, 412

principal (J2EE) authentication, 104
privilege

qualifier, 485
progress

content transfer, 537
properties

configuration example, 311
not updated with data dictionary

change, 325
properties files

accessibility support, 587
adding to application, 140
configuring, 138
dynamic substitution in, 582
inheritance, 139
naming, 140
overriding strings, 141
overview, 56
retrieving strings, 581
string externalization, 137

propertysheetcontainer, 246
proxy

reverse, configuration for, 522
<pseudo_attributes>, 201
pseudoattributes, 201

Web Development Kit and Client Applications Development Guide 647

Index

Q
qualifiers

clientenv, 53
element in app.xml, 60
performance, 352
resolving to scope, 484

<qualifiers>, 60
queryExecute(), 492

R
reference object, 464
refresh

configuration anddata dictionary, 355
data, 394
value assistance, 205
XML, 49

registerClientEventHandler(), 114
registry

in content transfer, 527
repeating attributes

editing, 193
replica object, 464
request (JSP object), 553
RequestAdapter, 85
<requestvalidation>, 71
response (JSP object), 554
result sets, 404

ArrayResultSet, 405
ConfigResultSet, 404
ListResultSet, 405
ScrollableResultSet, 404
TableResultSet, 405

return navigation, 440
return values

from a container, 448
rich text

configuration, 190
richtexteditor

in app.xml, 80
<richtexteditor>, 80
role

qualifier, 485
<rolemodel>, 64
roles

actions based on, 292
client capability plugin, 289
component filter, 293
configuration, 287
constraints, 293

in Webtop, 287
menus for, 507
model in app.xml, 64
role model adaptor, 506
role plugin, 291
RoleService class, 505
service, 505
tracing, 337
UI based on, 294

runatclient attribute, 167

S
SafeHTMLString, 604
scope

and qualifiers, 52, 484
attributelist, 195
components, 225
element in app.xml, 60
foreign, 218
hiding components, 227
hiding subtypes, 218

<scope>, 60
scrollable controls

configuring, 183
ScrollableResultSet, 404
search

advanced, configuration, 147
basic, configuration, 146
configuring, 144
customization, 557
debugging, 558
preferences, configuring, 153
results, configuring, 151
using 5.2.5 search, 154

search controls
configuring, 145

servlet
filters, 85

servlets
component dispatcher, 467
in web.xml, 86
mapping in web.xml, 83
standard, 26
WDKController, 442

session management
configuration in app.xml, 73

<session_config>, 73
SessionManagerHttpBinding, 547
sessions

648 Web Development Kit and Client Applications Development Guide

Index

cookies, 352
HTTP and repository, 545
IDfSessionManager, 547
repository, 545
SessionManagerHttpBinding, 547
state, 549
tracing, 552

sessions, running out of, 329
setComponentJump(), 457
setComponentNested(), 457
setComponentReturn, 440
setReturnError, 602
shortcutnavigationenabled, 310
Show All Properties, 325
singleselect, 172
skip authentication, 110
SSL

configuring UCF support, 518
startupAction, 212
StaticPageExcludes, 89
StaticPageIncludes, 89
storing objects, 549
strings

configuration overview, 137
dynamic substitution in, 582
inheritance, 139
retrieving, 141, 581

StringUtil, 605
style sheets

changing a control style, 130
identifying, 130
images, 128
introduction, 127
modifying, 130
order of precedence, 127
webforms.css, 129

<supported_locales>, 62

T
TableResultSet, 405
tables

accessibility, 588
tabs

configuring, 181
tags

attributes, 382
base classes, 381
generating UI, 409
relation to controls, 432

using libraries, 164
WebformIncludes (generate style

sheets and JavaScript), 475
testing

internationalization, 141
testing components, 324
themes

adding to NLS, 125
configuration in app.xml, 64
definition, 123
directory structure, 124
images and icons, 133
overview, 122
processing, 126

<themes>, 64
thread

binding and caching, 550
tracing, 336

ThreadLocalCache, 550
ThreadLocalVariable, 550
timeout

control, 102
J2EE server setting, 101
overriding, 102

Tomcat
slows down, 328

tooltips, 208
tracing, 324, 628

adding flags, 342
asynchronous jobs, 340
client-side, 342
clipboard, 337
components and applications, 339
content transfer, 341
controls, 337
dfc, 334
dmcl, 334
framework operations, 337
JavaScript, 117
JSP processing, 338
overview, 333
performance, 345
sessions, 336, 552
turning on, 333
UCF, 341
virtual links, 339
WDK flags, 335

type
qualifier, 484

Web Development Kit and Client Applications Development Guide 649

Index

U
ucf

client configuration, 515
UCF

client config files, 514
client path substitution, 517
client services, 513
customization, 533
logging, 523
process, 525
results, 531
server config files, 521
server services, 520
troubleshooting, 524

<ucfrequired>, 520
UcfSessionInit, 85
URL

in JSP pages, 235
parameters, 476
to component, 238
to component in container, 238
virtual link encoding, 96

user.home, 515
UseVirtualLinkErrorPage, 96

V
validation, 202

base control class, 429
by form processor, 428
configuration example, 308
custom control, 633
input mask, 203
of objects, 429
process, 428
tracing, 338

value assistance
non-data dictionary, 205
overview, 204
performance, 349
refresh, 205

version
components and actions, 55

qualifier, 485
view

content in browser, 537
virtua links

error handling, 96
virtual document

tracing the tree, 339
virtual links

authentication, 93
deployment, 92
overview, 91
path resolution, 94
URL encoding, 96

W
WAR files

introduction, 45
packaging tool, 155

WDKController, 85, 442
web.xml

filters, 85
WebformIncludes, 475
WebformTag, 475
WebLogic

compiler failure, 326
content transfer fails, 332
java.io.IOException, 327

X
<xforms>, 77
XML

configuration files, 49
debugging, 356
file checkin, 332
file extensions, configuring, 73
file import, 331

<xmlfile_extensions>, 73
XSS, see cross-site scripting

Z
ZipArchive, 606

650 Web Development Kit and Client Applications Development Guide

	WDK & Client Applications Development
	Preface
	Revision history

	What is WDK?
	Terminology
	Conventions

	Documentation resources
	WDK foundation technologies
	The WDK architectural stack
	Figure 1-1. WDK physical layout
	Figure 1-2. Web application architectural stack
	Content Server
	J2EE 1.3 application server
	Service layer
	The WDK environment layer
	Presentation model
	Component model
	Application model
	Client

	Approaches to building a WDK client application
	Configuring and customizing a WDK-based application
	Building a WDK-based application

	Configuring WDK Applications
	Configuring and Deploying Applications
	Application structure
	Application layers
	Figure 2-1. Application layers and configuration inheritance

	Application layer contents
	Application layer inheritance
	Application environments
	Required application directories for custom applications
	Web application archives (WAR files)
	How application elements interact

	Configuration overview
	What is configurable
	Working with XML configuration files
	General configuration elements
	Extending XML definitions
	Scope
	Client environment qualifier
	Versioning
	Externalizing and configuring strings

	Configuring an application
	Application name
	Application configuration file (app.xml)
	<config> element
	<scope> element
	<application> element
	<qualifiers> element
	<environment> element
	<failover> element
	<fallback_identity> element
	<language> element
	<save_credential> element
	<authentication> element
	<rolemodel> element
	<themes> element
	<accessibility> element
	<contentxfer> elements
	<browserrequirements> element
	<errormessageservice> element
	<infomessageservice> element
	<requestvalidation> element
	<adobe_comment_connector> element
	<notification> element
	<session_config> element
	<xmlfile_extensions> element
	<formats> element
	<preferred_renditions> element
	<modified_vdm_nodes> element
	<custom_attribute_data_handlers> element
	<discussion> element
	<xforms> element
	<listeners> element
	<client-sessionstate> element
	<dragdrop> element
	<copy_operation> elements
	<move_operation> elements
	<richtexteditor> element
	<plugins> element
	<display> element
	<applet-tag> element
	<job-execution> element

	Web deployment descriptor (web.xml)
	Application environment properties
	Configuring application failover support
	Configuring application-wide failover
	Configuring component failover

	Configuring content transfer mode for the application
	Virtual links
	Virtual link handler deployment
	Virtual link connection and authentication
	Virtual link path resolution and document delivery
	Virtual link error handling

	Content server event notification
	Navigation defaults
	Browser history
	Cookies
	Timeout

	Application login and authentication
	Per-session authentication (login dialog)
	J2EE principal authentication
	Single sign-on
	Ticketed login
	Skip authentication
	Explicit login
	Login preferences
	Login locale
	Number of user sessions

	Using events and JavaScript
	Navigating with an event handler
	Client-side navigation
	Registering client event handlers
	Using client-side scripts
	Manual scripts
	Registered scripts
	WDK scripts
	Generated script tags
	JavaScript tracing

	Events between frames
	Figure 2-2. Folder tree frame interaction
	Example 2-1. Firing an inter-frame event
	Inter-frame event handlers
	Inter-frame server events
	Example 2-2. Using postServerEvent() to trigger container naviga

	Managing frames
	Calling JavaScript functions from server-side classes

	Branding an application
	Registering a theme
	Creating a theme directory
	Making a theme available
	Figure 2-3. Custom Theme

	How themes are located
	Using style sheets
	Using images in style sheets
	Default WDK style sheet
	Internationalized style sheet
	Modifying a style sheet

	Identifying styles in WDK applications
	Figure 2-4. Webtop classic view styles
	Figure 2-5. Webtop streamline view styles

	Adding images and icons
	Configuring buttons
	Configuring the file selector applet
	Branding examples
	Example 2-3. Change a style definition for theme "trendy"
	Example 2-4. Add an icon for a new docbase type to theme "trendy
	Example 2-5. Add a new theme "splashy" based on theme "mellow"

	Configuring and localizing strings
	Adding locales
	Adding strings to properties files
	Inheriting strings
	Naming properties files
	Adding localized files to your application
	Overriding strings in the UI
	Designing for and testing internationalization
	Figure 2-6. NLS strings test
	Figure 2-7. Far Eastern characters test
	Figure 2-8. Long strings test

	Configuring search
	Configuring search controls
	Figure 2-9. Search size custom dropdown list

	Configuring basic search
	Configuring advanced search
	Figure 2-10. Attribute selection dropdown
	Figure 2-11. Specific attributes as search criteria
	Figure 2-12. Custom attributes as search criteria

	Configuring search results
	Figure 2-13. Custom search results for custom type

	Making search results configurable by users
	Using 5.2.5 custom search components

	Packaging and deploying Web applications
	WAR packaging tool
	Deploying with the application installer
	Development update tool
	Compiling and precompiling JSP pages

	Configuring Controls
	What controls do
	How to configure controls
	Example 3-1. Adding Control Tags

	Finding files to configure controls
	Using tag libraries
	Control events
	Types of control events
	Configuring control events
	Control event arguments
	Handling a control event on the client

	Types of controls
	Action-enabled controls
	Types of action controls
	Dynamic action controls
	Using dynamic action controls
	Controlling visibility

	Controls that can be globally configured
	Hiding controls
	Configuring dates
	Configuring menus
	Passing arguments to menus or dynamic action controls
	Example 3-2. Passing an argument to a menu item

	Configuring tabs
	Configuring dropdown lists
	Example 3-3. Overriding a list of options

	Configuring scrollable controls
	Figure 3-1. Scrollable pane controls

	Configuring databound controls
	Configuring data display
	Figure 3-2. Number of columns in a datagrid

	Providing data to databound controls
	Configuring data sorting
	Configuring data paging

	JSP fragment control
	Configuring rich text
	Displaying and validating attributes
	Single and repeating attributes
	Displaying lists of attributes
	The attributelist control
	Figure 3-3. DocbaseAttributeList population

	Context-based attribute lists
	Attributelist configuration files
	Using data dictionary attribute lists
	Supplying or overriding data dictionary attribute lists
	Figure 3-4. How the configuration service determines attribute l

	Display of escaped HTML strings
	Configuring pseudoattributes

	Validating user input
	Validator controls
	Input mask validator

	Validating an object and its attributes
	Using value assistance
	Implementing non-data dictionary value assistance

	Working with images and icons
	Icon controls
	Using icons

	Working with tooltips

	Configuring Actions
	What actions do
	How to launch an action
	Adding action controls to a JSP page
	Passing arguments to actions
	Example 4-1. Passing multiple selection values to an action
	Example 4-2. Passing a datafield to an action
	Example 4-3. Passing context values to an action

	Generic actions using LaunchComponent
	Action configuration file
	Precondition permissions
	Hiding an action for subtypes

	Configuring Components
	Component features
	Component configuration file
	Component inheritance (extends)
	Example 5-1. Extending a component

	Component scope
	Figure 5-1. Scoped configuration

	Hiding components
	Hiding component features
	Configuring data columns
	Adding or removing static data columns
	Example 5-2. Adding a static row between each data row

	Configuring dynamic data columns

	Component layout (JSP pages)
	JSP pages modeled by form class
	Contents of a WDK JSP page
	JSP includes
	Creating a component JSP page
	Using messages and labels
	Using a raw JSP or static HTML file

	Component navigation
	Calling components by URL
	Example 5-3. Calling a component by URL
	Example 5-4. Calling a component in a container by URL

	Calling components from an action (LaunchComponent)
	Example 5-5. Launching a component from an action

	Calling components from JavaScript
	Including a component in another component
	Navigating using browser history

	Component operations on foreign objects
	Presubmission client events
	Configuring containers
	Container types
	Calling containers
	Calling a container by URL
	Calling a container by JavaScript
	Calling a container from an action

	Configuring containers
	Require visit
	Example 5-6. Requiring a component to be visited:

	Container labels
	Example 5-7. Overriding a string

	Components that must run within a container
	Creating modal containers

	Configuring locators
	Figure 5-2. Root (cabinet) locator
	Figure 5-3. Flatlist locator
	Figure 5-4. Container locator

	Using JSP pages outside a component

	Configuring Application Connector menus, components, and actions
	Overview
	Modifying the Documentum menu
	Overview
	Removing menu items from all application connectors
	Modifying menu items for all applications
	Adding custom menu items to all applications
	Restricting menu items to specific applications

	Customizing application connector components and actions
	Overview
	List of application connector components and actions
	Adding application connector components and actions
	appintgcontroller component
	Managing events
	Managing authentication

	Configuring Preferences
	Preference definition
	Configuring default component and user preferences
	User column display preferences
	Figure 7-1. WDK preferences components
	Figure 7-2. Column selector component
	Example 7-1. Adding a display preference for a custom type
	Figure 7-3. Custom type column preferences

	Sample preference definitions

	Configuring Roles and Client Capability
	Role configuration overview
	Client capability plugin
	Docbase role plugin
	Role-based actions
	Role-based filters
	Role-based UI

	Configuration Examples
	Configuring buttons and images
	Adding a button or image
	Example 9-1. Adding an icon for a custom type
	Figure 9-1. Custom type icon

	Changing a button label
	Changing a button or image style
	Changing button or image function
	Configuring dynamic buttons and images

	Configuring dynamic menu items
	Example 9-2. Removing a menu option
	Figure 9-2. Webtop view menu
	Figure 9-3. Revised view menu

	Example 9-3. Changing the More... menus
	Figure 9-4. Drilldown More... menu
	Figure 9-5. Reconfigured More... menu

	Configuring content display
	Example 9-4. Data display: design-time configuration
	Figure 9-6. Webtop My Files default display
	Figure 9-7. Configured My Files display

	Example 9-5. Data display: Custom objects and attributes
	Figure 9-8. Custom attributes display based on context

	Configuring navigation base cabinet or folder
	Figure 9-9. Default navigation from repository root
	Example 9-6. Configuring the base cabinet in the doclist
	Figure 9-10. Navigation from a specific folder path
	Figure 9-11. Navigation from a specific folder ID

	Configuring branding
	Figure 9-12. Custom theme directory
	Figure 9-13. New default theme

	Configuring validators
	Configuring application startup
	Configuring accessibility

	Configuring the properties container
	Figure 9-14. Adding a component to the properties container

	Configuring attributes
	Configuring attribute layout
	Configuring an attribute list
	Example 9-7. Removing attributes from display (data-dictionary l
	Figure 9-15. Default checkin attributes for a custom type
	Figure 9-16. Custom checkin attributes for a custom type

	Creating a custom object filter
	Figure 9-17. Object list with custom filter
	Figure 9-18. Object list with standard files filter

	Customizing WDK Applications
	Development Environment and Tools
	Using an IDE
	Troubleshooting WDK-based applications
	Runtime errors
	Error loading main component
	Show All Properties does not work
	Properties do not display after data dictionary change
	WebLogic compiler fails
	WebLogic slows, throws exceptions, or crashes
	(WebLogic) java.io.IOException: Not enough space
	Future dates do not display correctly
	JavaScript error on application connection
	Error " Configuration base has not been established”
	Application no longer starts after code change
	(Tomcat) Application slows down
	Page not found errors in if HTTP 1.1 not enabled in client brows
	DFC business object no longer works
	Application runs out of sessions
	Browser navigation renders actions or links invalid
	Content transfer fails
	(Windows) Applet installation fails on client
	Cannot import an XML file
	Cannot check in XML file
	java.lang.verify error in WDK application after installing anoth
	Unable to locate checked out objects after installing WDK-based
	(WebLogic) Invalid ticket (content transfer fails)
	Controls don't display any repository data

	Tracing
	Turning on WDK tracing
	Using DFC tracing
	Using DMCL tracing
	WDK tracing flags
	Tracing sessions
	Tracing WDK framework operations
	Tracing controls and validation
	Tracing JSP processing
	Tracing components and applications
	Tracing virtual links
	Tracing servlets
	Tracing asynchronous operations
	Tracing content transfer

	Adding custom tracing flags
	Example 10-1. Adding tracing flags to your application

	Client-side tracing

	Logging
	Performance
	Action implementation
	Documentum object creation
	String management
	Paging
	J2EE memory allocation
	HTTP sessions
	Preferences
	Browser history
	Value assistance
	Search query performance
	High latency and low bandwidth connections
	Qualifiers and performance
	Import performance
	Load balancing
	Modal windows

	Finding component information
	Comment stripper
	Testing components
	Debugging tips
	Refreshing configuration and data dictionary
	JSP debugging
	XML debugging
	JavaScript debugging
	Java debugging

	Component, Action, and Control Design Guidelines
	General guidelines
	File follows naming convention
	File follows location convention
	Follows accessibility guidelines (Section 508)
	Externalizes and tests strings

	Design checklists
	Control checklist
	Control checklist detail
	Creating new control if needed
	Using base tag rendering helpers
	Formating and escaping rendered HTML
	Ensuring that page is loaded and initialized

	Component checklist
	Component checklist detail
	Describing a component
	Making a component configurable
	Making the component definition backward-compatible
	Removing context-sensitive behavior from the class
	Caching data
	Using custom attribute data handlers
	Following DFC guidelines

	Component unit test checklist

	Customizing Controls
	Control classes
	Using controls programmatically
	Creating controls
	Example 12-1. Creating a control in a non-component class
	Example 12-2. Creating a control in a component class
	Example 12-3. Creating a control in a tag class

	Naming and getting controls
	Example 12-4. Retrieving a control value
	Example 12-5. Getting a control by ID in JavaScript
	Example 12-6. Getting the value of a hidden control

	Setting control values
	Example 12-7. Initializing control properties
	Example 12-8. Setting default control values
	Example 12-9. Setting the title on a label
	Example 12-10. Setting a control label in the component class
	Example 12-11. Setting a control label in the tag class
	Example 12-12. Setting the state of a checkbox

	Getting datagrid controls
	Example 12-13. Getting a value from a datagrid row

	Passing arguments to action-enabled controls
	Example 12-14. Passing a precondition argument

	Programming databound controls
	Data support classes
	Getting data
	Getting data in a component
	Example 12-15. Getting data in the component class

	Getting data in a tag class
	Example 12-16. Getting data in a tag class

	Getting data in a behavior class
	Example 12-17. Running a query
	Example 12-18. Setting control values from an XML file

	Getting or overriding data in a JSP page
	Example 12-19. Overriding a query in a JSP page
	Example 12-20. Getting data in the JSP page

	Refreshing data
	Example 12-21. Refreshing data

	Caching data
	Example 12-22. Overriding the record cache size

	Modifying the display and handling of attributes
	docbaseobjectconfiguration file
	Attribute formatters
	Value handlers
	Tag classes
	Figure 12-1. String attribute rendered as text control
	Figure 12-2. String attribute rendered as TextArea control

	Custom elements and editing components in object configuration
	Default configuration
	DocbaseAttributeList lookup process
	Figure 12-3. Docbaseattributelist lookup

	Rendering data with result sets
	Making data scrollable
	Example 12-23. Setting data to a databound control

	Handling data from a configuration file
	Example 12-24. Passing data from a configuration file to a data

	Handling data from an array or vector
	Example 12-25. Handling a vector of data in ArrayResultSet
	Example 12-26. Passing Data from a Vector to a TableResultSet
	Example 12-27. Passing Data from a Vector to a ListResultSet

	Formatting data with handlers
	Adding custom attributes to a datagrid
	Example 12-28. Custom attribute data handlers in Digital Asset M

	Generating UI
	Example 12-29. Generating HTML
	Example 12-30. Setting a control value in onRender()

	Generating a link in a control
	Example 12-31. Rendering an HTML link

	Making a control accessible to JavaScript
	Example 12-32. Generating a function name in JavaScript

	Displaying folder paths and breadcrumbs
	Getting the primary folder path
	Displaying the folder path
	Figure 12-4. Folder path display

	Adding support for a breadcrumb
	Using a hidden folder path in a component

	Implementing multiple selection
	Managing control events
	Use server-side or client-side processing?
	Firing a server event from the client
	Example 12-33. Client to server event

	Handling a control event on the server
	Updating components with client events
	Firing a client event from the server
	Linking controls by events
	Example 12-34. Activating a dependent control

	State change events
	How control events are raised
	Figure 12-5. Client-side and server-side event processing

	Using modal windows
	Setting event handlers programmatically
	Control lifecycle events

	Validating a control value
	Example 12-35. Validating controls on a JSP page

	Validating a repository object
	Example 12-36. Passing an object ID for validation

	Adding a control listener
	Example 12-37. Implementing a control listener

	Creating custom pseudoattributes
	How controls and tags work together
	Figure 12-6. Control and ControlTag relationship

	Control arguments
	Example 12-38. Passing arguments to a component or action

	Customizing Components
	Component base class
	Component public interface
	Navigating within and between components
	Navigating within a component
	Example 13-1. Changing the component JSP page

	Jumping to a component
	Example 13-2. Jumping to another component
	Example 13-3. Jumping to a node in the browser tree

	Nesting to another component
	Example 13-4. Passing arguments to a nested component
	Example 13-5. Passing arguments from a nested component

	Returning to the calling component
	Example 13-6. Return to a calling component in an event handler

	Returning to a component, then jumping to another
	Example 13-7. Return and jump to another component

	Navigating within a container
	Example 13-8. Navigating to the next or previous component

	Implementing failover support
	Figure 13-1. Serialization process
	Example 13-9. Implementing onRecover()

	Implementing a component
	Example 13-10. Implementing Component.onInit()
	Example 13-11. Setting the data provider in onRender()
	Example 13-12. Supporting columns of Attributes

	Using a component listener
	Example 13-13. Using a listener to force a refresh
	Example 13-14. Listening to a nested component
	Example 13-15. Returning values to a listener

	Accessing an included component
	Example 13-16. Accessing an included component
	Example 13-17. Accessing controls in an included component

	Supporting drag and drop
	Drag and drop support in WDK components
	Adding drag and drop to a component definition
	Adding drag and drop to a JSP page
	Adding drag and drop support to a control
	Troubleshooting drag and drop

	Customizing containers
	Calling a container from a server class
	Example 13-18. Jumping to a container

	Implementing container notifications
	Example 13-19. Testing whether component can commit changes
	Example 13-20. Committing component changes
	Example 13-21. Setting component cancel changes conditions
	Example 13-22. Implementing onCancelChanges()

	Accessing components within containers
	Example 13-23. Initializing contained components
	Example 13-24. Getting the current component
	Example 13-25. Accessing cpecific components in a container
	Example 13-26. Testing whether the container has a previous or n

	Passing arguments in a container
	Example 13-27. Passing arguments from a container to components
	Example 13-28. Getting container arguments in the contained comp

	Multi-repository support
	Replica (mirror), reference, and foreign Objects
	Adding multi-repository support to a component
	Scoping and preconditioning actions on remote objects
	Session management with multiple repositories

	Component dispatching
	Component dispatcher servlet
	How components are dispatched
	WDK 5 component bridge
	URL bridge (default)

	Component lifecycle
	JSP page processing (form processor)
	What the form processor does
	Form processing sequence
	Figure 13-2. Component Processing Sequence Diagram
	Figure 13-3. JSP page, control, and user interaction diagram

	Processing browser navigation
	Form navigation operations

	Form classes
	WebformIncludes class
	Example 13-29. Using IParams Constants

	Using the Configuration Service
	Configuration service classes
	ConfigService
	IConfigContext
	Example 14-1. Matching arguments to qualifiers

	Configuration lookup
	Example 14-2. Looking up a configuration string value
	Example 14-3. Looking up a configuration boolean value

	Configuration lookup hooks
	Example 14-4. Registering a lookup hook

	Configuration reader

	Scope and qualifiers
	Context
	Example 14-5. Serializing context to a URL
	Example 14-6. Saving an object ID in context
	Example 14-7. Setting a context value

	Configuration service process
	Lookup algorithm

	Customizing actions
	Preconditions
	Example 15-1. Implementing the action queryExecute() method

	Execution
	Example 15-2. Implementing action execute() method
	Example 15-3. Implementing getRequiredParams()
	Example 15-4. Passing an action argument value to a component

	LaunchComponent execution classes
	Providing action NLS strings
	Dynamic component launching
	Example 15-5. Implementing a dynamic filter

	Action listeners
	Example 15-6. Implementing an onComplete() event handler
	Example 15-7. Using CallbackDoneListener
	Example 15-8. Implementing IActionCompleteListener
	Example 15-9. Implementing IActionListener

	Nesting actions
	Example 15-10. Nesting actions

	Customizing Roles
	Role service APIs
	Custom role plugin
	Role-based menus

	Customizing Content Transfer
	Content transfer modes compared
	Unified client facilities (UCF)
	UCF on the client
	Configuring the UCF client
	Figure 17-1. UCF sample client configuration mapping

	Configuring UCF client path substitution
	Configuring UCF support for unsigned or non-trusted SSL certific
	UCF on the application server
	Configuring the UCF application server
	Configuring UCF support for chunked transfer encoding
	UCF logging
	UCF troubleshooting
	UCF process
	Figure 17-2. UCF client-server process
	Figure 17-3. UCF client-server session management

	Windows client registry in content transfer
	HTTP content transfer
	Example 17-1. Getting multi-part upload files in the request

	Content transfer listeners
	Content transfer service classes
	Figure 17-4. Content transfer component classes and service laye

	UCF transfer component customization
	Content transfer control initialization
	Content transfer debugging
	Using Pre-5.3 content transfer components
	Streaming content to the browser
	Content transfer progress

	Customizing Authentication
	Authentication service
	Figure 18-1. Authentication service interfaces

	Authentication schemes
	Figure 18-2. Authentication scheme processing

	Silent login
	Example 18-1. Login from external resource

	Managing Sessions
	Getting a session in a component or action class
	Example 19-1. Getting a session in a component class
	Example 19-2. Getting a session in an action class

	Getting a session using SessionManagerHttpBinding
	Example 19-3. Getting a session with SessionManagerHttpBinding

	Storing and retrieving objects in the session
	Example 19-4. Storing and retrieving a string in SessionState

	Binding and caching in a request thread
	Application, session, and request listeners
	IDfSessionManagerEventListener
	Example 19-5. Implementing a Session Event Listener

	Session synchronization
	Example 19-6. Synchronizing the HTTP session

	Session tracing
	JSP implicit objects in WDK
	Example 19-7. Printing JavaScript dynamically to the browser
	Example 19-8. Accessing request parameters
	Example 19-9. Writing a response from a servlet
	Example 19-10. Writing HTML output in a tag class

	Customizing Search
	Programmatic search value assistance
	Troubleshooting search
	Search class diagrams
	Figure 20-1. Search component UML diagram

	Implementing Component and User Preferences
	Creating a component preference
	Figure 21-1. Component without preference
	Figure 21-2. Component with preference

	Storing and retrieving component preferences
	Example 21-1. Overriding preferences

	Storing and retrieving user preferences
	Example 21-2. Storing user preferences
	Example 21-3. Retrieving user preferences

	Tracing preferences

	Other Customizations
	Asynchronous action and component execution
	Asynchronous action job execution
	Example 22-1. Enabling asynchronous execution of an action

	Asynchronous component job execution
	Example 22-2. Enabling asynchronous execution of a component

	Job execution framework
	Example 22-3. Job with Steps

	UI in asynchronous processing
	Asynchronous process
	Figure 22-1. Job execution interaction diagram

	Branding service
	Image service APIs
	Example 22-4. Getting an image in a tag class
	Example 22-5. Getting the dimensions of an image

	Locale service
	Retrieving localized strings
	Dynamic messages in NLS strings
	Example 22-6. Dynamic Error Messages

	Adding locale support to custom components
	LocaleService APIs
	Example 22-7. Getting the user's locale
	Example 22-8. Setting the locale for an object

	Locale codes

	Accessibility service
	Accessibility mode
	Accessible control labels
	Event handlers
	Image accessibility strings
	Accessible tables
	Applet descriptions
	Frame titles
	Writing alt tags or label descriptions

	Help service
	Adding help to a standalone Web application
	The help component
	Adding help for a custom component
	Invoking the help
	Scoping and filtering the help
	Example 22-9. Scoping the help
	Example 22-10. Filtering the help files

	Launching help
	Example 22-11. Creating a custom help directory

	Localizing help files

	Utilities
	Clipboard service
	Clipboard APIs
	Using the clipboard in a component
	Location and refresh
	Clipboard Action Filtering

	Rendering messages to users
	Reporting errors
	Version utility
	Encoding utilities
	SafeHTMLString
	StringUtil
	ZipArchive

	Input mask

	Using Business Objects in WDK
	Calling an SBO method
	Example 23-1. Calling an SBO method

	Using TBOs
	Figure 23-1. Documentum object hierarchy

	Customization Examples
	Displaying Objects: Datagrid and objectgrid
	Creating a component
	Extending a component
	Creating a component definition
	Adding component parameters to the component class
	Example 24-1. Adding parameters

	Getting data
	Creating the component JSP pages
	Implementing navigation in a component

	Customizing components
	Displaying a single custom object type (object grid)
	Figure 24-1. Custom type object grid
	Creating the custom grid component definition
	Creating the object grid class
	Adding custom columns to the display
	Adding externalized strings
	Launching the object grid component
	Figure 24-2. Custom grid launched by URL
	Figure 24-3. Launching from the Webtop browser tree

	Getting a component reference in a JSP page

	Customizing controls
	Choosing a control superclass
	Adding control events

	Customizing actions
	Adding a custom action
	Implementing the action execution class
	Action tracing
	Custom action execution class with pre- and post-processing

	Custom queries and data sources
	Adding a custom query or data source
	Populating a dropdown list with a query

	Creating a validator
	Developing a validator tag
	Developing a validator class
	Using the validator in a component

	Creating a qualifier
	Using a prompt within a container

	Index

